A HAMILTON-JACOBI APPROACH TO ROAD-FIELD REACTION-DIFFUSION MODELS

CHRISTOPHER HENDERSON AND KING-YEUNG LAM

1. COMPARISON PRINCIPLE

In this section, we develop a comparison principle, and, thus, a uniqueness theorem, for strong solutions to the
slightly more general equation

(1.1) min{w — lt, w; + Hy(wg, wy)} =0 in (0,00) x H
and
(1.2) min{w — £, w; + F(wg,wy)} =0 on (0,00) x R x {0},

where ¢ € R. Here Hy(q,p) and H,(¢q) are both convex and coercive, and

F(q,p) = max{H; (¢,p), H-(q)},
where H; is the decreasing part of Hy given, for each fixed ¢, by

H=(q,p) = Hi(q,p)  forp <p.,
P Hf<Q7p*) for p > p.,

where p. = p.(q) is the minimum point of p — H¢(q,p). For simplicity, we will assume in the following H(q,p) =
q*> +p? =1, so that H = q®> + (p A0)2 + 1. This addition of the /-term allows us to, in the sequel, reduce to an
equation with a sub-homogeneity property (cf. (1.14)).

The main idea of the proof is due to [3] (see also [1] for general junction conditions). Our proof is new for
unbounded viscosity solutions. We later apply it to uniqueness for unbounded viscosity solutions with discontinuous
initial data, although in the simplified setting of a convex Hamiltonian. Our main contributions are the localization
of the Lions-Souganidis argument as well as the simplification of certain steps by leveraging the Lipschitz continuity
of subsolutions.

Finally, our argument is mainly showing that the comparison theorem holds for the Kirchhoff (Neumann) problem.
Here we use only that B is convex (in our case B(q) = p,). Solutions of the problem with Kirchhoff junction conditions
are connected to the strong boundary conditions via Lemma 1.4.

Our first main result is the following:

Theorem 1.1 (Comparisgn principle). Fiz any T > 0. Let w and W be, respectively, strong sub- and supersolutions
to (1.1)-(1.2) on (0,T) x H. If w(0,z,y) <w(0,z,y) for (x,y) € H, then

w < W. on [0,T) x H.

Before we prove Theorem 1.1, we show how to deduce uniqueness of (possibly infinite) solutions to (1.1) from it.
This is our second main result.

Corollary 1.2 (Uniqueness). Any two functions w : [0,00) x H — R U {+oc} satisfying

(i) On [0,00) x @, w 1s lower semicontinuous and a strong supersolution to (1.1),
(i) On (0,00) x H, w is finite-valued, continuous, and is a strong subsolution to (1.1), and
(i1i) Fort >0, w(t,0,0) < £t, while at t =0, we have w(0,0,0) > 0 and w(0,z,y) = +oo for (z,y) # 0.

Proof. We argue by contradiction. Fix any two functions w and w that satisfy (i), (ii) and (iii). By the arbitrariness
of w and w, we need only show that w < w.
Any supersolution must necessarily satisfy
w(t, z,y) > 0t for all (¢,z,y) € (0,00) x H.
Using (iii), we see that
— [T + w(1,0,0) <0 < w(0,0,0).
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Moreover, again using (iii), we have, for all (z,y) # (0, 0),
— T +w(rz,y) < +oo = w(0,z,y).

Hence -

— T +w(r,z,y) <w0(0,z,y) for all (z,y) € H.
Finally, we immediately see that

=l +w(t+7,2,9)
is a subsolution to (1.1).
Applying Theorem 1.1, it follows that

— T +w(t+71,2,y) <w(t,r,y) forall (t,z,y) € (0,00) x H.
By the continuity of w on (0,00) x H, We can then let 7 — 0 to obtain w < @ on (0, 00) x H, as desired. O

1.1. Strong solution implies Kirchhoff solution. We follow the idea of [3], as presented in [1]. For this purpose,
we associate a Kirchhoff condition to strong sub- and supersolutions.

