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B. GIDAS. WEI-MING Ni. AND L. NIRENBERG
1. INTRODUCTION

In Gidas et al. [4], some special forms of the maximum principle and a
device of Alexandroff were employed to study symmetry and related prop-
erties of positive solutions of nonlinear elliptic (and parabolic) equations in
bounded domains and in the entire space. In bounded domains, the class of
nonlinearities we could treat was quite general.” In contrast, in the entire
space our results were rather special. The following is typical: Let u(x) be
positive, C?** 0 < u < 1, solution of

—Au = g(u) inR", n>2,

such that u(x) = O(|x|*") at infinity. Assume that for some k > (n + 2)/
(n — 2), u”*g(u) is Holder continuous on 0 < u < u,, where u, is the maxi-
mum of u(x). Then u(x) is spherically symmetric about some point, and if
that point is taken as the origin, then u, < 0 for r > 0.

In this chapter we study spherical symmetry of positive solutions in the
entire space and treat several classes of nonlinearities as well as some singular
solutions. Our main results are

THEOREM 1. Ler u(x) be a positive C* solution of
—Au = g(u) inR". n>3 (1.1)
with

ulx) = O(1/|x|"™)  atinfinity, m>0. (1.2)

Assume (1) on the interval O < u < ugy, ug = maxu, g = g, + g, with g, € C*,
g, continuous and nondecreasing, (i) for some

o > max((n + 1)/m, (2/m) + 1),

glu) = OW") near u = 0. Then u(x) is spherically symmetric about some point
in R", and u, < O for r > 0 where r is the radial coordinate about that point.
Furthermore

lim

X L

X" 2u(x) = k > 0.

THEOREM 2. Let u(x) be a positive, C* solution of
—Au + m*u = g(u) in R". n>2, m>0 (1.3)
" Since it may prove useful. we wish to point out that in [4, Theorem 2.1]. for general non-

linear equations, except in the case that g(x} < 0 in condition (b), it suffices that u e C3Q) ~
CHQ).
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with u(x) — 0 as |x| > oo and g continuous, g(u) = OW"), a > 1 near u = 0.
On the interval 0 < s < uy, = max u(x), assume

g(s) = g(s) + ga(s)

with g, nondecreasing and g, € C* satisfying, for some C >0,p>1,
19:1(1) — g,(v)| < Clu — ol/llogmin(u,v)P,  0<u v < u,.

Then u(x) is spherically symmetric about some point in R" and u, < O forr > 0,
where r is the radial coordinate about that point. Furthermore,

lim r"=D2ey(r) = 4 > 0.

F= o

Remark. In particular, if u > 0 tends to zero at infinity and satisfies
Au + f(u) =0,
feC'™ ¥ > 0and f(0) = 0, £(0) < O then Theorem 2 applies.

With no loss in generality we shall always take m = 1 in (1.3). We use the
same techniques to study certain isolated singularities. More precisely, we
prove

THEOREM 3. Let u(x) be a positive C? solution of

—Au = g(u) in R"— {0} (1.4)

satisfying ,
u(x) = 0(1/|x]" at o for some m > 0, (1.5)
u(x) > + oo as x — 0. (1.6)

Furthermore, assume:

(1) g(u) is continuous, nondecreasing in u Jor u>0, and for “some o >
(n + 1)/m, g(u) = O(u*) near u = 0,
(i) lim,— ., [g)/u"] > O, for some p > nf(n — 2).

Then u(x) is spherically symmetric about the origin, and u, < 0 for r > 0.
A generalization, Theorem 3, is given in Section 3, and variants of

Theorem 1 are presented at the end of Section 2.

THEOREM 4.  Let u(x) be a positive solution of

Ay + y"* D=2 — in R"— {0, oo (L.7)

b
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with two singularities located at the origin and at infinity. More precisely.
assume
u(x) — + = as x — Q.

X" Fu(x) = + oo as X — L.
Then u(x) is spherically symmetric about the origin.
A particular equation covered by Theorem 2 1s
—Au + miu=u’ onR. A>0, m>0. (1.8)

This equation gives rise to solitary wave solutions of the nonlinear Klein—
Gordon equation. Existence of positive spherically symmetric solutions of
(1.8) has been known for some time [8].

An equation covered by Theorem 318

Au+u =0 (1.9)
in R", with (n + 1)/(n — 2) < o. For (n+ Djn—2)y<o<(n+ 2)/(n — 2) Eq.

(1.9) is known [5] to have spherically symmetric solutions satisfying (1.5)
and (1.6). Certain equations in astrophysics [2] are related to (1.9) with
=3 and o < 5. See also [5] for further analysis of spherically symmetric
solutions of such equations. It follows {rom the analysis in [5] that for o >
(n + 2)/(n — 2),(1.9) does not have spherically symmetric solutions satisfying
(1.5), (1.6) for m=n — 2- therefore Theorem 3 implies there are no positive
solutions satisfving these conditions. For o = (n + 2)/(n — 2) [Eq. (1.7)], all
spherically symmetric solutions are explicitly known [1.3]. Among them
there exist a two-parameter family of solutions which are singular both "at
the origin and at infinity. Theorem 4 asserts that these are the only solutions
with two isolated singularities. Since Eg. (1.7) is conformally invariant, the
two singular points could be brought to any two finite points of R". An ex-
ample of an equation covered by Theorem 1 withm = n — 2and o > (n + 2)/

s gen it p 212]. Equation (1.7) has the regular solution
U(X) = (W\(u—g)/i

e

>0, (1.10)
and it provides an example for Theorem 1 with m = n — 2, and o = (n + 2)/
(1 — 2). It is natural to ask whether there is an equation which satisfies the
conditions of Theorem 1 with o < (1 + 2)/(n — 2). Here is an example, for
n > 3: we also have an example for n = 3. With r as polar coordinate, and

4> (n + 1)/(n — 2). consider the function u(r) defined as follows:

u(ry = (11" 2 —Aa/rt for r>1.
where

s=on—21— 2. as=(s+2—n" ' =lan—2)— n]™t.
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For 0 <r <1 we define

u(r) = A — (b/2)r* + (c/4yr,

where
iy oy =2 _ ., an—2)+2
My e e A e T

A=(b2)—(c/d)+1—a.

With these choices one verifies that ue C? on 0 <r< oo, u is positive,
decreasing, and

U, + [(n - 1)/7‘]11,. + g(U) = O,
where ¢ is Lipschitz continuous and
g(u) = O(u®) near u = 0.

Our proofs are modeled on the proofs in [4] of similar results in balls. An
important tool there was the Hopf boundary lemma, [4, Lemma (H)] and
in this chapter we derive suitable forms of it for positive solutions (tending
to zero at infinity) of equations in R”. Here are two forms (in which ¢; =
0/0x;). We consider only n > 2.

