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ABSTRACT. In order to study the evolution of conditional dispersal,
we extend the Perthame-Souganidis mutation-selection model and
consider an integro-PDE model for a population structured by the
spatial variables and one trait variable. We assume that both the dif-
fusion rate and advection rate are functions of the trait variable, which
lies within a short interval I. Competition for resource is local in spa-
tial variables, but nonlocal in the trait variable. Under proper con-
ditions on the invasion fitness gradient, we show that in the limit of
small mutation rate, the positive steady state solution will concentrate
in the trait variable and forms the following:

(i) a Dirac mass supported at one end of I;
(ii) or a Dirac mass supported at the interior of I;

(iii) or two Dirac masses supported at both ends of I, respectively.
While cases (i) and (ii) imply the evolutionary stability of a single
strategy, case (iii) suggests that when no single strategy can be evolu-
tionarily stable, it is possible that two peculiar strategies as a pair can
be evolutionarily stable and resist the invasion of any other strategy in
our context.

1. INTRODUCTION

An important question in ecology and evolutionary biology is how the dispersal
of organisms evolves [22, 51, 52]. For the evolution of unconditional dispersal,
there is selection for slow dispersal in spatially varying yet temporally constant
environments [29, 38, 41], while higher rates of dispersal can be favored when
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the environments are both spatially and temporally varying [39, 55]. However,
note that the dispersal of organisms often depends upon local biotic and abiotic
factors, and thus it is often conditional, for example, a combination of random
diffusion and directed movement. Recent studies on the evolution of conditional
dispersal suggest that conditional dispersal strategies can be evolutionarily stable
(see [3, 4, 14–16, 19, 20, 23, 33, 37, 45, 46, 48, 53] and references therein).

A common approach to study the evolution of dispersal is the adaptive dy-
namics approach [26, 27, 34], in which it is assumed that the resident species is at
equilibrium, and a mutant phenotype is introduced to the population. The main
questions are the following. Can the mutant invade when rare? If it can invade,
will it coexist with the resident or competitively exclude the resident? Most, if
not all, of these mathematical models thus assume that there are only two pheno-
types in competition. Very recently, Perthame and Souganidis introduced a novel
approach to studying the evolution of unconditional dispersal [60]. They con-
sidered an integro-PDE model for a population structured by the spatial variables
and a (continuous) trait variable which is the random diffusion rate. In a sense,
the Perthame-Souganidis model is a coupled system of infinitely many PDEs, and
can be viewed as a competition model for infinitely many phenotypes. By the
Hamilton-Jacobi approach, Perthame and Souganidis showed that in the limit of
small mutation rate, the steady state solution forms a Dirac mass in the trait vari-
able, supported at the lowest possible diffusion rate (see also [47] for a similar
result on the Perthame-Souganidis model).

The goal of this paper is to extend the Perthame-Souganidis model to a case
of conditional dispersal. In contrast to the case of unconditional dispersal, the dy-
namics and structure of evolutionarily stable dispersal strategies seem to be much
richer for conditional dispersals. For instance, it was shown in [44] that the steady
state found in [47] is supported at a single dispersal strategy and is unique. In
the presence of a biased movement, we give sufficient condition for the steady
state to be supported at two distinct dispersal strategies, which is connected to the
branching phenomena in evolutionary biology. Our methods will be based upon
the Hamilton-Jacobi approach, while also drawing on the connections with the
adaptive dynamics framework.

The dynamics of a single population with combined random diffusion and
directed movement can be described by the following scalar reaction-diffusion
equation (see Belgacem and Cosner [5]):





ut = ∇x · (µ∇xu−αu∇xm)+u[r(x)−u] in D × (0,∞),
µ ∂nu−αu∂nm = 0 on ∂D × (0,∞),
u(x,0) = u0(x) in D.

Here, u(x, t) is the population density at location x ∈ D and time t > 0, whereD
represents a bounded domain in RN with smooth boundary ∂D. We have that n is
the outward unit normal vector on ∂D, with ∂n := n ·∇x . Parameters µ > 0 and
α ≥ 0 are diffusion and advection coefficients, respectively, and r(x) is a given
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function of the environment. Besides random diffusion, the population is also
assumed to move upward along the gradient of some function m(x). Belgacem
and Cosner considered the case r(x) =m(x) in [5] (see also [24, 42, 43, 49] for
further developments).

Throughout this paper, unless otherwise specified, we assume

(M) m ∈ C2(D̄) and ∂nm ≤ 0 on ∂D; r(x) is Hölder continuous in D̄.