Definition 1.3. Let w: (0,00) x H — R, and let (¢, z0,yo) € (0,00) x H be given. We say that the constant vector
(=X, q,p) is an element of the subdifferential at (to,zo, o), a set denoted by D~ w(tg, xo, yo), if there exists ro > 0

such that
(1 3) w(tax7y) > w(t07330>y0) + (—)\,CLP) ' (t - t(),.’I} —2o,Y — yO) + 0<‘t - tO‘ + |$ - $0| + |y - y0|)
. for (t,:c,y) € {(t/axlay/) € (0,00) X ﬁ: ‘(t/ - to,IIZ’/ - xOvy/ - y0)| < TO}'

The superdifferential at (tg, xo, yo), denoted D w(tg, zg,yo) is defined similarly up to reversing the inequality in (1.3).
For a given function ¢(t¢,x) (that is, not depending on y), we denote by the sub and superdifferentials, denoted
D; ,¢(to, zo) and D}, ¢(to, x0), analogously.
We now state the Kirchhoff condition:
(1.4) —wy + B(w,) = 0.

We choose the notation B to match that of Lions and Souganidis [3]. Then a (weak) solution of (1.1)-(1.4) is one
such that
(15) min {w — ¢, max {—w, + B(wy), w; + Hy(wg, wy)}} >0  on (0,00) x R x {0},

’ min {w — 0, —w, + B(wy), w; + H(wg,wy)} <0 on (0,00) x R x {0}.

The first inequality in (1.5) corresponds to supersolutions (along with the condition that w is lower semicontinu-
ous), while the second inequality in (1.5) corresponds to subsolutions (along with the condition that w is upper
semicontinuous). Let us point out that if @ is a supersolution to (1.1)-(1.1), it must be that

(1.6) w >t on (0, 00) x H.

We now show that strong solutions satisfy the Kirchhoff condition. This was originally observed by Lions and
Souganidis in [3] in a slightly different context, and we follow their proof.

Lemma 1.4. Let w be a strong subsolution (resp. strong supersolution) of (1.1)-(1.2), then it satisfies the Kirchhoff
condition (1.1)-(1.4) with coefficient

B(q0) = pgo:
where we recall that, for each qo, the number py, € [0,00) is given by the larger root of p — Hi(qo,p) — Hy(qo) if
H,(qo) > min H¢(qo, ), or pg, = argminH(qo, ) otherwise. The expression H.(qo) is called the fluz-limiter [2].

Proof. For simplicity, we assume the case H¢(q,p) = ¢° + p? + 1, and H,(q) = ¢*> + (pq)? + 1, where
0 if ¢ < 5,

(17) Pg = { , " ) D1—1
g (@) ifq¢*> 5.

Here g : [0,00) — [1/vD =1, 00) is the increasing function

1 Kp
=4/ ——|p2+1 .
9(p) \/D -1 {p T KV —|—p]

First, we assume w is a strong subsolution. It suffices to check the condition on the boundary {y = 0}. Fix
(to, Zo, 0) and (7>‘7p07 QO) € D+’U.)(t0, Zo, 0) Then

max{H; (qo,po), Hr(q0)} = F(qo,p0) < A.
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If He(qo,p0) < A or w(ty, xg,0) < £, then we are finished by (1.5)
It remains only to argue in the case where H(qo,po) > A and w(to, o, 0) > £. In this case, we must show that

(1.8) Po = Pyq-
Since
(1.9) H{ (qo0,p0) < A < He(qo,10)s

it follows that pg > 0 (recall (?77?)).
By construction, we have that

(1.10) H(q0,qy) < Hr(go) < A

Since py, > 0 and Hi(qo, ) is increasing on [0, 00), we deduce from (1.9)-(1.10) that (1.8), as desired.
Next, assume that w is a strong supersolution and (—A\, pg, go) € D~ w(to, xo,0). Then

(1.11) max{H; (qo,po), H:(qo0)} > A.

We are finished if
— A+ He(go,po) > 0.
Hence, we consider when
Hi(qo,po) < A,

in which case we need to show that py < pg,. By (1.11), we divide into two cases: (i) H; (qo,po) > A; (ii) Hr(qo) > A
In case (i), H; (go,po) > Ht(qo,po), which implies that py < 0. By definition, 0 < pg,. Thus, the proof is complete
in this case.
In case (ii), Hi(go,po) < A < Hy(go). Whence we conclude that H,(qo) = Hi(qo, g, )- It follows that

H¢(qo, [pol) = Ht(q0,po) < H(qo, Py, )-
Since H; is increasing on [0, 00) and pg, > 0, we deduce that
Po < [po| < pg,-
This completes the proof. O
The key of the comparison principle is the following lemma due to Lions and Souganidis [3, Lemma 3.1].