LemMA (H)). Let u> 0 be of class C? in x| > R > 0, tend to zero at
infinity, and satisfy
Lu=(A+Yhix)3;+ cm<0 in |x>R (1.11)
with |
b;=0(x]""7),  c(x)= O(x|7#), p>2. (1.12)
Then, for some u > 0,
u(x) > p/lx"=2.
LemMa (HY): Let u> 0 be of class C? in IX| > R >0, tend to zero at
infinity, and satisfy

Lu=(A -1 +ij(x)6j+ c(x)u<0 (1.13)
with

Then, for some u > 0,
u(x) = peM/|x|e- vz

These and some related results are proved in Section 5.
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Remark. In|x =1 the function

u=1/|x". m>n—2

P

satisfies

(A —mm+2—n)/|x]*u=0

X

showing that the condition p > 2 cannot be omitted in Lemma (H%).

A similar example concerning Lemma (H}) is given in Section 5.

It would be of interest in Theorems 1 and 2 to permit the nonlinear term
to depend on derivatives of u. Here is an extension of Theorem 2, having a
very similar proof—which we leave to the reader.

THEOREM 2'.  Let u > 0 be a C? solution of
Au — u -+ gl(uaula .- ~aun) +92(U)=0

with u, Vu = O(e™ ) at infinity. Assume (i) g,(s) is continuous and nonde-
creasing on the interval 0 < s < uy = max u(x), and g(u) = O(u*), « > 1 near
the origin and (ii) g, € C' %, & > 0. and g, and its first derivatives vanish at the
originin R"* 1. Furthermore, for u > 0, g, is symmetric in the second argument
uy. Then u is symmetric about some hyperplane x, = 7 and u,, < 0 for x; > 4.

Clearly if, in addition, g;(u,u,, ..., u,) depends only on u and |grad u|?
one infers that u is spherically symmetric about some point and that u, < 0
if that point is chosen as the origin.

2. 'THE PROOF OF THEOREM |
We begin with some preliminary observations.
Equation (1.1) may be written in the form
Au + c(x)u = 0. (2.1)

where ¢(x) = g(u(x))/u(x) = 0(’)(‘_1)) near infinity. Here p = m(oc — 1) > 2 by
assumption. We may apply Lemma (H',) and infer that

u(x) > plx*7" u>0. (2.2)
It 1s easily seen, on the other hand, that for some constant ¢ > 0.
1 ‘ ‘
u:cffmwmﬁﬂmm; (2.3)
=

S T am

where f(v) = g(u(y)) = O(]y]™™") near infinity; recall wm > n + 1.
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For each x € R" we use x* to denote the reflection of x in the hyperplane
X; = 4. Throughout the paper, C, C,, ¢, ¢,, etc,, denote positive constants
independent of U, 4, x, and y. We write u; = 6u/6xj, etc. Unless indicated
otherwise, all integrals extend over R".
‘ We will need some simple technical facts about integrals of the form (2.3)
for f continuous and satisfying

J()=0(y]"% nearinfinity, g>n4 1. (24)

LEMMA 2.1. Let u e C? be given by (2.3) with f satisfying (2.4). Then

@) lim 5" 2u(x) e [ f()dy, (2.5)
’ and
% (b) " Uy(x) » —(n — 2)c ff(y) dy as |x| - oo with X = 0. (2.6)

1

(o If YeR— /i and {x'} is a sequence of points going to infinity, with
xy < 2%, then

,xiln

W) = ™)) = 201 = 2 [ £(3)(: = y,)dy: 2.7)

A= X

Postponing the proof to Appendix A, we proceed with the arguments to
prove Theorem 1. In the following, u satisfies the conditions of Theorem 1
and f=gou. Combining (2.2) and (2.5), we infer that

[rdy>o. (2.8)

Furthermore, using (2.6) and (2.8), we may infer that

ui(x) <0 for x, > some constant 7. (2.9)

We now fix the origin so that

ff()’))’;dy:O, i=1... n

we shall prove spherical symmetry about the origin.

LEMMA 2.2, There exists 4o > 0 such that V). > 2o
u(x) > u(x*) if x, <2 (2.10)

Proof.  Assume not. Then 3)' - + o and g sequence {x'}, with x| < }
and

u(x') < u(z), (2.11)




376 B. GIDAS, WEI-MING NI, AND L. NIRENBERG

where z' = x'". Since z' — o0 we have u(z') - 0 and so, necessarily, |x| = o0.
Furthermore, in view of (2.9), we see that x|, < 4. Fix some 41 >0, 1> 1
Using (2.9) once more we see that for A' > /, i.e., for i sufficiently large, we
have

u(x) < u(z") < u(x"),

since 4 < xt" < zi.
We now apply Lemma 2.1¢ with 1 in place of A’ and find, recalling
j‘fyl dy = O>

0> :1—[%—11— (u(x’) — u(x')) > 2(n — 2)cA ff(y) >0 (2.12)

This 1s a contradiction; the lemma is proved. I

LEMMA 2.3, Suppose condition (2.10) holds for some A > 0. Then it holds
for all 4 in a neighborhood.

Proof. We observe first that according to [4, Lemma 2.2 ] and Remark 1
of Section 2.3 there (see also [4, Lemma 4.3]):

u; <0 on the hyperplane x, = A (2.13)

If (2.10) does not hold for all neighboring 7, there exists a sequence A/ — 1
and sequence of points {x’} with x| < 4/ such that

u(x’) < u(x*). (2.14)

Either a subsequence, which we again call x/, converges to some x with
x; < A and u(x) < u(x*) or else x/ » 0. In the first case, in view of (2.10),
we must have x; = /—but then (2.14) implies u,(x) > 0, contradicting (2.13).
So x’ — oo. But if we now apply Lemma 2.1c exactly as in the preceding
proof, using the sequence /', we reach a contradiction.

Completion of the proof of Theorem 1. Lemmas 2.2 and 2.3 imply that
the set of positive A for which property (2.10) holds is open and includes all
sufficiently large 4. Thus for all 1 in some maximal open interval
0< 4, <4< + o0, property (2.10) holds. Applying [4, Lemmas 2.2 and
4.3] and Remark 1 of Section 2.3 there, we find

u,, <0 on x;=24 for 42> 4. (2.15)
In particular

u, <0 for x; > 4,

X1
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and, by continuity,
u(x) > u(x*)  for x, <4i,.