Suppose that µ,α are both smooth real-valued functions of some phenotypic
variable ξ, such that µ(ξ) > 0 and α(ξ) ≥ 0 for all ξ ∈ R+ := (0,∞). Then, the
dynamics of the species, consisting of a continuum of phenotypes, as parameter-
ized by the single real variable ξ, can be described by

(1.1)





ut = ∇x · (µ(ξ)∇xu−α(ξ)u∇xm)
+ ε2 ∂2

ξu+u(r(x)− û) in D × I ×R+,
µ(ξ) ∂nu− α(ξ)u∂nm = 0 on ∂D × I ×R+,
u = 0 on D × ∂I ×R+,
u(x, ξ,0) = u0(x) in D × I,

where I is a bounded open subinterval of R+, and

û = û(x, t) =
∫

I
u(x, ξ, t)dξ

is the total population density at a given location x ∈ D and time t.

Remark 1.1. Our choice for Dirichlet condition on the boundary of the trait
space in (1.1), instead of the no-flux condition that was considered in [47, 60],
is made so that the boundary condition remains consistent in the corners of our
cylindrical domain D × I. We also note that because of the vanishing viscosity in
the trait variable, the boundary condition has little effect on the dynamics of (1.1).
For instance, if ∂nm = 0 on ∂D, then the Neumann boundary condition for the
trait variable will satisfy the consistency conditions, and all the results in this paper
can be similarly established.

For each ξ ∈ R+, let θξ(x) be the unique positive solution of the equation

(1.2)

{
∇x · (µ(ξ)∇xθ −α(ξ)θ∇xm)+ θ(r(x)− θ) = 0 in D,

µ(ξ) ∂nθ −α(ξ)θ ∂nm = 0 on ∂D.

We note that (1.2) has a positive solution if and only if the trivial solution is
unstable and the positive solution is unique whenever it exists (see, e.g., [13]).

The family of phenotypic traits is parameterized by ξ > 0, where distinct ξ
correspond to different phenotypes, as distinguished by their respective diffusion
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rates and advection rates. Formally speaking, {δ0(ξ− ξ′)θξ′(x)}ξ′>0 gives a one-
dimensional manifold of steady states of (1.1) when ε = 0, where δ0(ξ − ξ′) is
the Dirac measure concentrated at ξ′. More generally, (1.1) with ε = 0 contains,
as subsystems, k-species competition systems for any k ∈ N. To see this, note

that for any 0 < ξ1 < ξ2 < · · · < ξk,
∑k
i=1 δ0(ξ − ξi)ui(x) gives a steady state

of (1.1) with ε = 0, concentrated at ξ1, . . . , ξk, if and only if (u1, . . . , uk) satisfies
the k-species system





∇x · (µ(ξi)∇xui −α(ξi)ui∇xm)

+ ui
(
r(x)−

k∑

j=1

uj
)
= 0 in D,

µ(ξi) ∂nui −α(ξi)ui ∂nm = 0 on ∂D.

The goal of this paper is to determine which of these concentrated steady state
solutions of (1.1) with ε = 0 will persist for small positive mutation rate ε.

For ξ1, ξ2 ∈ R+, consider the eigenvalue problem

(1.3)





∇x · (µ(ξ2)∇xψ−α(ξ2)ψ∇xm)
+ ψ(r(x)− θξ1

)+ λψ = 0 in D,

µ(ξ2) ∂nψ−α(ξ2)ψ∂nm = 0 on ∂D.

For fixed ξ1, ξ2, it follows from standard variational arguments that eigenvalues of
(1.3) are real and ordered. We denote the least eigenvalue of (1.3) by λ(ξ1, ξ2),
which in the adaptive dynamics framework is termed the invasion fitness. More
precisely, an invader with phenotype ξ2 can (cannot, respectively) invade an es-
tablished phenotype ξ1 at equilibrium when rare if λ(ξ1, ξ2) < 0 (λ(ξ1, ξ2) > 0,
respectively).

We start the discussion in the most generic case.

Theorem 1.2 (Evolution of Extreme Strategies). Suppose that for some closed
interval Ī0 ∈ R+,

(1.4) inf
ξ∈Ī0

∂ξ2
λ(ξ, ξ) > 0.

Then, there exists δ > 0 such that for each interval I = (ξ∗, ξ∗) ⊂ Ī0 with |I| =
ξ∗ − ξ∗ < δ, any positive steady state uε of (1.1) satisfies

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x) in distribution sense

as ε → 0, where δ0(ξ − ξ∗) is the Dirac measure concentrated at ξ∗ = inf I. Here,
θξ∗ denotes the unique positive solution of (1.2) with ξ = ξ∗.
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If the inequality sign in (1.4) is reversed, then a similar conclusion holds with
ξ∗ being replaced by ξ∗ = sup I. This shows that if the selection gradient does
not vanish, it gives rise to a single Dirac-concentration at one of the two most
extreme phenotypes, determined by the sign of the selection gradient ∂ξ2

λ(ξ, ξ).
In adaptive dynamics, the canonical equation is derived to indicate the evolu-

tionary dynamics of monomorphic populations. A consequence of such dynamics
is that the phenotypic trait of monomorphic populations evolves towards conver-
gence stable strategies [31], which are characterized by the following relations:

(Cv) ∂ξ2
λ(ξ̂, ξ̂) = 0 and

d

dt
[∂ξ2

λ(t, t)]
t=ξ̂ > 0.