Lemma 1.5. Assume that there exists Hy € C(R), po,qo € R, and a,b € R such that

(i) po = qo, a+ Ho(po) <0 < b+ Ho(qo);
(ii) min (p’',a + Ho(p")) < 0 for each p' € (—o0, pol,
(iii) max (¢',b+ Ho(q')) > 0 for each ¢’ € [go,00).

Then a < b.
We state one final technical result that is necessary in the proof of Theorem 1.1.
Lemma 1.6. Given an open set QQ, suppose that there is a constant C' such that
(1.12) w(t,z,y) + Co(t*> +2%) is convex in (t,z) for each y, with (t,z,y) € Q.
Then for any (to, w0, y0), the set of subdifferential D, ,w(to,z0,y0) in the (t,r) variable is nonempty, and
(1.13) w(to, 0,90) < w(0,0,90) + (=X, q) - (o, zo) + Co(tg + 3),
for any (to, 0, y0) € Q and any element (-, q) € D; ,w(to, o, Yo)-

Proof. By (1.12), w(t,z,y) + Co(|t — to|® + |x — 20|?) is convex and, thus, has at least one supporting hyperplane.
This implies that D, ,w(to, o, %o) is nonempty.
Let (=), q) € D; ,w(to,70,y0). Combining the definition of the subdifferential and the (¢, z)-convexity in (1.12),
it follows that, for all (¢, z),
w(to, 0, y0) + (=, q) - (t — to, z — x0) < w(t,z,y0) + Co(|t —to|* + [ — z0[?).

The conclusion (1.13) follows by setting (¢, ) = (0,0). This completes the proof. O
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1.2. Proof of the comparison principle. We provide a self-contained proof here adapting the ideas of [3] (see
also [1, Chap. 17]). Before beginning, let us point out that the main differences between our setting and that of [3]
are: (1) B is a function, not a constant, (2) the initial data need not be bounded and uniformly continuous, (3) our
Hamilton-Jacobi equation (1.5) involves an obstacle.

Proof of Theorem 1.1. Let £y = max{H(0,0), H.(0)}. By replacing ¢ by ¢+ ¢y, and w and w with W+ ¢yt and w + lot,

we may assume that
H(0,0) <0 and H,(0)<O0.

Then, by convexity,
(1.14) H(M\g, M\p) < AH¢(q,p) and H,(\g) < AH,(q) forallp,¢geR, 0 <A< 1.
Next, assume to the contrary that inf(O,T]XH(@ —w) < 0.

In the next three steps, we perform a reduction to the case of a bounded domain, w being locally Lipschitz in
(0,00) x H and semi-convex in (¢, ), and w being semi-concave in (¢, ) and continuous on the hyperplane {y = 0}.

# Step one: Without loss of generality, we may assume that w is bounded from above.
We claim that wy = min{w, K} is a strong subsolution to (1.1)-(1.2) for each K > 0. Indeed, take a sequence
{g;} of smooth functions satisfying

0<gi(r)<1 and gj(r) /*min{r, K} forr €R.
Notice that
(1.15) Vgj(w)| < [Vuw.

Then @ = g;(w) is a viscosity subsolution to (1.1)-(1.2). Indeed, we clearly need only check the set {(¢, z,y) : w—¢t >
0}, in which, thanks to (1.14) and (1.15),

i + G(Vw) < gj(w) 0w + G(Vw)]  for G = Hy, Hy , or H,.

Using the stability of strong subsolutions (see, e.g., [1, Theorem 14.2.1]), we take j — oo and deduce that w, =
min{w, K} is a strong subsolution to (1.1)-(1.2).

Notice that, if we prove that wy, < w for all K, then we deduce that W < in the limit K — co. We may, thus,
assume that w is bounded from above.

# Step two: reduction to a strict subsolution. Without loss of generality, we may assume that there is n > 0
such that

(1.16) limsupw = limsup w=—-oc0 and min (wW—w) >0,
=T~ |z|+]y|—o0 {0} xH
while
(117) {min{w — 0, 0w + He(Vw) +2n} <0 on (0,7) x H,
min{w — ¢t, dyw + F(Qgﬂ,yy) +2n} <0 on (0,T) x OH.
It is easy to see that
Wy (t, x,y) = fTL_t —log(1 + |z* + |y|*) + ¢t

is a strong subsolution to (1.1)-(1.2) for K sufficiently large. Thanks to the convexity of H, H; and H,, the function
w, = (1 = p)w + pavy

satisfies (1.16)-(1.17) for any 0 < g < 1 (recall that w is bounded from above by the previous step). Again, it suffices

to show that w,, <w for all sufficiently small x> 0.