We will now show that 1, = 0. If A, > 0, then by [4, Lemmas 2.2 and 4.3]
and Remark 1 of Section 2.3 there, we either have

u(x) = u(x*) for x; <4, (2.16)

or else properties (2.10) and (2.15) hold for 1,. The latter cannot occur, by
Lemma 2.3. The former also cannot occur, because if it did, choose a sequence
of {x'}, [x| = oo, x} < 4, and apply Lemma 2.1¢ as before to obtain a con-
tradiction. Thus 1, =0, and we have proved u(x)> u(x°) for x; <O.
Reversing the x; axis, we conclude that u is symmetric about the plane
x; =0, and u,, < Ofor x, > 0. Since the x, direction was chosen arbitrarily,
we conclude that u(x) is spherically symmetric about the origin and u, < 0
for » > 0. The last assertion in Theorem 1 follows from (2.15). This completes
the proof of Theorem 1. W

Remark 2.1 Our choice of origin so that [ f(y)y;dy = 0,j =1, . .., n, was
used in going from (2.7) to (2.12) in the proof of Lemma 2.3. In case g(u) is
nondecreasing, i.e., g = g,, then Lemma 2.3 holds independently of choice
of origin, i.e.,

LEMMA 2.3". If g(s) in Theorem 1 is nondecreasing in s on 0 < s < max u,
then the set of 4 for which property (2.10) holds is open.

Proof. We proceed as in the proof of Lemma 2.3. Assuming (2.10) holds
for some 4, we want to show that it holds for neighboring 4. Assuming the
contrary we find as in the proof of Lemma 2.10 that

0> [dy () = y) = = [dy fy)2 = y)
thus

02 [dy(f(y) = YN~ yy) (2.17)

Note that f(y) = g(u(y)), and g is nondecreasing in u. Since u satisfies (2.10),
it follows that f(y) > f(y*) for y, < . Furthermore it is not possible that
f(y) = f()"), for in that case, as is easily seen, we would necessarily have
g(s) = constant = 0 on 0 < s < max u, which would contradict the fact that
u > 0. Thus the integrand in (2.17) is nonnegative and not identically zero—a
contradiction. Lemma 2.3" is proved. W

Remark 2.2 Lemma 2.3’ will be used in the proofs of Theorems 3 and 4.
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In Theorem 1 the solutions decay exactly like ¢|x|* ™" near infinity. It may
happen that solutions decay differently. For example, in R>, the function

u=(1+x)"% k>0,
satisfies Au + g(u) = 0 with
g(u) = -—2k(2k — 1)u1+1/k + 4]((]( + 1)u1+2/k.

Soin thiscasem = 2k,a = 1 + 1/kand m(x — 1) = 2, and of course Theorem
1 does not apply. The following is a variant of Theorem 1—which however
also does not cover this example.

THEOREM 1°. Let u(x) be a positive C? solution of
—Au = g(u) mR", n>3 (2.18)
with
u(x) = O(1/|x™) at infinity, m > 0. (2.19)

Assume (i) g(u) >0 on 0 < u<ug, uy=maxu, g =g, +g, with g, € C',
g, continuous and nondecreasing, (1) for some o > (n + 1)/m, g(u) = O(u*)
near u = 0. Then u(x) is spherically symmetric about some point in R", and
u, < 0 for r > 0 where r is the radial coordinate about that point.

Proof. As before, Lemma 2.1 applies, as does Lemma 2.3. But we have
to give a new proof of Lemma 2.2. The rest of the proof of Theorem 1 then
applies.

Proof of Lemma 2.2 for Theorem 1. From (2.3) we have

1 _ 1
Y — y‘n—-Z }x" __ ytn—z

¢ Hu(x) — u(xh) = fdJ’f(}’){l

"_’11_12:

where

1 1
I, = fqu dJ’f(y){'x _ y‘n—2 - Ix,z _ y‘n—Z}:
L=, dyf(y){

1 B 1 }
|x/l - yln—z lx . y|n—2 ‘
For r < s we use

1 1 1 1
—(s—1r < —7?“2'3(’7_2),,——f(5_r)- (2.20)

S I

-2
(n ) 5" },n—Z
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Note that

44— x1)(4 —yy)
= =l

= = -yl = (2.21)

Thus

1 4(/1 — x1)(4 = yy)
=T =y -y

uzm—an@mwl

24n=20G-x) [ . dvf) 1 J— s
lxl_y'n—-l le_yl + lx_y

5

where R is a fixed number so that {|,,<xdy f(y) = ¢, > 0. Using Ix* —y| <
[x*| + |R], and |x* — y| > |x — y|, valid for y, < A, we obtain for large 4,

1 /1-—x1

B2 & s Ty en 970N = )

I (A=x)(4A—-R)
/l’n—l lxll : (2.22)

Next we derive an upper bound for I,. Using (2.20) and (2.21), we obtain

(_J’1 - /1) 1
=y =y 4 x =y

L<2n=20=x) [ _ dyf(y)
<I),+ 17,
where

1
1= 2= 200 = 30) [, ooy IO

y (yi —4) 1
Io=2(n = 2)(4 = xy) yis 1, <2per DT Pt =y Xt =y + x =y

To bound I, we use (i) |[x* — y| > |x*| implied by | y| > 2|x*, and (ii) f(y) =
O(|y|~*™) valid for large |y|. Thus, for large A

1
2= i xl)fwz, 1> 2 S

(2.23)
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since am > n. To bound I, we write

I,'Zt S Jl + ‘]27
J, =2(n—2)(J f J 1
1= n— )(/L - xl) p1> 24, [y| < 2}x4], x4 —y| <|x2}/2 yf()’) IX;L _ y‘n_l,
Jy=2(n— (A — xy) dy fly) 12— A
?  Jyis 4 i< 21w, xi—yl> sz YTV X — "

Using |y| > |x*/2, and f(y) = O(]y|™*"), for large |y|, we bound J, (for
large A) by

1 . 1
JISCW(A_XI)W;. (224)

In the integral for J, we have |x*|/2 < |x* — y| < 3|x*|, so that

1
o e i=x) | dvfoly

1
SCW()L—"XI)W since oam>n+ 1.
Combining this with (2.23) and (2.24), we obtain

1
Izﬁcl—;cl—!n(l—

xl) Aam—n—l' (225)

Comparing (2.22) and (2.25), we see that I, — I, > 0 for sufficiently large 4,
since am > n + 1. This completes the new proof of Lemma 2.2 and of
Theorem 1. W

With the aid of a similar argument and the argument used to complete
the proof of Theorem 1, one establishes
THEOREM 1”. Let u(x) be a positive C* solution of
—Au = g(|x,u(x)) inR", nx=3
with u = O(|x|™™), m > 0, near infinity. Assume:

(i forr>0and 0 < s < u,=maxu, ¢g(r,s) is continuous, positive, non-
decreasing in s and strictly decreasing in r;
(1)  for some o > (n + 1)/m, and some constant C >0,

g(r,u) < Cu* for u<u,.

Then u is spherically symmetric about the origin, and u, < 0 for r > 0.
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3. THE PROOFS OF THEOREMS 3 AND 4

The following proposition asserts that the singular solutions in Theorems 3
and 4 are distribution solutions.

