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The purpose of this set of notes is to present the connection between the classical maximum

principle with the principal eigenvalue of the elliptic operator. We will start with the maximum

principle for single equations and proceed to the case of cooperative (or weakly-coupled) systems.

By adopting an idea due to G. Sweers, we give a characterization of the principal eigenvalue for a

cooperative system in terms of the spectral radius of a related positive compact operator, which

leads to an eigenvalue comparison criterion. As an application, we present a recent result concerning

the vanishing viscosity limit of the principal eigenvalue. For simplicity we only treat the Dirichlet

case in this note, and we remark that analogous results in the Neumann and Robin cases follow

with minor modifications of the proofs. This is joint work with Y. Lou.

1. introduction

Suppose Ω is a smooth and bounded domain in Rn and u ∈ C1(Ω̄) ∩ C2(Ω) and f ∈ C1(Ω̄)

satisfies

(1) −∆u+ µu = f ≥ 0 in Ω and u ≥ 0 on ∂Ω.

It is well-known that if µ = 0, then infΩ u = inf∂Ω u and u cannot achieve an interior minimum

unless it is a constant. On the contrary, if µ > 0, then one can easily see that sometimes u can

attain a positive minimum in the interior. More generally, we have

Theorem 1. Suppose µ ≥ 0 and Lu ≥ 0.

(i) infΩ u ≥ inf∂Ω min{u, 0}. ( ⇔ supΩ−u ≤ sup∂Ω sup{−u, 0})
(ii) u cannot achieve an interior non-positive minimum unless it is a constant.

In particular, if u|∂Ω ≥ 0, then either u ≡ 0 or u > 0 in Ω with ∂νu(x0) < 0 for all x0 ∈ ∂Ω such

that u(x0) = 0.

Note: (i) and (ii) are called the weak and strong maximum prinicples respectively.

What if µ > 0? Does the maximum principle still hold? In general, consider the following single

equation.

(2)

{
Lu := −aijDiju+BjDju+ cu = f ≥ 0 in Ω,
u ≥ 0 on ∂Ω,

where Ω is a smooth and bounded domain in Rn, aij , bj , c ∈ C(Ω̄), and for some positive constants

σ1, σ2 we have

σ1|ξ|2 ≤ aij(x)ξiξj ≤ σ2|ξ|2 for all ξ ∈ Rn.
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Definition 1. We say that the maximum principle (MP) holds for (2) when (i) for each f ∈ C(Ω̄),

f ≥ 0, then any solution u of (2) satisfies u ≥ 0; (ii) in addition, if either u|∂Ω 6≡ 0 or f 6≡ 0, then

u > 0 in Ω and ∂νu < 0 on {x0 ∈ ∂Ω : u = 0}.

Lemma 1.1 (Weak maximum principle). If c ≥ 0 and Lu ≥ 0, then infΩ u ≥ inf∂Ω min{u, 0}.

Proof. It is readily seen that if Lu > 0, then a strong maximum principle holds: u cannot assume

an interior minimum. In general, L(−eγx1) > 0 in Ω if γ is chosen large. Hence for all ε > 0,

L(u− εeγx1) > 0 and infΩ u− εeγx1 = inf∂Ω u− εeγx1 and the lemma follows by taking ε→ 0. �

Lemma 1.2 (Hopf’s Lemma). Assume Ω satisfies a uniform interior sphere condition. Suppose

u ≥ 0 and Lu ≥ 0, then either u ≡ 0 or u > εd(x) in Ω for some ε > 0, where d(x) = dist(x, ∂Ω).

In particular, if c ≥ 0 and u ≥ 0 on ∂Ω, then u ≥ 0 by weak maximum principle and the

conclusion of Lemma 1.2 holds. i.e. The weak MP and strong MP are equivalent.