## Step three: reduction to a compact portion of the boundary. Let us note that, due to (1.6) and the work
in Step two, there is R > 0 such that the

inf (W—w)=min(w—w) <0,
[0,T]xH Qr

where o
Qr={(t,z,y) €[0,T| xH:Y/r <t <T—1R |z[+[y] < R}.
(0,7) x OH) N Qg. Let

(t,z,y) = argmin(w — W) = argmin(w — W).
Qr [0,T]xH

We now show we need only consider (

If y > 0, we may apply a standard doubling of variables argument to deduce a contradiction. Hence, we proceed with
the rest of the proof assuming that § = 0. Here the doubling of variables method has inherent difficulty when the
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point of contradiction occurs at the boundary. We proceed following the ideas of [3], with some minor modification
taking advantage of the Lipschitz continuity of the subsolution.

Step four: reduction to semiconvex/concave functions. Without loss of generality, we may assume that w
(resp. W) is semi-convex (resp. semi-concave) in the (¢, x) variable for each y with a uniform constant C. We can
also assume that w is locally Lipschitz, and w is continuous on {(t,z,y) € H: y = 0}.

Consider the sup-convolution of w and inf-convolution of w: for e,a > 0,

W)= G v g

Ms(ta z, y) = maXx {w(t/a Z‘/, y) -

t!x! o
; ta') — (t,z)]? + )
we(t, x,y) = I lzr/l {w(t/,x/,y) + (I( ) ({_:a )| ) } '

By [1, Propositions 2.4.4 and 2.4.9] and the boundedness of @ and w, there exists some small constant o > 0 such
that the following statements hold.

(i) w® and w° are strong sub and strong supersolutions in Qr, repectively;
(ii) w® and —w® are semi-convex in the (¢,z) variables;
(iii) limsupw® = w and lim inf W® = w, where the limits are taken as ¢ — 0.
Moreover, the subsolution w® is Lipschitz continuous in all variables, since 0;w® + Hy(0,w®, Oyw®) < 0 and coercivity
of Hy implies

|0yw®| < C(|0yw®|, |0zw®]), this is true for w, but not w, and C is independent of &

for some constant C that depends on d;w® and d,w® but independent of . Here the right hand side is bounded due
to regularization by sup-convolution.

This proves that w® is Lipschitz continuous in (0,00) x H, and the Lipschitz constant can be chosen uniformly
for all interiori points. On the boundary, we have d,w® + HJ? (Ozw®, Oyw®) < 0, so the same reasoning yields that
Oyw® is bounded uniformly from below by the (bounded) constant C(|0,w®|, |0,w?|). This, together with the upper
semicontinuity property, implies that w® is uniformly Lipschitz in (0, cc0) x H.

In the following, we replace w (resp. W) by its sup-convolution (resp. inf-convolution) for some fixed small . It
remains to modify @ so it is continuous on the hyperplane {y = 0}. !

To this end, we will replace W by w1 (t,z,y) = min{w(t,z,y),w(t,x,0) + K'y}. We claim that @ is a strong
supersolution to (1.1)-(1.2) in @, g. Indeed, at each point Py = (¢, zo,Yo), if Yo = 0, then the set of subdifferential
of Wy is a subset of that of w. Moreover, when yo > 0 it is easy to see that (¢, z,y) — w(t, z,0)+ K’y is a supersolution
to (??) in the interior points of H provided K’ is large enough, since w is Lipschitz continuous in the (¢, z) variable,
with a uniform in y constant (recall that e is fixed). Now, w is already lower semi-continuous, so that

(t,l?,’;l)IE(ltIcl)Fwo,O) w(t,x,y) > w(to, o, 0).
Noting that (¢, x,y) — w(t, z,0) + Ky is upper semi-continuous on 0H = {(¢,z,0) : t > 0, z € R}, it follows that
w1 is continuous on the hyperplane (0, 00) x 0H, and remains semi-concave in (¢, z) (since minimum of semi-concave
functions are semi-concave).

A key consequence of the semiconvexity of w and semiconcavity of W in the variables (¢, ) (they are now replaced
by the associated sup/inf-convolutions with small enough ¢) is that both of w, w are differentiable in (¢,2) at the
maximum point P = (£,Z,0), and we denote the derivatives as follows

(1.18) q:=w,(P)=w,(P), —\:=w,(P)=1wP).
Step five: convergence of sub/superdifferential.