PROPOSITION 3.1.  Let D = {x € R™:|x| < R}, and u(x) be a positive C>
solution of

—Au = g(u) in Q=D - {0} (3.1)

with u(x) - + o0 as x — 0.
Assume g(u) > 0 for 0 < u and

lim g(_u_) > 0, for some p> —~'—1—-—. (3.2)
u— + oo up n— 2

Then g(u(*)) € L,(D), u € L(D), and u is a distribution solution of (3.1).

Proof. First we show that g(u(-)) € L,(D). Let {(u) be a C* nonnegative
function defined on u > 0 which equals 1 for u < ¢, vanishes for u > ¢ and
1s nonincreasing. Here ¢ > maxi, =g u. Multiplying (3.1) by {(u) we find,
using Green’s theorem,

. ou
pu— 4 2 —— —— ——
J gy — [tz = [ s
Since g(u) > 0 and { < 0 we conclude that
' Ju
Jocowon < =f_ Zas
Letting ¢ — oo we conclude that
ou
fl yog J00) < flx|=x = ds. (3.3)

By (3.2) we see that u € L (D). To show that u(x) is a distribution solution,
we prove that for { € C¥(D),

fD dx (uAL + {g(u)) = 0. (3.4)

Let 7(r) be a C* function on r > 0 vanishing on a neighborhood of the
origin and equal to 1 for r > R. Let 1,(r) = t(r/e). It suffices to prove

Jp AL+ tgw)» 0 as e Lo, (35)
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By Green’s theorem and Eq. (3.1) we have

f\Z A
[, AL + cgw) = — |, . {uc At, + 2u 00%- gi} (3.6)

Note that |Ar,| < ¢/e* and |dt/0x;| < c/s. Hence

1/p
f |u( A‘c£| < C(f up> e~ 2en1-1/p)
x| <e |x]<e

= o(g" 2~ "P) as ¢l 0, since uelL,,

-0 as ¢—0;

similarly for the other term in (3.6). Thus (3.5), and hence (3.4) are proved.
|

Proof of Theorem 3. Under the assumptions of Theorem 3, we shall
prove that the set of positive A for which property (2.10) holds contains all
sufficiently large A and is open. Using Proposition 3.1, it 1s easy to see that
the integral equation (2.3) holds. Using condition (i) of the theorem, Lemma
2.3 and the proof of Lemma 2.2 for Theorem 1’ hold. We now proceed as
in the proof of Theorem 1 to show that 4, = 0. If 4, > 0, then either we
have (2.16), or else property (2.10) holds. The former cannot occur, because
u(x)—» +oo as x -0, and the latter cannot occur by Lemma 2.3". This
completes the proof as in Theorem 1. W

A suitable adaptation of this proof yields the following generalization.

THEOREM 3’. Let u(x) be a positive C* solution of

Au + g(|x,uy=0 in R™{0}
satisfying
u(x) =0(|x|™) atoc  forsome m>0, u(x)— +x as x—0.
Assume

(i) g(r,u) is continuous, nonincreasing in r, nondecreasing in u forr, u = 0,
and for some o > (n + 1)/m, |g(r,u)| < Clu|* for u small, and

(i) lm,. . g(r,uyu"?>cy>0 for r <1 and some p > n/(n — 2). Then
u is spherically symmetric about the origin and u, < 0 for r > 0.

The argument used in proving Theorem 3 also yields the following result:

THEOREM 5. Let ay,...,a; € R" lie on a line, e.g., the x, axis. Let u(x) be
a positive solution of

— Au = g(u) in R"—{a,a,,...,a]. (3.7)
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Assume
ue CXR"— {a,, ..., a}),
u(x) = O(1/|x|™) at o, m> 0, (3.8)

u(x) - + oo as x-—a;, j=1,... k. (3.9)

SO .

Assume further that conditions (i) and (ii) of Theorem 3 hold. Then u(x) is
cylindrically symmetric about the X, axis and if r denotes distance from the
axis, u, < 0 forr > 0.

Remark. The result of Theorem 5 can be strengthened for the particular
equation (1.7) and for two or three singularities. This equation is invariant
under conformal transformations, i.e., if u is a solution and x — y is a con-
formal transformation, then the function

1 u(y) = u(x)J ~ = 2025 (3.10)
where J(x) is the Jacobian of the transformation, is also a solution. If u(x) has
three isolated singularities, then by a conformal transformation, the three
singular points may be brought to lie along a straight line. Then Theorem 5

applies and yields cylindrical symmetry about that line. For two isolated
singularities, we have Theorem 4 which W€ prove next.

Proof of Theorem 4: Let e, =(0,0,...,0,1), and

y= e (3.11)
Ix — e,|*
v(y) = |x — " 2ulx|. (3.12)

Then v(y) satisfies (1.7), outside of the two singularities located at y=0
and y = e,, where v becomes infinite, and v is regular at infinity, i.e, O(|y|*> ")
there. Since g(u) = "+ 2/tn-2) g nondecreasing. Theorem 5 applies and shows
that v(y) is rotationally symmetric about the y, axis. Consequently, u(x) is
rotationally symmetric about the X, axis. Since the choice of the axis was
arbitrary, we conclude that u(x) 1s spherically symmetric about the origin.

4.  PRELIMINARY RESULTS FOR Eq. (1.3)
We may set m = 1,
We will need the Green’s function of — A + 1 on R" It is given by
0 < G('x - y') = (IX - yl)_(n_Z)/zK(n—Z)/Z(‘x - _V,), (41)

where K (z) denotes the modified Besse] function of order v. In Appendix C
we summarize the properties of K, used in this section. In particular, G(r)
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satisfies

G(r) < C Sy (1 4 pyr-302, (4.2)

2 2

G./G— —1 at infinity. (4.3)
Forn =3,
G(r) = /m/2(e™"fr),

and the reader may carry out the computations below without using any
particular properties of the Bessel functions.
First we prove that the solutions in Theorem 2 decay exponentially at oc.

PROPOSITION 4.1.  Let u(x) > 0 be a C? solution of (1.3), tending to zero
at infinity and assume

g(u) = O for some o >1, near u=0.
Then
u(x), [Vu(x)| = Oe™ M|x|"=112) g . (4.4)

This result follows from the results of Kato [6, Sections 5 and 6] but we
include a simple proof here.

Proof. Forr > 0 set

ho) = [, ut6) do®).