Proof. Lu −min{c, 0}u ≥ Lu ≥ 0. Hence we may assume without loss that c ≥ 0. It remains to

show that if u > 0 in some BR(0) ⊂ Ω, then u > ε(R − |x|) in BR(0) for some ε > 0. (Since then

there cannot be any interior point x0 where u(x0) = 0, and that ∂νu < 0 on the bondary.) Now

infBR/2(0) u = ε1 > 0 and one can apply the weak maximum principle to v = u− ε1Rσ

2σ−1(|x|−σ−R−σ)

(Lv > 0 for σ large) to yield the desired lower estimate. �

More generally, the following is proven in [Walter1989].

Theorem 2. Suppose h ∈ C(Ω̄) ∩ C2(Ω) satisfies

(3) Lh ≥ 0 in Ω and h(x) > 0 in Ω.

Then, for any u ∈ C1(Ω̄) ∩ C2(Ω) such that

Lu ≥ 0 in Ω, u ≥ 0 on ∂Ω,

one of the following holds

(i) u = βh for some β < 0;

(ii) u ≡ 0 in Ω;

(iii) u > 0 in Ω and ∂νu(x0) < 0 for all x0 ∈ ∂Ω such that u(x0) = 0.

In particular, if either Lh 6≡ 0 or h 6≡ 0 on ∂Ω, then (i) is impossible and the MP holds.

Remark 1.1. When c ≥ 0, then any positive constants h ≡ h0 > 0 is a strict supersolution

satisfying the assumption of Theorem 2.

Proof. If u ≥ 0, then by Lemma 1.2, either u ≡ 0 or u > 0 in Ω.

If u < 0 somewhere, then (∂νh|∂Ω < 0 Lemma 1.2) there exists a minimal µ > 0 such that

v := u + µh ≥ 0 in Ω. Now by Lemma 1.2 again either v ≡ 0 (i.e. u = βh for some β < 0) or

v > εd(x) in Ω. Suppose the latter holds, then by minimality of µ, for all m large, there exists

xm ∈ Ω such that

u(xm) +

(
µ− 1

m

)
h(xm) = v(xm)− 1

m
h(xm) < 0 ⇔

(
µ− 1

m

)
h(xm) < −u(xm) ≤Md(xm).
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But this contradicts

v(xm)− 1

m
h(xm) > εd(xm)− M

µm− 1
d(xm).

�

Example 1. Let L = −∆ − µ, then the prinicpal eigenfunction −∆φ1 − µφ1 = (µ1 − µ)φ1 > 0 if

µ < µ1 serves as a strict super solution and hence the MP holds up to µ < µ1.

Hence it is important to consider the eigenvalue problem:

(4)

{
Lφ = −aijDijφ+ bjDjφ+ cφ = µφ in Ω,
φ = 0 on ∂Ω,

The main result for the single equation in this note is the following.

Theorem 3. Problem (4) has a principal eigenvalue µ1 = µ1(L), with the property that

(i) µ1 is real and simple,

(ii) µ1 is the unique eigenvalue corresponding to a non-negative eigenfunction,

(iii) the corresponding eigenfunction φ1 can be chosen so that φ1 > 0 in Ω and ∂νφ1 < 0 on ∂Ω,

(iv) µ1 < Reµ for all eigenvalue µ 6= µ1.

Moreover, MP holds for (2) if and only if µ1 > 0.

2. The Krein-Rutman Theorem

Let X be a Banach space.

Definition 2. K ⊂ X is a cone if K is closed, convex such that sK ⊂ K for all s ≥ 0 and

K ∩ (−K) = {0}.

A given cone K induces a partial ordering:

u, v ∈ X, u ≤ v iff v − u ∈ K.

In this case X is called a partially ordered Banach space with positive cone K.

Definition 3.

(i) If K −K = X, then K is a total cone.

(ii) If Ko 6= ∅, then K is a solid cone.

Note that any solid cone is total : Suppose B2r(z) ⊂ K, then for all y ∈ X we have z, z+ry ∈ K,

which gives y ∈ r−1K − r−1K = K −K.

Definition 4. We write v > u if v − u ∈ K \ {0} and v � u if v − u ∈ Ko.

We say that T : X → X (i) is positive if T (K) ⊂ K and (ii) is strongly positive if T (K \ {0}) ⊂
Ko.