Claim. Let P = (t,%,0) and g, X be specified above. Let P; = (t;,x,y;) such that P; — P be given. If (—\;, q;) is an
element in the subdifferential of (t,x) — w(t, x,y;) (resp. superdifferential of W) at (t;,x;), then (—X;,q;) = (=X, q).

The claim follows from [1, Proposition 5.1.1(v)]. (By construction, there exists C' > 0 independent of j such that
fit,z) = w(t,z,y;) + C(|lz — x;|> + |t — t;|?) is convex for all j, so that (—);,q;) defines a supporting hyperplane
for f;. Moreover, the continuity of w implies that f; — w(t, z,0)+C(|z — Z|? + |t — £|*) uniformly, so that the limit
lim(—A;, ¢;) again defines a supporting hyperplane, and is uniquely identified as the derivative D(M)M(E,f,()) =
(=, q) as specified in (1.18). Recall that w is differentiable in (¢,z) at P.)

Define

N(’/’l) = (E— T1,£+ 7‘1) X (i‘ —-7r,T+ 7’1) X (O,Tl).

1Q: Why is there no such issue with w? A: Because w is Lipschitz continuous in y, but w might be discontinuous in y.
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Recalling the fact that w is Lipschtiz continuous in @, g (so that the p-component of the superdifferential is uniformly

bounded), we can take r; > 0 small enough so that (i) w—¢t > 0in N(r1) and (ii) for any element (—A\, ¢, p) belonging
to the subdifferential of w at some point P € N(r1), we have

(1.19) AN=A+lg—q =0 asP— P=(z,0),
and
(1.20) A=Al +1g = ql + [(=X+ H(q,p)) — (=X + Hi(q,p))| < -

# Step six: defining u(y), v(y), p,.P, and p,
Next, we would like to reduce to the one-dimensional problem. To this end define

u(y) =w(t,z,y) and w(y) =w(, ,y)

and let

p, = liminf u(y);u(O)’ Pu= 1iyni%1ip u(y);u(o), p, = liminf U(y);v(o).
Claim. p ,p,,p, are finite, and satisfies
(1.21) p, <p, <P

Indeed, P, Py are finite since w is Lipschitz continuous in Q- g. Also, u — v attains a local maximum at y = 0,
it follows that v(y) — v(0) > u(y) — u(0) > —Cly|. Taking liminf in y — 0+, we see that p is also finite. By
construction, it immediately holds that p, <P, <Dy

# Step seven: reduction to one-dimensional problem. -
We claim that the set DTw(P) of superdifferential of w and the set D~w(P) of subdifferential of w satisfy

D*w(P) 2{(-=A\a@p): p=D,} and D @W(P) 2 {(-\qG.p): p<p,}.

This is proved in [1, Lemma 15.3.4] by regularization argument. Below, we give an alternative proof here for the
convenience of the reader. We only prove the first assertion as the latter is analogous. Since P lies on the boundary,
it suffices to show that (=X, g, p,) € DTw(P), i.e.

(1.22) w(t,z,y) <wt,T,0)+(=\ G, pu) - (t =tz —Z,y) +o(y + V/(t —1)2 + (x — T)2).
To this end, denote

ty=t—1t, z,=2x—2, and (5:\/m.
By Lemma 1.6, there exists an element (—\,q) € D, ,w(t,x,y) such that
w(t,z,y) < uly) + (=N q) - (te, 24) + Cod?
< w(t,3,0) + puy +0(y) + (=X, q) - (b, ) + Cod”
<w(t,7,0) + (=X, G, pu) - (b, 20, y) +0(y) + (A = A + g — ])é + Co6?

where we used u(y) = w(t, z,y) < w(t,z,0) + puy + o(y) (which follows from the definition of p,) in the second
inequality. Finally, combining with (1.19), we obtain (1.22).
By Lemma 1.4, we have [[we might be better off using B(g) in place of pz below]]

(1.23) min{—p + pg, H(p) + 20} <0 for all p > p,,,
. max{—p + pg, H(p)} >0 for all p > P,
where ), g are specified in (1.18), and pg is as in (1.7), and
H(p) = A+ H(q,p)-
Moreover, the critical slope lemmas (Lemmas 7?7 and ?77) asserts that

(1.24) H(p,) +20 <0< H(p,).