Here r represents a polar coordinate and 6 a point on the unit sphere: dw is
element of volume on the sphere. Since g(u) = O(u*) for o > 0,and u - 0 at
infinity, we see that for any ¢ > 0, |9(u)| < eu for |x| sufficiently large. Hence
integrating (1.3) with respect to 6 we find for r > Fo

by + [(n = 1)/r]h, > (1 — e)h. (4.5)

Hence "~ 'h, is increasing. Since i1 — 0 as r — oo wesee that h, < Oforr > r,.
Multiplying (4.5) by 2h, we find, taking r > r, from now on,
(h? = (1 = &), + 2[(n — 1)/r]h? < O,

and hence w = h} — (1 — g)h? is decreasing. Since h — 0 at co we must have
w — 0, for otherwise w — ¢? > (0 which implies h, — — c—contradicting the
fact that h — 0. Thus

hr — (1 —eh? >0,
or -
h+1—¢eh<0.
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Setting a = /1 — ¢ we have

e“"h 1s decreasing

and hence
h< Ce™ @

for some constant C. Since ¢ was arbitrary we conclude that
h(r) = O(e™ ™), r— 00

for any a < 1.
It follows that for f(y) = —u(y) + g(u(y)),

flx—y|<1 If(y),dy - O(e—alxl) Va< 1

so that

—_ —alx|
ﬁx_y,q (u + |Au))dy = O(e~ ),

By standard interior estimates we find

r x| "
P Js, — —alx —
<f|x—y|<3/4 “ dJ’) Ole™*), P=0_2

1/p
(flx-yl<3/4 'Aul” dy) = O(e‘GIXI)'

Using interior estimates again we find in case g = np/(n — 2p) > 0,

/g
(flx—y|<1/2 uqdy> c O(e—a|x|)

and hence

(4.6)

while if n — 2p = 0, a similar estimate holds for any L® norm of u, s < oo.

If n < 2p, the estimate holds for the L norm.
Continuing in this way we finally infer that

u(x) = 0(e™ ™), Vva<1,
and hence
g(u) = O(e™b1¥h for some b > 1.

Next we make use of the formula

u(x) = [ G(x = y)g(u(y)dy

= lx-¥

<C f e =5 (14 |x — y)n=312e=0bl gy,
[x =]

(4.7)
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by (4.2) and (4.7). Consequently

(1 + |x)"= D2elly(x)

(n—1)/2
<C fg(l_b)IYI (1|;:|_x!}2|n_2 1+ 'x — yl)(n-3)/2 dy (4.8)

=C fly—xl<lxl/2 +C fly—x|>|x|/2 (4'9)
- Il + 12 .
Now for |x| large,

Iy =¢ f|y—x|<|xl/2 < Cet! T < €, (4.10)

for some constants C,, C, independent of x. For |x| large, using 1 + |x| <
(1 + |x — yP(1 + |y|) we find next

(n—1)/2
12 < C1 fRn e(l-—b)lyl(l + |x|)(n—1)/2 (H%) dy < Cz« (411)

Combining (4.8)—(4.11) we obtain the desired bound (4.4) for u(x). Using
interior estimates as before we obtain the same result for |Vu(x)|. The pro-
position is proved. B

It follows from Proposition 4.1 that u > 0 is an exponentially decaying
solution of

Au—u+ f(x)=0, f = 0(e ), o> 1. (4.12)

We will have need of some further asymptotic results near infinity for
such a solution. The solution u is given by

u() = [ G(lx — y)f(3)dy (4.12)
with
f()=0("P),  a>1. (4.12")

PROPOSITION 4.2.  Let u > 0 be given by (4.12') with f satisfying (4.12").
Suppose {x'} € R" is a sequence going off to infinity in R" and

é=mﬂ§, E=(E0n8) = (Enanen )

1

Then

(a) lim |x{|"~ D2y (xT) = \/; fdyf(y)e‘f"'. (4.13)

i— o

- Mw,y_v?.“%jm‘ e
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(b) Suppose &, =0 and that A'is a sequence of real numbers converging
to a number /. and ' > x3. Let z' be the reflection of x' in the plane x; = J' ie.,
=4 — x4, x5, ..., x). Then

lim i—'-x-l;- X" D2 N u(xt) — u(z')) = \/2x f dy e Y f(y)(h — y,). (4.13)
i~ - A
(© If x{ - + o then

'xil(n-f- 1)/2

el - - \/g f dy ¢ f(y). (414

1

Proposition 4.2 will be proved in Appendix B.

5. SoME FORMS OF THE HOPF LEMMA

In this section we prove Lemmas (H}) and (H5). In addition we shall have
need of a form of the second in a half-space:

LeMMA (H}): Let u > 0 be of class C? in {IX| = R} n {x, <0} and con-
tinuous in the closure. Assume u vanishes on x; =0, tends to zero at infinity,
and satisfies a differential inequality:

Lu= (A — 1+ x,8,0, +> b0, + c(x))u <0 (5.1)
2
with
Xi1By, be c=0(x|"?)  for some p>1, x=2,...,1
Then for some u > 0
u(x) > —px e X/|x|en+ 12, (5.2)

In our application we will have B 1=by,="---=b,=0. There is a similar
half-space version of Lemma (H/) which may prove useful:

LEMMA (HY). Let u> 0 be of class C? in {|x| = R} n {x; < 0} and con-
tinuous in the closure. Assume u vanishes on x; = O and tends to zero at infinity.
Assume u satisfies

Lu = <Au+ x1B10; + > b,0, + c(x))uSO (5.3)
2
with

Bi, c = O(|x|™7), b, = O(|x|'~»), a=2,...,n p>2

’
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Then for some > 0
u(x) = —px,/|x".
Proof of Lemma (H}). We know that
¢ < K|x|77.
Then, since u > 0,
Lu=(L- K|x™Pu<0,

and the maximum principle holds for L—for the coefficient of the zero-order
term is nonpositive. We may therefore suppose that our original coefficient ¢
is nonpositive, and we may suppose the same in the other lemmas.
Without loss of generality we may take R as large as we like.
We will use the following comparison function

z=1/""2) + (1/r), (5.4)

where r = |x|, with

n—2<s<n—4+np. (5.5)
Such a value of s exists since p > 2. Using (1.12), a computation yields

Lz> —CrP " P 4 s(s — 2 + nyr 52,

Because of (5.5) we see that the second term dominates, for r large, and thus

Lz>0 for R large.

Let t > 0 be so small that

uztz on |x]=R
Then u, = u — tz > 0 on |x| = R, vanishes at infinity, and satisfies

Lu, <0 in |x|>R.

We may therefore apply the minimum principle and conclude that u > ¢z
in |x| = R. The conclusion of Theorem (H}) follows—with u = . W

Proof of Lemma (H,). The proof is the same as the preceding, with a
new comparison function:

z = G(r)(1 + (1/r)), O<s<p-1; (5.6)

here G is the Green’s function for (A — 1) given in (4.1). According to (4.1),
(4.3), and (C.3) in Appendix C. for r large.
G~ T2~/ IR) — G, = G + O(1r)).

| (5.7)
G,, = G(1 + O(1/r)).
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A direct calculation then shows that

B CG(r) 2sG, G

rp rs+1 rs+2

Lz >

s(s+2—n)=G<————-—————

>0 for R sufficiently large,
since s + 1 < p. The preceding argument then yields u > tz for some t > 0—
proving the lemma. W
Remark. The function u = G/r satisfies
A—1+c(r))u=0
with ¢ = O(1/r), showing that the condition p > 1 may not be omitted.
Proof of Lemma (H5). The proof is the same, only now we work in

Qg = {|x| = R} n {x; <0}, R large, and must find a corresponding com-
parison function. In fact the following will do:

W=z =z, = —/m2e” /") x,[1 + 0(1/r)], (5.8)

where z 1s the function in (5.6). A simple calculation shows that

e’ 1
(A — l)W = 81(A - l)Z = —2SX1 m(l + 0 <—>>

r

On the other hand
|x1 8101w, |by0 W], |ew| < — Cxje™"fpnt 12 +p,

Since s + 1 < p it follows that
Lw>0 in Qg, for R large.