This leads to two generic cases:

(i) Continuously stable strategies (CSS)
(ii) Branching points (BP).

The next two results show the first case produces an interior Dirac-concentration,
and the second produces two “balanced” boundary Dirac-concentrations. In a
sense, CSS gives an evolutionary attractor where a monomorphic population adopt-

ing the superior/optimal strategy ξ̂ is able to equilibrate while withstanding the

onset of all small and rare mutations. On the other hand, if a trait ξ̂ is a branch-
ing point, then although it is capable of invading any resident adopting a different

trait ξ ≠ ξ̂, it is prone to invasion by small mutations, and instead a population
consisting of a combination of two distinct strategies emerges.

Our next result says that if there is a CSS ξ̂, then the phenotype in I that is

closest to ξ̂ dominates the competition.

Theorem 1.3 (Evolution of Intermediate Strategy). Suppose that (Cv) holds

and ∂2
ξ2
λ(ξ̂, ξ̂) > 0 for some ξ̂ ∈ R+; then, there exists δ > 0 such that for each fixed

interval I = (ξ∗, ξ∗) ⊂ (ξ̂ −δ, ξ̂+δ), any positive steady state uε of (1.1) satisfies,
as ε → 0,

ûε(x)→ θξ′(x) in C(D̄),

uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution sense,

where the point of concentration ξ′ is the point in [ξ∗, ξ∗] closest to ξ̂; that is,

ξ′ =





ξ̂ if ξ̂ ∈ [ξ∗, ξ∗],
ξ∗ if ξ̂ < ξ∗ = inf I,

ξ∗ if ξ̂ > ξ∗ = sup I.

The next theorem says that in the neighborhood of a branching point, no
single phenotype can dominate. Instead, the two extreme phenotypes form a
coalition that together dominates the competition.
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Theorem 1.4 (Evolutionary Branching Point). Suppose that (Cv) holds and

∂2
ξ2
λ(ξ̂, ξ̂) < 0 for some ξ̂ ∈ R+. Then, there exists δ > 0 such that for each interval

I = (ξ∗, ξ∗) ⊂ (ξ̂ − δ, ξ̂ + δ) such that ξ∗ ≤ ξ̂ ≤ ξ∗, there is a sequence εk → 0
such that any positive steady state uεk of (1.1) satisfies

uεk(x, ξ)→ δ0(ξ − ξ∗)û1(x)+ δ0(ξ − ξ∗)û2(x) in distribution sense

as k→∞. Furthermore, (û1, û2) is a positive steady state of

(1.5)





∇x · (µ1∇xû1 −α1û1∇xm)+ û1(r(x)− û1 − û2) = 0 in D,

∇x · (µ2∇xû2 −α2û2∇xm)+ û2(r(x)− û1 − û2) = 0 in D,

µ1 ∂nû1 −α1û1 ∂nm = 0 = µ2 ∂nû2 −α2û2 ∂nm on ∂D

such that ûi(x) 6≡ 0 for i = 1,2, and that α1 = α(ξ∗), α2 = α(ξ∗), µ1 = µ(ξ∗),
and µ2 = µ(ξ∗).

We briefly sketch the key ideas in the proofs. Consider the WKB-Ansatz,
wε(x, ξ) = ε loguε(x, ξ). We first establish, in Sections 2 and 3, appropriate a
priori Lipschitz estimates on wε. Our first contribution is to drop the convexity
assumption on D, which was needed in [60] to apply Bernstein’s argument. Our
proof relies on blowup arguments and Liouville theorems of elliptic equations in
cylindrical domains (see Appendix A).

The a priori estimates allow the passage to (subsequential) limits of

û(x) = lim
ε→0
ûε(x) and w(ξ) = lim

ε→0
wε(x, ξ).

An important fact is that the limit function w(ξ) satisfies, in the viscosity sense,
the following constrained Hamilton-Jacobi equation:





−|∂ξw|2 = −H(ξ; û) in I = (ξ∗, ξ∗),
sup
I

w = 0.(1.6)

Here, the Hamiltonion H(ξ; û) is defined as the principal eigenvalue of





∇x · (µ(ξ)∇xψ−α(ξ)ψ∇xm)+ (r(x)− û)ψ+Hψ = 0 in D,

µ(ξ) ∂nψ− α(ξ)ψ∂nm = 0 on ∂D,∫

D
ψ2

dx = 1.

(1.7)
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The main difficulty in solving (1.6) is yielding information (and possibly unique-
ness) concerning the subsequential limit functions û(x) and w(ξ). In [60], the
corresponding Hamiltonian H̃(ξ, û) is the principal eigenvalue of





µ(ξ)∆xψ+ (r(x)− û)ψ+Hψ = 0 in D,

∂nψ = 0 on ∂D,∫

D
ψ2

dx = 1.