Example 2. X = Lp(Ω), K = {non-negative functions}, then K −K = X but K0 = ∅.

Example 3. X = C(Ω̄), then K = {non-negative functions} is a solid cone.

Example 4. X = C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0.}, then K = {non-negative functions} also

forms a solid cone with Ko = {u ∈ K : u > 0 in Ω and ∂νu < 0 on ∂Ω}.
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Theorem 4. Let X be a Banach space with positive cone K ⊂ X and T : X → X is a compact

linear operator.

(a) Suppose K is a total cone and T : X → X is positive with positive spectral radius: r(T ) :=

lim supm→∞
m
√
‖Tm‖ > 0. Then r(T ) is an eigenvalue of T with an eigenvector u ∈ K\{0}.

(b) Suppose K is a solid cone and T is strongly positive, then

(a) r(T ) > 0 is a simple eigenvalue with eigenvector v ∈ Ko. There is no other eigenvalue

with a positive eigenvector.

(b) |λ| < r(T ) for all eigenvalues λ 6= r(T ).

See Theorem 19.2 and Ex. 12 in [Deimling1985] for the proof of part (a) and Theorem 1.2 in

[Du2006] for the derivation of (b) from (a).

3. Principal Maximum for Single Equation

Let L = −aijDij +bjDj +c be as in the introduction section. First we demonstrate the existence

of principal eigenvalue µ(L). Then by Lemma 1.2, (L + β) satisfies a strong MP if β + c ≥ 0.

Moreover, one can observe that the positivity readily implies uniqueness of the following problem

Lu+ βu = f in Ω and u = 0 on ∂Ω.

i.e. (by Fredholm’s alternative) T := (L + β)−1 : X → X exists and is strongly positive, where

X = C1
0 (Ω̄) and K be the set of non-negative functions, as in Example 3. By Theorem 4(b),

r(T ) > 0 is a simple eigenvalue with an eigenfunction u ∈ Ko. Hence

1

r(T )
u = Lu+ βu⇔ Lu =

(
1

r(T )
− β

)
u

and µ1 := 1
r(T ) − β is a simple eigenvalue of L with eigenfunction u ∈ Ko. Furthermore, define

B : X → X by

Bu := etLu|t=1,

where e−tL is the semigroup generated by L, i.e. for each u ∈ X, v(x, t) = e−tLu(x) is the unique

solution to {
vt + Lv = 0 in Ω× (0,∞),
v(x, 0) = u(x) in Ω.

Then it is well-known that B is strongly positive. Moreover, if µ is an eigenvalue of L, then e−µ is

an eigenvalue of B with the same eigenspace. Hence the principal eigenvalue of B guaranteed by

Theorem 4(b) is e−µ1 and we have for all eigenvalue µ 6= µ1 of L,

|e−µ| < e−µ1 ⇔ µ1 < Reµ.

This proves the first part of Theorem 3. Now the second part of Theorem 3 follows readily from

Theorem 2, as any positive principal eigenfunction φ1 is a strict supersolution:

Lφ1 = µ1φ1 > 0 in Ω, φ1 = 0 on ∂Ω.

Here we give an alternative functional analytic proof of the second part of Theorem 2, which can

be generalized to study the maximum principle in cooperative systems. Given any β > 0 such that
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β + c > 0, and µ ∈ (−β,∞), define Aµ,β : C1
0 (Ω̄)→ C1

0 (Ω̄) by Aµ,βu := (L+ β)−1[(µ+ β)u], where

(L+ β)−1f is the unique solution to

Lu+ βu = f in Ω, u = 0 on ∂Ω.

Lemma 3.1. Suppose µ+ β > 0, i.e. Aµ,β : X → X is strongly positive, then

(i) r(Aµ,β) < 1 ⇐⇒ µ < µ1(L);

(ii) r(Aµ,β) = 1 ⇐⇒ µ = µ1(L);

(iii) r(Aµ,β) > 1 ⇐⇒ µ > µ1(L).

Proof. Again let φ1 ∈ Ko be a principal eigenfunction of L corresponding to µ1(L), then

Aµ,βφ1 =
µ+ β

µ1(L) + β
φ1.