Now on |x| = R we have u > cx; for ¢ < 0,by the Hopf lemma. Hence,
for t > O sufficiently small

U=u—tw>0 on |x|=R, x, <0,

and u, vanishes on x; = 0 and at infinity. By the maximum principle, recall
that we may suppose c(x) < 0, we find

u>tw i Qp, R large;

the desired conclusion follows from (5.8). W

The proof of Lemma (HY) is the same, using the comparison function
w = z, with z given by (5.4).
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6. PROOF OF THEOREM 2

Our proofis similar to that of Theorem 1 but somewhat more complicated.
By Propositions 4.1 and 4.2 we see first that u(x),|Vu(x)| = O(e~ ™) and
f(x) = g(u(x)) = O(e~*™!). Furthermore if x — oo, x/|x| - £ then

x|~ 2 elly(x) — ﬁ fdyf (et (6.1)

We have g(u)/u = c¢(x) = O(e™**)), ¢ = « — 1. Thus we may apply Lemma
(H%) and conclude that

x|~ 2elly(x) > uo > 0 near infinity.

Combining with (6.1) we see that

ﬁfdyf(y)e“'zuo for [¢f=1. (6.2)

LemMma 6.1.  Under the assumptions of Theorem 2 there exists /. > 0 such
that

u(x) <0 for x,>7.

Proof. Suppose not. Then there is a sequence x* with x} — + oo such that
u;(x') = 0.

Applying Proposition 4.2¢ we find

—fg—fdye“f(y) >0

contradicting (6.2). W

LEMMA 6.2.  Under the assumptions of Theorem 2, there exists A, > A such
that for all /. > A,

u(x) > u(x?) for x; < 4 (6.3)

Proof. Suppose not. Then there exists a sequence A'— +oo and a
sequence {x’} with x; < A’ such that for 2/ = x™*

u(x’) < u(). (6.4)

Since |x*| - o2, so that u(x'™) > 0, we see that |x| = co. Furthermore, we
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have necessarily x} < 7, for if x{ > 7, then
Yy xi 1
. . P2l
u(z') — u(x')=f, Uy <0
xl

by Lemma 6.1—contradicting (6.4).
By restricting ourselves to a suitable subsequence we may suppose

x| > ¢ and then ¢, <0. .
Casel. &, <0. In this caseifd;, = |2'| — || we see, omitting i,
d+ IXP + x3 = [2A— x,)* + [x]?]'2,
so that, on squaring,
&+ 2d|x,| = 42% — 4ix, > —4ix,.

Since x; ~ &,|x|, and 2 - + oo we see that d — oo, ie., d; — oo.
We now apply Proposition 4.2a and infer that

lim x|~ /2y () = ﬁ—‘ [

>0 by (6.2).
On the other hand,

limlxi!(n—l)/zelxilu(zi) — hm(,xil/lzil)(n—1)/2e|x"l—|zi| . lzil("_l)/2e|zi'u(zi).

Since |x| — |2 = —d;—» — oo we see again from Proposition 4.2a that this
tends to zero. We infer that for Case 1, (6.4) is impossible.

Case2. ¢, =0. By (64) and Lemma 6.1 we may assert that for any
fixed A > 4,

u(x) < u(Z') <u(x™y  if > A (6.5)
We now apply Proposition 4.2b, with 1 in place of the ' in the proposition,
to obtain (here x™* = (%)

0= tim L w12 — u(eh) = 2 Jdyes ¥ 1) — y,).
A — Xy
But according to (6.2) this is impossible for large . N
LEMMA 6.3.  Under the conditions of Theorem 2, the set of A for which

property (6.3) holds is open.

Proof. As in the proof of Lemma 2.3, we note that if property (6.3) holds
then

u, <0 on Xx; = /. (6.6)
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Here we use the fact that g(u) = g,(u) + g,(u) with g, € C* and g, nonde-
creasing. We will show that if property (6.3) holds for some A then it holds
for any 4 near /. Suppose the contrary. Then there exist sequences {x",

ai

A= A, xi < A'such that (here z' = x*)
u(x’) < u(z).

Clearly |x'| - o0 and we may choose a suitable subsequence so that

xi

—r > E=(&L8), ¢&; <0.

X
Then-
Ixi’(n— 1)/2elx"]u(xi) < | Ixil/‘zil |(n— 1)/2€|in - |zi||Zi|(n— 1)/2€|zi|U(Zi).

Using the identity (2.21) we see that |x/| — || - 24¢,, and using Proposition
4.2a we find

[res < e [ fiyes. (6.)

Now we are going to use Lemma (H%). In the half-space x; < Aseto(x) =
u(x*) and
w(x) = u(x) — v(x) > 0 by (6.3).
Then

(A= Dw + g(u) — g(v) = 0,

or

(A —Dw + g,(u) — g,(v) = g,(v) — go(w) < 0,
since g, is increasing. Using the hypotheses on g, we see that
A—=14+c(x)w<0
with c(x) = O(|x|™?) near infinity, p > 1. In the half-space x, < 1, w satisfies
all the conditions of Lemma (H’) and we may assert that for some Ho >0
|x’(n+ 1)/2€[x|

Ww(x) > pg > 0. (6.8)

A— X,

Suppose now &; < 0. If 2/ — oo is a sequence in the half-space x; < 4
with z/|z'| - & then
lzi’(n+ 1)/2 |27}

“7:?1““ (w(z') — w(z"™)) = p,.
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By Proposition 4.2a

1 . o
_aff(y}(eé'y__ 2481 +¢ 'y) > 1

which contradicts (6.7).
Suppose, then, that ¢, = 0. According to Proposition 4.2b,

J& i~y <o (6.7)

On the other hand if in the half-space x, < /1 we let x — oo with x/|x| = ¢,
then, according to (6.8),

lx’(n + 1)/Ze|x]

lim (u(x) — u(x*) = p,.