It is a classical fact in PDE that, provided r(x)− û(x) is non-constant in x, the
monotonicity properties of H̃ in ξ are exactly the same as that of µ(ξ) in ξ. This
shows that w(ξ) attains its maximum at the minimum point of µ(·), at which
the concentration of uε(x, ξ) occurs; that is, û = θξ∗ .

In contrast, the dependence of the principal eigenvalue H of (1.7) on param-
eters µ and α may not possess monotonicity [17, 18]. In this work, we infer the
behavior of H(ξ; û) based on the assumptions regarding the invasion fitness func-
tion λ(ξ1, ξ2) = H(ξ2;θξ1

), which arises in the study of two-species competition
models [45, 46]. For this purpose, we only consider fixed, narrow intervals I in
the trait variable, for which we can quantify how close an arbitrary subsequential
limit û is to θ

ξ̂
. This approach partially decouples (1.6) and (1.7), and is done in

Appendix B.
In Sections 4 to 6, we impose three most generic assumptions on the inva-

sion fitness function: specifically, non-vanishing selection gradient, Continuously
Stable Strategies (CSS), and Evolutionary Branching Points (BP). We show that
the resulting solutions to the mutation-selection model exhibit one or two Dirac-
concentrations at those strategy or strategies that are evolutionarily stable. This
establishes the connection of (1.1) to the framework of adaptive dynamics. In
Sections 7 and 8, we provide some concrete examples in which those generic as-
sumptions on the invasion fitness function can be verified. To complement Sec-
tions 7 and 8, we present some numerical computations concerning the dynamics
of (1.1) in Section 9.

This paper serves as an initial exploration of the class of mutation-selection
models arising from evolution of conditional dispersal. Our results suggest that,
as a consequence of the interplay between ecology and evolution, the dynamics
of (1.1) are indeed quite rich. Biologically, our results give a classification of the
equilibria of evolutionary dynamics in generic situations, when the possible mu-
tations are restricted to a small interval I.

Finally, we provide some references to background and related works. One
of the first works to connect mutation-selection dynamics with adaptive dynamics
is [12]. For earlier mathematical works on mutation-selection models, we refer
to [11, 56]. For the pioneering Hamilton-Jacobi approach we refer to [28, 59].
For pure selection dynamics, see [1, 25]. The involvement of spatial structure
is more recent (see [40, 57] for works on models related to cancer therapy; and
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see [2, 6–10, 61] for works on unbounded domains concerning spreading front
solutions).

2. A PRIORI ESTIMATES OF ûε

For the rest of this paper, we set

I0 := (ξ, ξ̄), I := (ξ∗, ξ∗),
where ξ∗, ξ∗, ξ, ξ̄ are positive numbers. In addition, we always assume that I ⊂ Ī0.

For each bounded open interval I ⊂ R+ and each ε > 0, let uε = uε(x, ξ) be
a positive steady state of (1.1); then, it satisfies

(2.1)





∇x · (µ(ξ)∇xuε −α(ξ)uε∇xm)
+ ε2 ∂2

ξuε +uε(r(x)− ûε) = 0 in D × I,
µ(ξ) ∂nuε −α(ξ)uε ∂nm = 0 on ∂D × I,
uε = 0 on D × ∂I,

where

ûε(x) :=
∫

I
uε(x, ξ)dξ.

The following result is the only place where the assumption (M) is needed.

Lemma 2.1. Let uε be any positive solution of (2.1). Then, there exists some
positive constant C, which depends on I0 but is independent of I and ε ∈ (0,1], such
that

sup
D

ûε ≤ C.

Proof. Let uε(x, ξ) be a positive solution of (2.1). Define

vε(x, ξ) = e−αm/(2µ)uε(x, ξ), v̂ε(x) =
∫

I
vε(x, ξ)dξ.

Then, there exist the positive constants c1, c2 depending on I0, but independent
of I and ε, such that

(2.2) c1ûε(x) ≤ v̂ε(x) ≤ c2ûε(x) for all x ∈ D.
Moreover, vε satisfies





µ∆xvε + ε2
{
∂2
ξvε +m∂ξ

(
α

µ

)
∂ξvε

+ m
2
∂2
ξ

(
α

µ

)
vε +

[
m

2
∂ξ

(
α

µ

)]2

vε

}

+ vε
(
− α

2
∆xm− α

2

4µ
|∇xm|2 + r − ûε

)
= 0 in D × I,

∂nvε =
α

2µ
vε ∂nm ≤ 0 on ∂D × I,

vε = 0 on D × ∂I,
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where we used (M) to ensure ∂nm ≤ 0 on ∂D. Dividing the equation of vε by
µ = µ(ξ), and integrating in the variable ξ ∈ I = (ξ∗, ξ∗), and using the facts
that