Hence by the characterization that r(Aµ,β) being the only eigenvalue of Aµ,β corresponding to an

eigenfunction in K \ {0}, we have r(Aµ,β) = µ+β
µ1(L)+β . This proves the lemma. �

Proof of second part of Theorem 3. It is clear that if µ1 ≤ 0, then the principal eigenfunction pro-

vides a counter example to the MP. Suppose µ1 > 0, then by Lemma 3.1(i), for any β large (so

that (L + β)−1 is strongly positive), r(A0,β) < 1. Hence,
∑∞

j=0A
j
0,β : X → X is well-defined and

strongly positive. Suppose we have

Lu = f ≥ 0,

then it is equivalent to

Lu+ βu = βu+ f.

By definition of A0,β, we have

u = A0,βu+ (L+ β)−1f.

Finally, taking
∑∞

j=0A
j
0,β on both sides, we have u = Tf , where

T :=
∞∑
j=0

Aj0,β(L+ β)−1 : X → X

is a strongly positive operator. This completes the proof. �

We end this section on single equation with the following observation:

Corollary 3.2. Assume c ≤ 0, and that µ1(L) > 0. Suppose (2) holds, then u ≥ 0 and

−aijDiju+ bjDju ≥ −cu ≥ 0,

which implies that

(5) inf
Ω
u = inf

∂Ω
u ≥ 0.

For example, let L = −∆− µ, for some µ ∈ [0, µ1). If

−∆u− µu ≥ 0 in Ω, u ≥ 0 on ∂Ω,

then (5) holds.
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4. Maximum Principle for Cooperative System

Now we consider the following linear cooperative problem:

(6)

{
Lkuk := −akijDijuk + bkjDjuk + ckuk = hklul + fk in Ω, 1 ≤ k ≤ N
uk = 0 on ∂Ω, 1 ≤ k ≤ N,

where akij , b
k
j , c

k ∈ C(Ω̄); for some σ1, σ2 > 0,

σ1|ξ|2 ≤ akij(x)ξiξj ≤ σ2|ξ|2 for all 1 ≤ k ≤ N, x ∈ Ω, ξ ∈ Rn;

and that hij is cooperative and irreducible, i.e.

hij ≥ 0 when i 6= j, and

there does not exist a partition α ∪ β = {1, 2, ..., N} such that hij = 0 for i ∈ α and j ∈ β.
The requirement that H is irreducible is equivalent to saying that the system cannot ”decoupled”,

i.e. it cannot be broken down into smaller systems. Alternatively, we can write (6) in vector

notation, by letting L = diagLk, H = {hij}, u = {uk} and f = {fk},

(7)

{
Lu = Hu+ f in Ω,
u = 0 on ∂Ω.

In this section, we are going to show the existence of principal eigenvalue for the cooperative

problem

(8)

{
Lkφk = hklφl + λφk in Ω, 1 ≤ k ≤ N
φk = 0 on ∂Ω, 1 ≤ k ≤ N,

or in vector notation,

(9)

{
Lφ = Hφ+ λφ in Ω,
φ = 0 on ∂Ω,

In this section, set X = [C1
0 (Ω̄)]N , K = {u ∈ X : uk ≥ 0 in Ω for all k}N . One can deduce that

Ko = {u ∈ X : uk > 0 in Ω and ∂νuk < 0 on ∂Ω for all k}.

We are going to show the counterpart of Theorem 3.

Theorem 5. System (4) has a principal eigenvalue λ1 = λ1(L−H), with the following properties:

(i) µ1 is real and simple;

(ii) µ1 is the unique eigenvalue corresponding to an eigenfunction in K (non-negative eigen-

function);

(iii) the corresponding eigenfunction φ1 lies in Ko;

(iv) λ1 < Reλ for all eigenvalue λ 6= λ1.

Moreover, MP holds for (2) if and only if λ1 > 0, i.e. (L −H)−1 : X → X exists and is strongly

positive.