/L—Xl

Applying Proposition 4.2b once more, with all i = 4 we find

V2 [ 100~ y) 2 1o

contradicting (6.7'). Lemma 6.3 is proved. B

Completion of the proof of Theorem 2. It follows from Lemmas 6.2 and
6.3 that there is a maximal interval

A< A<

for which (6.3) holds; clearly 4, is finite. By [4, Lemma 4.3], and Remark 1
of Section 2.3 there, we also have

U, <0 for x,>1,.
By continuity we have
u(x) = u(x*)  for x; < i,

and by the same reference in [4] we have either = or >. In view of Lemma
6.3 it cannot be the latter for then the interval would not be maximal. Thus
we conclude that

u is symmetric about the plane X;=4; and u, <0 for X1 > Ay.

The same conclusion holds for the other coordinate directions and we
conclude that u is symmetric about each of n planes, x; = /;and grad u = 0
only at their intersection. We may now take their intersection as the origin.

The same argument may be applied to any unit direction y and we infer
that u is symmetric about some plane x - y = ¢(y) = const. At the point on
this plane where u achieves the maximum we have gradu = O (since the
normal derivative to the plane is zero at every point of the plane). It follows
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that c(y) = 0. Thus u is symmetric about every plane through the origin. In
addition we also conclude that u, < 0. The last inequalities in Theorem 2
follow from (6.1) and (6.2). Theorem 2 is proved. N

APPENDIX A

We shall often make use of the identity (2.21):
44— x;)(4 - Y1)
=+ x ~ ]

Proof of Lemma 2.1. Observe first that Lemma 2.1 holds in case S has
compact support. Indeed in this case (2.5) and (2.6) are immediate, while
(2.7) follows from

It =y = x—y| = (A.1)

X" 1 1 ﬂ
; ; . — . 2(n — 2)(4 — y).
A= lxl _ yln—z [x’ _ yp!n—z - 2(n X V1)
This in turn is readily verified with the aid of (A.1).

To prove the lemma for any f satisfying (2.4) we observe that f is in the
Banach space B, for ¢’ < g, defined by the completion of C¥ under the
norm || |,

Il = sup {1 + |v])*|h(y)]}.

Letusnowfix ¢ inn+1<gq <gq.

Note first that the right-hand sides of (2.5), (2.6), and (2.7) are bounded
linear functionals on B, . To prove the lemma we have only to show that
the following functionals

Jf) = X" 2u(x),
A

ki(f) =

ul(x)a xl > 1>
X1

W) = 20 ) — )

Y i
/1—)61

are all uniformly bounded linear functionals on B, . A standard argument
then yields the result.

For example let us prove (2.7) using the uniform boundedness of the I;.
Let I(f) denote the linear functional defined on the right-hand side of (2.7).
Suppose f; e C§ converges in B, to f. Then

L) =10 =L =) + ;= Df + I(f; - 1),
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so that

L) = UDN < CUf = Blly + 1= DS+ €Lt = 1]

Given ¢ > 0, choose j so large that C|lf = fill; < &/3 and then choose i so
large that |(I, — I)f}| < /3. Hence (; = )f| <& and the desired result
follows. C will denote various constants.

Consider first |

Clearly

f <C
Iy— x| <|x|/2

while

I
lsmn=c] Al =©

It follows that

7D < Ay -
Next, for x; > 1,
x4 — ve| X" 1
e N e

Now

) <C

Ix—y|<|x}/2

and

1
e =€ J s e

since |x; — yy|/x; <1+ | ;|- The desired uniform boundedness of k. follows.
To bound the functionals I, is more tedious. We shall use the inequalities:
ForO<r<s

1 (s—r)< —L; _ <(n—2 ;,;:1—1 (s — ). (A.3)

Ji— 2 n—2 -
I S

(n—2)

Sn—l
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Let
= K vy = P ! 1
K_K(x’y’)”)—i——xl ‘x_y’n—Z ‘x;._y,n—z ’
then
n l)°_y1’ 1—-n A 1-m
K < Clx] [+ =] max{[x — y|' " |x* — 17" (A4)

Indeed, for y; < A we have [using (A.3)]

Ksmon P 1 4G-x)(-y)
B A= X =y T o =y

similarly, for y; > A, and (A.4) is proved. Therefore

. A= . i B
KN| < Ciet [aysin — =2 g = o o em
' =y + X7 =y

We wish to prove

(N < C||fll,  with C independent of . (A.5)
Let
Ay = CIXI”f dy () 4= x —yr "
1 ly—x|<|x}/2,y;1 <2 ,x _ yl + Ix/'. . y, s
_ n yi— 4 A __ L1-n
Az—-CIXI fly_xi,qx&,/z,ylndyf(y) 'x_y|+|x,1_y, lx Y' ,

_ " A=y, 1-n
Ay = c|x| fly—x|>|xl/2,y1</'~ 4y f(3) x — y| + |x* — V| e = o7,

_ " Yy — 4 i__ l1-n
Ay = CIXI ﬁy—x"i>|x"‘l/2,y1>,1 dy f(y) Ix _ y, n ,xz _ y, IX J’I .

To prove (A.5) it suffices to prove with some constant C independent of x
but which may depend on 4:

24;<C|fl,- (A.6)
With various constants C (which may depend on 1) we have

Ay < elxPliflly |

y=x|<|x|/2, yy <2
< Cl[Allg ™2 + [x)
<C||flly since ¢ >n-+1.

dylx — y|' "1 + |y)) =
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A similar estimate holds for 4 ,. Next

Ay < Of o |

ly=x|>|x[/2, yy <2

< Alflly [, dy(@ + [yi=s

<|f|l; since ¢ >n-+1.

dy e = y[ 71 + |yt~

The same argument applies to A4. Combining these estimates we obtain
(A.6) and hence (A.5).
Lemma 2.1 is proved. W

APPENDIX B. THE PROOF OF PRrROPOSITION 4.2

We will make use of the following consequence of (C.5) in Appendix C:

Gt = Glo) = = [1de (0 = [" e Z22p).

By (C.1), we have for r < s

S(,:fzﬂ),_ - 1)< G(r) — G(s) < "/22()/;(5 ). (B.1)

First we prove (4.13), (4.13"), and (4.14) for functions f with compact
support. For y in a compact set K, if x — oo with x/|x| - &, we see from (C.3)

that
. |xl (n—1)/2
llmlxl(n—1)/2elle(|x — )= 11m< ) elX1=1x =]
[x — ]
- /? e, (B2)
since

| —|x—y=y- l , + O(|x|]? uniformly for y in K.