∫

I

1
µ
∂ξ

(
α

µ

)
∂ξvε dξ = −

∫

I
∂ξ

[
1
µ
∂ξ

(
α

µ

)]
vε dξ +

[
1
µ
∂ξ

(
α

µ

)
vε

]ξ∗

ξ=ξ∗

= −
∫

I
∂ξ

[
1
µ
∂ξ

(
α

µ

)]
vε dξ

(since vε(·, ξ∗) ≡ vε(·, ξ∗) ≡ 0) and

∫

I

1
µ
∂2
ξvε dξ =

∫

I
∂2
ξ

(
1
µ

)
vε dξ +

[
1
µ
∂ξvε

]ξ∗

ξ=ξ∗
≤
∫

I
∂2
ξ

(
1
µ

)
vε dξ

(since ∂ξvε(·, ξ∗) ≥ 0 ≥ ∂ξvε(·, ξ∗) in D̄), we have

(2.3)





∆xv̂ε + v̂ε


ε2h0(x)+

r(x)

inf
I0
µ
− ûε(x)

sup
I0

µ


 ≥ 0 in D,

∂nv̂ε ≤ 0 on ∂D,

where h0 can be expressed in terms of µ,m,α and their derivatives, and is inde-
pendent of the interval I and ε ∈ (0,1]:

h0(x) = sup
ξ∈I0

{
∂2
ξ

(
1
µ

)
−m(x)∂ξ

[
1
µ
∂ξ

(
α

µ

)]

+ 1
µ

m(x)

2
∂2
ξ

(
α

µ

)
+ 1
µ

[
m(x)

2
∂ξ

(
α

µ

)]2}
.

Suppose that supD v̂ε = v̂ε(x0) for some x0 ∈ D̄. Then, apply the maximum
principle (see [54, Proposition 2.2]) to (2.3): there exists C1 > 0 independent of
ε ∈ (0,1] such that

ûε(x0) ≤ C1 := (sup
I0

µ)


sup
D

h0 +
sup
D

r

inf
I0
µ


 .

By combining this with (2.2), we have

c1 sup
D

ûε(·) ≤ sup
D

v̂ε(·) = v̂ε(x0) ≤ c2ûε(x0) ≤ c2C1.

Hence, supD ûε ≤ C′1, where the positive constant C′1 depends on I0 but is inde-
pendent of the open interval I ⊂ I0 and ε ∈ (0,1]. ❐
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Lemma 2.2. Let I = (ξ∗, ξ∗) and δ1 := |I| = ξ∗ − ξ∗.

(i) There exists C > 0 independent of δ1, ε such that if ε ≤ δ1/2, then

sup
x∈D, ξ∈∂I

|∂ξuε| ≤ Cε−2‖ûε‖L1(D) ≤ Cε−2.

(ii) For each fixed open interval I = (ξ∗, ξ∗) ⊂ I0, there exists δ2 > 0 indepen-
dent of ε such that

inf
D×(ξ∗, ξ∗+δ2ε)

∂ξuε > 0 and sup
D×(ξ∗−δ2ε,ξ∗)

∂ξuε < 0.

In particular,

(2.4) sup
D×(ξ∗,ξ∗)

uε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

uε.

Proof. We first show (i). Set

ṽε(x, ξ) := e−αm/µuε(x, ξ) and Qε(x, τ) := ṽε(x, ξ∗ + ετ).

Then, Qε satisfies

(2.5)





µ∆xQε + α∇xm · ∇xQε + ∂2
τQε + 2εm∂ξ

(
α

µ

)
∂τQε

+ ε2


m∂2

ξ

(
α

µ

)
+m2

(
∂ξ
α

µ

)2

Qε

+ Qε(r − ûε) = 0 in D × (0, ε−1(ξ∗ − ξ∗)),
∂nQε = 0 on ∂D × (0, ε−1(ξ∗ − ξ∗)),
Qε = 0 on D × {0, ε−1(ξ∗ − ξ∗)},

where the coefficients µ = µ(ξ∗+ετ) and α = α(ξ∗+ετ) are uniformly bounded
for τ ∈ (0, ε−1(ξ∗−ξ∗)). Then, we extend Qε in the direction of x by reflecting
along the boundary ∂D × (0,2), and we apply the boundary elliptic estimate on
D̄ × {0} to get

(2.6) ε sup
x∈D

|∂ξuε(x, ξ∗)| ≤ ‖Qε‖C1(D̄×[0,1]) ≤ C′‖Qε‖L∞(D×[0,2]).

On the other hand, by the local maximum principle at the boundary for strong
(sub)solutions [36, Theorem 9.26], we have

(2.7) ‖Qε‖L∞(D×[0,2]) ≤ C‖Qε‖L1(D×(0,3)) ≤ Cε−1‖uε‖L1(D×(ξ∗,ξ∗+3ε)).
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It follows from (2.6) and (2.7) that

sup
x∈D

|∂ξuε(x, ξ∗)| ≤ Cε−2‖uε‖L1(D×(ξ∗,ξ∗+3ε)) ≤ Cε−2‖ûε‖L∞(D).