# Step eight: u(y) is subsolution to one-dimensional problem.
In this step, we show that u(y) = w(t, T, y) satisfies, in the viscosity sense,

Hw')+n<0 in (0,m).
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Indeed, fix a point y1 € (0,71) and a test function ¢ (y) such that ¢ (y1) = u(y1) and u(y) — ¥ (y) has a strict global
maximum at y;, we will show H(¢’(y1)) +n < 0. Now, consider the test function ¥ (t,z,y) = (=X, q) - (t —t, 2 — &) +
o(t, ) + (y), where

o(t,x) = 17\/62 + (-2 + (x —x)2.
Denote @ = Bs X (y1 — 91,41 + 61). We claim that G(t,z,y) = w(t,z,y) — @(t,x,y) attains maximum over Q at an
interior point. It is enough to check that for § > 0 small enough, we have

(i) maxG > ¢(t,z); (i) maxG < ¢(i,T).
Q oQ
Assertion (i) follows from wu(y1) = ¥ (y1), so that

mng > G(t,z,y1) = u(yr) — Y(y1) + ¢(t, %) = (¢, 7).

For assertion (ii), suppose (¢,z,y) € Q. Then Lemma 1.6 gives
(1.25) Gt a,y) <uly) —d(y) + (A + A qg—q) - (t =tz —2) + Col|t — 1 + & — 7[*) — o(t, ).
Suppose y = y1 £ 41, then for § sufficiently small,

G(t,iﬂ,y) S Supé (U - 1/’) + O(|t - ﬂ + ‘.’E - jD + d)(fa "E) < ¢({a j)v
y=y1£d1

as sup,_,, +5, (u — ¥) < 0 and is independent of §. It remains to consider the case [t —#|* + | — Z|* = 6. Then
é(t,x) = nd+/2, and (1.25) implies
G(t,z,y) Suly) —v) + (-A+Xq—@) - (t =,z — 7) + Cod” — §(t, x)
< (A=Al +lg =)o + Cod® —nov2
< —(V2-1)n5 4+ Cyd? <0 for § small,

where we used (1.20) in the third inequality. This proves assertion (ii). We conclude that, for all § sufficiently small,
w(t,z,y) — (t,x,y) attains its maximum in Q = B x [y1 — 01,91 + 01] at an interior point (¢5,7s,ys) € @, i.e.
— A+ H(q,¥'(ys5)) < —2n,

for some element (—A\, ¢, %’(ys)) belonging to the superdifferential of w at the point (ts,xs,ys). Using (1.20), we
deduce

(1.26) H(W (ys) = =X+ H(q, ¥ (y5)) < —.
Claim. ys — y; as § — 0.

Recall that y — w(t,Z,y) — ¥ (y) has a strict global maximum at y; in [y; — d1,y1 + 81]. Since (¢t5,25) — (L, %) as
d — 0, and that w — v is continuous in y, it follows that the maximum point ys of y — w(ts, x5, y) — ¥ (y) converges
to y1. This proves the claim. Letting 6 — 0 in (1.26), we obtain H(¢’(y1)) < n. This completes Step eight.

# Step nine: In this step, we show
(1.27) H(p)+n <0 forpelp B,

First, recall that u(y) is Lipschitz, so that the classical derivative u’ exists in a set S such that (0,71) \ S is of
measure zero relative to R, and H(u'(y)) < —n holds pointwise for each y € S. It follows, by continuity of H, that

(1.28) H(igfu/) +7<0 and H(supu')+n<O0.
S

The convexity of H then yields H(p) +n < 0 for all p € [infg v/, supg v'].
Next, we claim that that

(1.29) [p, P  linf o sup ]
», !

Indeed, since w is Lipschitz,
uly) —u(0) _ 1 / o (s) ds < supr.
Y Y Jo,yns TS

Taking limsup as y — 0+ in the above, we obtain p,, < supgu’. The proof for p, = infg v’ is the same. This proves
(1.29). Finally, (1.28) and (1.29) implies (1.27). This completes Step nine.
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# Step ten: applying the Lions-Souganidis lemma. Summarizing (1.21), (1.23), (1.24) and (1.27), we deduce

p,<p, n+Hp,)<0<Hp,),
(1.30) min{—p’ + pg,n+H(P')} <0 for all p > p ,
max{—p' + pg, H(p")} >0 forallp<p .
In view of (1.30), the assumptions of Lemma 1.5 are satisfied if we take

a=mn, b=0, po=-p,—ps G =-p,—pg Holp)=H(—p—Dpg)-

where H(p) = n— A+ H(q,p). Then Lemma 1.5 applies to deduce a < b, which means 1 < 0, which is a contradiction.
O
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