Using (B.2) we see that (4. 13) holds for continuous functions S with compact
support.
To verify (4.13') for such functions we will use the formula [ see (C.2)]

G(z) = \/n/2 e—'z'H(n—z)/z(

where

H _ (1—n)/2 (n—3)/2 _tm " 3)/2d B3
("—2)/2(|Z|) lZl /2] 't +2,Z' L. ( )
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We wish to prove that for y in a compact set K if x; = 00 with xi/[x,-l — &
and &, = 0,and x| < A\, A' > , then

lxil(n+ 1)/2 i . \ ) . - o
G; = i e UG(|x = y)) = G(|x' — y¥))) =2 fi(/l —yp)et ¥ (B4)
LT A

uniformly for y in K. We have

3 Ixil(n+1)/2 ‘ ‘ ' o . ‘
R A T ele™ N — AT T g (= yH])
LT A
|Xi|("+ 1)/2 i i ' ' I(BS)
+—,17:_X7— elle~l NH - 00X - W) = Hep—ayal|x* = DI
1

Using (A.1) we see that

e (1 — elosi-lximyly _ N <l—ex 4 = )y, —;g})
P | e =yl + e = )

)Ll — X3

because x}/|x’| - 0. Since |x'|/|x"*| - 1 and 2" D2 H o]z — ) = 1 as
z — oc, the first product in the right-hand side of (B.5) tends to 2(; — vi)et T

To conclude the proof of (B.4) we must show that the other term in (B.5)
tends to zero. This follows rather easily from the mmplicit formula (B.3) with
the aid of (A.1). Namely, using (A.1) one shows first that

,xi’(n+ 1)/2 1 1
i Xil Ixi _ yl(n—l)/2 - |xi _ yzil(n— 1)/2

Next one establishes, with the aid of (A.1) that

o T W P Y LA Ll
o ¢ i~ 2|x' — )| W

-0 as i — oo.

|4 = y4

. - 0.
e

< O

These yield the desired result and (B.4) is proved.
To prove (4.14) for functions with compact support we must prove that
for y in a compact set K if x — oo with x; — + oo, x/|x| - ¢, then uniformly

in K,
T [T e
X Jl) IX——-}yl a4 \/;e .

o T e’ 1

’xil(n+l)/2

J(x,y) = e¥G(

Now
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and so

o x| xl-1x—y X1 — V1 1
J(x,y)—_- _\/; Ix_y|(,,+1)/2 €|| lx =yl ——--—~x1 1+0 |x_y| s

and one obtains the desired limit immediately since, as we noted earlier,
| = x=y[=¢y

We have thus proved (4.13), (4.13'), and (4.14) for continuous functions f
with compact support. To establish these for our function f(y) = O(e~ "
we define for each y in 1 < y < o the Banach space B, with norm

|||, = sup{e”™™!|n(y)|}.

Now choose a sequence of functions f; with compact support so that
|f — fille = 0asj— oo, where 1 < «’ < a. As in Lemma 2.1, the proofs will
be completed if we prove that the functionals involved in these equations
are bounded on B,.. We consider first (4.13') [ Eq. (4.13) is simpler and can be
treated in a similar way]. Let

L = [dy G 3 ), (B.6)

where

I =J0 35 4) = [x/A2 = x) ()™~ D2 {G(lx — y]) = G(|x — y])}.
For y, < A, we use (B.1) to bound

|)C| (le)(n—l)/28|x| Kn/Z(lx —_ yl) 4(1 _ x1)(l . yl)

J| <
' |—-/1__x1 .x_yl(n—z)/z |x—y|+lx—y’1|

iy ([ yhemvn
=y =y =yt

< C|x'(n+1)/2elyl =J,

by (C.4). Similarly, for y, > /,

yi— A (1 + |x — yH)—vr2

JI < Cx(”+1)/2e|)” -
| < cfx] |x—y|+lx—y’1] x — "

=J2.

Setting

17 Jyi<a y—xl<ix2 v 27 Jyisa, py-x < xt)/2 2/

As = fqu, Iy ~x|> |x|/2 Ji/, Ay = fylu, |y = x*| > |x4]/2 J2/,

we wish to show

L5l
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with C independent of x, but it may depend on 4. This will yield the desired
result

L] < ClLf

and will then complete the proof of Proposition 4.2b.
We have

—_ (n 1)/2
A, < C'lf“a,lxl(n+ 1)/2 f o1 =a)yl 1+ Ix y| "

|y—x[<|x|/2 |x — yl
< C||f”a’lx|(n+ 1)/28(1~a')|x|/2|x1(n+ 1)/2 < CHf”a,

A similar estimate holds for 4,. Next

Ay < C||f [|ae]e] ™+ 12 f (2] + [y])ett =W

ly—x|>|x|/2 !x _ yl(n+1)/2

dy

< Clflle [0+ [3het=P1dy < | 1],

with a similar result for A,. Proposition 4.2b is proved. As we remarked, the
completion of the proof of Proposition 4.2a is simpler.

To complete the proof of Proposition 4.2¢c we show that for x; > 1 the
linear functionals

le(n+l)/2

k(f) =

ePlu, (x)
X1

are uniformly bounded in B,.. This follows from the inequality

(n+1)/2 _
f lxl elxllGr(lx - yl)l M e—a’lyldy <C

x = ]

for x; > 1. From (C.5) we have
Gr('x) = _Kn/Z/r(n_Z)/z:

so we want to prove the uniform boundedness in x, > 1 of

e

By the estimate in (C.4), it suffices to prove
S [k
o 1

Since |x| — |x — y| <|yland 1 + |x — y] < (1 + |x)(1 +|y|) we find

,xl(n+ 1)/2

n/2 |Kn/2 IX - Vl l

_ Y1 el =ay| dy.
X

'(n+ 1)/2

(1+|x - ”/2‘1 2l ellmlxmrimali gy < .

J < Cf Ix‘n iX1 - yll (1 + |y‘)(n—1)/26(1—a’)|y[d},.
=" x
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The last integral is bounded by some constant times the integral occurring
in (A.2), which we proved was bounded.
The proof is complete. W

APPENDIX C

In this appendix we list the properties of the modified Bessel functions
K, [7] we used in Sections 4 and 6. Let v > 0 be half an integer and z > 0.
Then

K (z) 1s positive and decreasing in z. (C.1)

The most convenient integral representation for our purpose is

z

1 ne ? rrw 1t %
K (2) = - Tfpv-1/2 — - dt 2

O =17 2ﬁfo ¢ <1+2z> (€2
1

where I is the gamma function. In case v — 4 = kis an integer this reduces to
T E Tk+1+4j .
K‘,:ﬁ"m k14D -1
2207 5 Tk+1—))
Asymptotic expansion for large z if v = integer:
e (M Tv+4+j) 1 (1)}
Kf(z)= |- { , : -+ 0|7 ¢ (C3)
2z jgo ST+ 3 —j)2z) |z|M

The remainder after M terms does not exceed the (M + 1)-term in absolute
value, and is of the same sign provided that M > v — 1.

Asz-0
lr‘ 13—V
K(2)~ {z (z2)77, v>0, C4)
—log Z, v=20.
Thus for v > 07 z> 0, K‘.(Z) < C(e—Z/Zv)(l + Z)v_%,
v Y
K\(2)= —K, () - S KW =_K\(2) = K,1,4(2) (C.5)
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