First we demonstrate the existence of principal eigenvalue λ1(L −H). WLOG assume hkl ≥ 0

for all k, l. Let β > 0 be large so that for all k, (Lk + β)−1 : C1
0 (Ω̄)→ C1

0 (Ω̄) (under Dirichlet b.c.)

exists and is strongly positive. Define for such β and λ ∈ (−β,∞), Aλ,β : X → X by

(Aλ,βu)k := (Lk + β)−1[hklul + (λ+ β)uk] for 1 ≤ k ≤ N,
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or in vector notation

Aλ,βu := (L+ βI)−1[Hu+ (λ+ β)u].

Then Aλ,β is compact, linear and strongly positive. By Theorem 4(b), r(Aλ,β) > 0 is a simple

eigenvalue with eigenvector in Ko. Moreover, it is the only eigenvalue corresponding to an eigen-

vector in K. We establish the counterpart of Lemma 3.1. Note that Lemma 4.1 will become useful

when we estimate the vanishing viscosity limit of λ1(L−H) in Section 5.

Lemma 4.1. The principal eigenvalue λ1 = λ1(L − H) exists. Moreover, the following

statements hold.

(i) r(Aλ,β) < 1 ⇐⇒ λ < λ1(L−H);

(ii) r(Aλ,β) = 1 ⇐⇒ λ = λ1(L−H);

(iii) r(Aλ,β) > 1 ⇐⇒ λ > λ1(L−H).

Note that different from the single equation case, the existence of λ1 is part of the conclusion

here.

Proof.

Claim 1. If r(Aλ,β) = 1, then λ is a simple eigenvalue of L − H equipped with a positive eigen-

function.

Claim 1 follows from Theorem 4(b).

Claim 2. There exists at most one eigenvalue λ of L−H corresponding to a non-negative eigen-

function. Moreover, λ < Reλ′ for all eigenvalue λ′ 6= λ of L−H.

Claim 2 follows from the application of Theorem 4(b) to the semigroup operator e−t(L−H). Since

it is similar to the single equation case, we omit the details here. Now by Claims 1 and 2, it remains

to show

(I) If r(Aλ0,β) < 1, then there exists λ > λ0 such that r(Aλ,β) = 1.

(II) If r(Aλ0,β) > 1, then r(Aλ,β) > 1 for all λ > λ0. Moreover, there exists some β′ > 0 and

λ′ ∈ (−β′,∞) such that r(Aλ′,β′) = 1.

Note that (I) and (II) gives the “=⇒” direction of (i) and (iii) and the opposite directions follows

automatically. For (I), suppose r(λ0, β) < 1 for some λ0 > −β. Observe that for λ > λ0, and any

fixed u ∈ Ko, there exists ε > 0 such that

(Aλ,βu)k > (Lk + β)−1[(λ+ β)uk] > (λ+ β)εuk.

Hence we see that r(Aλ,β) > 1 for all large λ. By continuous dependence of r(Aλ,β) on λ, we have

that r(Aλ′,β) = 1 for some λ′ > λ0. Hence λ1 = λ′ > λ0. This proves (I).

For (II), suppose r(Aλ0,β) > 1 with eigenvector ũ ∈ Ko, then for all λ > λ0,

Aλ,βũ = Aλ0,βũ+ (λ− λ0)(L+ βI)−1ũ ≥ r(Aλ0,β)ũ

and yields r(Aλ,β) > 1 for all λ > λ0. Hence λ1, if exists, has to be strictly smaller than λ0. We

now turn the exsitence of λ1 in case (II). First, we claim that ‖(Lk + β)−1‖ → 0 as β →∞. To see

the claim, observe that if for some k,

Lkuk + βuk = fk, uk|∂Ω = 0
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then by maximum principle,

(sup
Ω
uk)(−|ck−|∞ + β) ≤ sup

Ω
fk and − (inf

Ω
uk)(−|ck−|∞ + β) ≤ − inf

Ω
fk.

Combining, we have

|uk|∞ ≤ Cβ−1|fk|∞.