By repeating the same proof for ξ = ξ∗, we obtain

sup
x∈D, ξ∈∂I

|∂ξuε| ≤ Cε−2‖ûε‖L∞(D).

Assertion (i) thus follows from Lemma 2.1.

For the first inequality of (ii), we consider

(2.8) Q̃ε(x, τ) := Qε(x, τ)

‖Qε‖L∞(D×(0,2))
= ṽε(x, ξ∗ + ετ)
‖ṽε(x, ξ∗ + ετ)‖L∞(D×(0,2))

on D × (0,2), where Qε is defined in the beginning of the proof. Then, we
have that Q̃ε is a positive solution to the uniformly elliptic equation (2.5) such
that ‖Q̃ε‖L∞(D×(0,2)) = 1. Moreover, the second inequality of (2.6) and the Hopf
boundary lemma imply

‖Q̃ε‖C1(D̄×[0,1]) ≤ C and inf
D
∂τQ̃ε(x,0) > 0.

This shows that for some δ′ > 0, independent of ε, we have

(2.9) ε

inf
D×(ξ∗, ξ∗+δ′ε)

∂ξṽε(x, ξ)

‖ṽε(x, ξ∗ + ετ)‖L∞(D×(0,2))
= inf
D×(0,δ′)

∂τQ̃ε(x, τ) ≥ δ′.

Thus, the first inequality of assertion (ii) is proved. The proof for the second
inequality of (ii) is analogous and is omitted. ❐

Lemma 2.3. First, fix a bounded interval I0. Then, there exist the constants
γ ∈ (0,1) and C > 0 independent of I ⊂ I0 and 0 < ε≪ 1 such that

‖ûε‖Cγ(D̄) ≤ C.

Remark 2.4. Lemma 2.3 asserts the precompactness of ûε(·) in C(D̄) as
ε → 0. One can therefore pass to a sequence εk → 0 so that ûεk converges in
C(D̄).

Proof of Lemma 2.3. By dividing the equation (2.1) by µ = µ(ξ) and inte-
grating in ξ ∈ I, while treating the terms involving derivatives in ξ in a similar
fashion as in the proof of Lemma 2.1, we obtain

(2.10)

{
−∆xûε = −∇x · (q1∇xm)+ (r − ûε)q2 + ε2q3 + ε2q4 in D,

∂nûε = q1 ∂nm on ∂D,
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where

(2.11)

q1(x) =
∫

I

α

µ
uε dξ, q2(x) =

∫

I

uε

µ
dξ,

q3(x) =
∫

I
∂2
ξ

(
1
µ

)
uε dξ, q4(x) =

[
∂ξuε

µ

]ξ∗

ξ=ξ∗
.

By Lemmas 2.1 and 2.2, it is easy to see that

(2.12)
‖qi‖C(D̄) ≤ C for 1 ≤ i ≤ 3,

ε2‖q4‖C(D̄) ≤ C, q4(x) ≤ 0 in D,

for some constant C independent of ε.
Fix p > N. By Proposition C.3, there exists a linear (extension) operator

T : C∞(∂D)→ C∞(D̄) such that

∂n(Tg)
∣∣
∂D = g and ‖Tg‖W 1,p(D) ≤ C‖g‖Lp(∂D).

Take G = T[q1∂nm]; then,

(2.13) ‖G‖W 1,p(D) ≤ C‖q1 ∂nm‖L∞(∂D)

and U := ûε −G satisfies





−∆xU = −∇x · (q1∇xm−∇xG)
+ (r − ûε)q2 + ε2q3 + ε2q4 in D,

∂nU = 0 on ∂D.

By extending U by the reflection method so that U satisfies a similar equation
in an open set containing D̄, we may apply De Giorgi-Nash-Moser interior esti-
mates [21, Theorem 2.3] so that for some 0 < γ < 1 and C > 0,

‖U‖Cγ(D̄) ≤ C
[
‖U‖L∞(D) + ‖− q1∇xm+∇xG‖Lp(D)(2.14)

+ ‖(r − ûε)q2 + ε2q3 + ε2q4‖LNp/(N+p)(D)
]
.

Since U = ûε −G, we can apply Sobolev embedding to get

(2.15) ‖U‖L∞(D) ≤ ‖ûε‖L∞(D) + ‖G‖L∞(D) ≤ ‖ûε‖L∞(D) + C‖G‖W 1,p(D).

Hence, we deduce by (2.14) and (2.15) and also Morrey’s inequality in Sec-
tion 5.6.2 of [32] that

‖ûε‖Cγ(D̄) ≤ ‖U‖Cγ(D̄) + ‖G‖Cγ(D̄)
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≤ C(‖ûε‖L∞(D),max
i=1,2

‖qi‖L∞(D), ε2 max
i=3,4

‖qi‖L∞(D),‖G‖W 1,p(D)).