Hence by elliptic regularity, ‖uk‖C1
0 (Ω̄) = o(|fk|∞) as β →∞. i.e. ‖(Lk + β)−1‖ → 0. This implies

that r(A−β′,β′) < 1 for some β′ > 0 large. Then again by similar arguments as in (I), we derive the

existence of λ1 = λ1(L−H). This proves (II) and completes the proof of the lemma. �

Now we are in a position to prove Theorem 5.

Proof of Theorem 5. We have already proved the first part of the theorem concerning the existence

and properties of λ1 = λ1(L−H). As before, if λ1 ≤ 0, then the principal eigenfunction provides

a counter example to show that the maximum principle does not hold. Suppose λ1 > 0, then by

Lemma 4.1(i), r(A0,β) < 1 for some β > 0 and we can show as before that for each f ∈ X, (7) has

a unique solution u, given by Tf , where T : X → X is a positive compact linear operator given by

T =

∞∑
j=0

Aj0,β(L+ βI)−1.

And hence the strong maximum principle holds for (7). �

5. Asymptotic Behavior of λ1 when Diffusion Coefficient Tends to Zero

Consider

(10)

{
DLΦ = HΦ + λΦ in Ω,
Φ = 0 on ∂Ω.

Here D = diag{dk}, L = diag{Lk} is as in the previous section and Φ = {φk}. Suppose H = {hkl}
is cooperative and irreducible. WLOG, we may assume that hij(x) ≥ 0 for all i, j.

We have seen that (10) has a principal eigenvalue λ1. In this section, we are interested in the

asymptotic behavior of λ1 as max{dk} → 0.

To state our result, we recall the counterpart of Krein-Rutman’s Theorem for non-negative

matrices:

Theorem 6 (Perron-Frobenius). Suppose H ∈ RN×N is non-negative, then σ(H) := r(H) > 0 is

an eigenvalue of H with a nonnegative eigenvector α ∈ (R+ ∪ {0})N . Moreover if H is irreducible,

then σ(H) is simple with α ∈ (R+)N and σ(H) is the only eigenvalue of H possessing a non-negative

eigenvector.

The main result of this section is the following theorem contained in [LamLou2013]:

Theorem 7 (Lam-Lou(2013)). Let λ1 be the principal eigenvalue of (10), then

lim
max{dk}→0

λ1 = −max
Ω̄

σ(H(x)).
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Remark 5.1. In case di ∼ dj for all i, j, Theorem 7 is proved earlier in [Dancer2009], by consid-

ering the limiting system in either RN or half space with constant coefficient. In general, there is

no limiting system and we have to rely on a different method.

To show the Theorem, we will need the following boundary Lipschitz estimate:

Proposition 1. Suppose L = −aijDij + bjDj + c is as defined in the introduction section, then for

all f ∈ C1
0 (Ω̄), ud := (dL+ 1)−1f exists for all d small and satisfies

sup
Ω

|ud − f |
dist(x, ∂Ω)

→ 0 as d→ 0.

Proof. The proof follows from a careful application of the barrier method from the proof of Hopf’s

lemma. Please refer [LamLou2013] for details. �

Proof of Theorem 7. For simplicity, we assume hij > 0 in Ω̄ for all i, j. The general case can be

proven by approximation arguments. We shall treat the lim sup and lim inf separately. First we

show

lim inf
max{dk}→0

λ1 ≥ −max
Ω̄

σ(H(x)).

As in the previous section, define Aλ,βu = (DL + βI)−1[Hu + (λ + β)I]. Then by Lemma 4.1, it

suffices to show that for all fixed λ < −maxΩ̄ σ(H(x)), r(Aλ,|λ|+1) < 1 when max{dk} is sufficiently

small.