By combining with (2.13), we have (for ε ∈ (0,1])

‖ûε‖Cγ(D̄) ≤ C(‖ûε‖L∞(D),max
i=1,2

‖qi‖C(D̄), ε2 max
i=3,4

‖qi‖C(D̄)).

The righthand side of the last line is bounded independently of ε, by Lemma 2.1
and (2.12). ❐

Lemma 2.5. Let I = (ξ∗, ξ∗) be given. Suppose that for each compact set
K ⋐ D̄ × (ξ∗, ξ∗), there exists δK > 0 such that

(2.16) ‖uε‖C(K) ≤ exp
−δK
ε
.

In such event, fix an arbitrary ξ̂ ∈ I, and define

ûε,1(x) =
∫ ξ̂

ξ∗
uε dξ and ûε,2(x) =

∫ ξ∗

ξ̂
uε dξ.

Then, there exist γ ∈ (0,1) and C > 0, both independent of ε, such that

‖ûε,1‖Cγ(D̄) + ‖ûε,2‖Cγ(D̄) ≤ C.

In particular, passing to a subsequence if necessary, ûε,i → ûi in C(D̄) for i = 1,2,
and uε(x, ξ)→ δ(ξ − ξ∗)û1(x)+ δ(ξ − ξ∗)û2(x) in the distribution sense.

Proof. We first prove the estimate for û1. In order to do this, we first inte-

grate (1.1) over ξ ∈ (ξ∗, ξ̂). We may repeat the proof of Lemma 2.3, provided
the following estimate is proved:

ε2


 sup
x∈D, ξ=ξ̂

(∣∣∣∣∣
∂ξuε

µ

∣∣∣∣∣+
∣∣∣∣∣∂ξ

(
1
µ

)
uε

∣∣∣∣∣

)
 ≤ C.

By (2.16), it therefore suffices to show

(2.17) lim
ε→0

[
sup
D

|∂ξuε(x, ξ̂)|
]
= 0.

In order to show (2.17), we first must let Qε(x, τ) = ṽε(x, ξ̂ + ετ), where
ṽε(x, ξ) = e−αm/µuε(x, ξ). Then, Qε satisfies a uniformly elliptic equation in
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D × (−1,1) with L∞-bounded coefficients similar to (2.5); hence, we may apply
the interior Lp estimate to obtain

ε sup
D

|∂ξuε(x, ξ̂)| ≤ C sup
D

|∂τQε(x,0)| ≤ C‖Qε‖L∞(D×(−1,1))

≤ C‖uε‖L∞(D×(ξ̂−ε,ξ̂+ε)).

Thus, (2.17) follows from (2.16). This enables us to repeat the proof of Lemma 2.3
to show that ‖ûε,1‖Cγ(D̄) ≤ C. Since ûε,2 = ûε − ûε,1, the other inequality
‖ûε,2‖Cγ(D̄) ≤ C follows automatically. ❐

For later purposes, we will also need the following result.

Lemma 2.6. Let I = (ξ∗, ξ∗) ⊂ R+ be a bounded open interval. Suppose that,
along a sequence (ε, I) = (εk, Ik), we have

(i) ε/|I| → 0,
(ii) I → {ξ̂}, for some ξ̂ > 0, in the Hausdorff sense.

Then, any positive solution uε of (2.1) satisfies

ûε(x)→ θξ̂(x) weakly in H1(D) and strongly in C(D̄).

Proof. See Lemma B.1 in Appendix B. ❐

3. WKB ANSATZ AND A CONSTRAINED HAMILTON-JACOBI EQUATION

Definition 3.1. Denote, for each ξ > 0 and h(·) ∈ C(D̄), by H(ξ;h) the
principal eigenvalue of

(3.1)





∇x · (µ(ξ)∇xψ−α(ξ)ψ∇xm)
+ (r(x)− h(x))ψ+Hψ = 0 in D,

µ(ξ) ∂nψ− α(ξ)ψ∂nm = 0 on ∂D,∫

D
ψ2

dx = 1.

Next, set h = ûε and denote the eigenfunction corresponding to H(ξ; ûε) by
ψε(·, ξ).

Recall the Hölder estimate of Lemma 2.3, and the normalization of ψε(·, ξ).
One can deduce from standard elliptic estimates that for each bounded interval
I0 ⊂ R+, there exists a constant C = C(I0) > 1 independent of ε such that

(3.2)

1
C
≤ ψε(x, ξ) ≤ C in D × I0,

sup
D×I0

[
|∂ξψε(x, ξ)| + |∂2

ξψε(x, ξ)| + |∇xψε(x, ξ)|
]
≤ C

(see, e.g., [47, Lemma 4.1]).
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By Remark 2.4, we may pass to a sequence εk → 0 so that ûεk(x) → û(x)

for some non-negative function û ∈ C(D̄). We suppress the subscript k for con-
venience. Define

(3.3) wε(x, ξ) := ε loguε(x, ξ)− ε logψε(x, ξ).