To this end, let α(x) denote the positive eigenvector corresponding to σ(H(x)), normalized by∑
α2
k(x) = 1. Then by uniqueness it is easy to see that α(x) is continuous. Take any ϕ ∈ C1

0 (Ω̄)

such that ϕ > 0 and ∂νϕ < 0 in ∂Ω, and define u = ϕα. Then for all ε > 0,

Aλ,|λ|+1u = (DL+ (|λ|+ 1)I)−1[Hu+ (λ+ |λ|+ 1)u]

= (DL+ (|λ|+ 1)I)−1[ϕHα+ (λ+ |λ|+ 1)ϕα]

= (DL+ (|λ|+ 1)I)−1[(σ(H(x)) + λ+ |λ|+ 1)u]

≤ (DL+ (|λ|+ 1)I)−1[(max
Ω̄

σ(H(x)) + λ+ |λ|+ 1)u]

<
maxΩ̄ σ(H(x)) + λ+ |λ|+ 1

|λ|+ 1
(1 + ε)u

whenever max{dk} is sufficiently small, by Proposition 1. Hence if we take ε > 0 small such that

maxΩ̄ σ(H(x)) + λ+ |λ|+ 1

|λ|+ 1
(1 + ε) < 1,

then ‖Aλ,|λ|+1‖ < 1 and hence r(Aλ,|λ|+1) < 1. This proves the first part of the theorem.

Next, we recall the well-known domain and coefficient monotonicity of λ1. (e.g. It can be proven

by our characterization Lemma 4.1. See Proposition 3.4 of [LamLou2013].)

Lemma 5.1. The principal eigenvalue subject to Dirichlet boundary condition is monotone de-

creasing in the domain and also in hkl for all k, l.
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Now we proceed to show

lim sup
max{dk}→0

λ1 ≤ −max
Ω̄

σ(H(x)).

Again, it suffices to show that for λ > −maxΩ̄ σ(H(x)), r(Aλ,|λ|+1) > 1. Let δ > 0 be a given small

constant. Choose B = Br(x0) ⊂ Ω such that

σ(H ′) > max
Ω̄

σ(H(x))− δ

where H ′ = {h′ij} ∈ RN×N and for each i, j, h′ij = infB hij(x). Denote the principal eigenvalue of

the following problem be λ′1: {
DLu′ = H ′u′ + λ′u′ in Ω̃,
u′ = 0 on ∂Ω,

Then by Lemma 5.1,

(11) λ′1 > λ1.

Now take ϕ ∈ C1
0 (Ω̄) as before, and define u = {uk} by u = ϕa, where a is a non-negative

eigenvector of the constant matrix H ′. Then again,

A′λ,|λ+1u ≥
σ(H ′) + λ+ |λ|+ 1

|λ|+ 1
(DL+ (|λ|+ 1)I)−1[ϕa] > cu

for some c > 1. Hence r(A′λ,|λ|+1) > 1 and hence

lim sup
max{dk}→0

λ′1 ≤ −σ(H ′) < −max
Ω̄

σ(H(x)) + δ.

The theorem now follows from (11) and letting δ → 0. �

References

[Dancer2009] E. N. Dancer, On the principal eigenvalue of linear cooperating elliptic systems with small diffusion, J.
Evol. Equ. 9 (2009) 419-428.

[DeFigueiredo-Mitidieri1990] D. G. deFigueiredo and E. Mitidieri, Maximum prinicples for linear elliptic systems, C.
R. Acad. Sci., Paris, Sér. I 310 (1990) 49-52.

[Deimling1985] K. Deimling, Nonlinear Functional Analysis, Dover (1985).
[Du2006] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol. 1, World

Scientific (2006).
[LamLou2013] K.-Y. Lam and Y. Lou, Asymptotic Behavior of the Principal Eigenvalue of Cooperative System with

Applications, 23 p., submitted.
[Lopez-Gomez-Molina-Meyer1994] Lopez-Gomez and Molina-Meyer, Differential and Integral Equations 7 (1994)

383-398.
[Nagel1989] R. Nagel, Operator matrices and reaction-diffusion equations, Rend. Sem. Mat. Fis. Milano 59 (1989)

185-196.
[Sweers1992] G. Sweers, Strong positivity in C(Ω̄) for elliptic systems, Math. Z. 209 (1992) 251-271.
[Walter1989] W. Walter, A theorem on elliptic differential inequalities with an application to gradient bounds, Math.

Z. 200 (1989) 293-299.

Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210
E-mail address: lam.184@mbi.osu.edu