Then, a direct computation shows that

(3.4) − µ
ε2
|∇xwε|2 − 2

µ

ε
∇xwε ·

∇xψε
ψε

− µ
ε
∆xwε +

α

ε
∇xm · ∇xwε

− |∂ξwε|2 − 2ε ∂ξwε
∂ξψε

ψε
− ε ∂2

ξwε − ε2
∂2
ξψε

ψε
= −H(ξ; ûε)

in D × I, with boundary conditions

∂nwε = 0 on ∂D × I,
wε = −∞ on D × ∂I.

We show that wε(x, ξ) converges locally uniformly in D̄× (ξ∗, ξ∗) to a viscosity
solution w(ξ) of a certain constrained Hamilton-Jacobi equation in the variable
ξ only.

Proposition 3.2. Given any fixed interval I ⊂ R+. Suppose that, for some c0 > 0

independent of ε, we have
∫

D
ûε dx ≥ c0. Then, by passing to a sequence εk → 0, the

following hold:

ûεk(x)→ û(x) in C(D̄),

wεk(x, ξ)→ w(ξ) in Cloc(D̄ × I),

where w(ξ) is a viscosity solution of the constrained Hamilton-Jacobi equation

(3.5)





−|∂ξw|2 = −H(ξ; û) in I = (ξ∗, ξ∗),
sup
I

w = 0.

We prepare for the proof of Proposition 3.2 with a series of lemmas.

Lemma 3.3. For each δ > 0, there exists C > 0 independent of ε such that

sup
D×(ξ∗+δε,ξ∗−δε)

[
|∂ξwε(x, ξ)| +

1
ε
|∇xwε(x, ξ)|

]
≤ C.
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Proof. Let ṽε(x, ξ) = e−αm/µuε(x, ξ); it suffices to show that for each fixed
δ > 0, there is some C > 0 independent of ε > 0 such that

|∇xṽε(x, ξ0)| + ε|∂ξṽε(x, ξ0)| ≤ Cṽε(x, ξ0)(3.6)

for all (x, ξ0) ∈ D × (ξ∗ + δε, ξ∗ − δε).

Fix δ > 0 and ξ0 ∈ [ξ∗ + δε, ξ∗ − δε] and define Qε(x, τ) = ṽε(x, ξ0 + ετ).
Then, Qε is a positive solution of the homogeneous linear elliptic equation (2.5)
(with µ(ξ) = µ(ξ0 + ετ) and α(ξ) = α(ξ0 + ετ)) in the domain D × (−δ,δ),
and satisfies the Neumann boundary conditions on ∂D×(−δ,δ). By the Harnack
inequality, we have

(3.7) sup
D×(−δ/2,δ/2)

Qε ≤ C inf
D×(−δ/2,δ/2)

Qε.

Also, elliptic Lp estimates with p > N + 1 (with N being dimension of D) imply

sup
x∈D

[
|∇xQε(x,0)| + |∂τQε(x,0)|

]
(3.8)

≤ C‖Qε‖Lp(D×(−δ/2,δ/2)) ≤ C sup
D×(−δ/2,δ/2)

Qε.

By combining equations (3.7) and (3.8), we conclude that for some positive con-
stant C = C(δ) independent of ε, x ∈ D, and ξ0 ∈ [ξ∗ + δε, ξ∗ − δε],

|∇xQε(x,0)| + |∂τQε(x,0)| ≤ C inf
D×(−δ/2,δ/2)

Qε ≤ CQε(x,0);

that is, (3.6) holds. This proves the lemma. ❐
We develop a property of w similar to Lemma 2.2 (ii).

Lemma 3.4. Fix an open interval I = (ξ∗, ξ∗) ⊂ R
+. There exists δ2 > 0

independent of ε such that, in addition to the conclusion of Lemma 2.2, we have

(3.9) inf
D×(ξ∗,ξ∗+δ2ε)

∂ξwε > 0 and sup
D×(ξ∗−δ2ε,ξ∗)

∂ξwε < 0.

In particular,

(3.10) sup
D×(ξ∗,ξ∗)

wε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

wε.

Proof. Recall the definition of wε in (3.3), where ψε is the principal eigen-
function of (3.1). Also recall ṽε = e−αm/µuε. Then,

wε(x, ξ) = ε log ṽε(x, ξ)+ εm(x)
α(ξ)

µ(ξ)
− ε logψε(x, ξ∗ + ετ).



Concentration Phenomena in an Integro-PDE Model 897

By differentiating with respect to ξ, we have

∂ξwε(x, ξ) =
ε

ṽε(x, ξ)

{
∂ξṽε + ṽε

[
m∂ξ

(
α

µ

)
− ∂ξψε
ψε

]}
.

Recall the definition of Q̃ε(x, τ) in (2.8); we have (setting ξ = ξ∗ + ετ)

∂ξwε(x, ξ∗ + ετ) =
ε

Q̃ε(x, ξ)

{
ε−1∂τQ̃ε + Q̃ε

[
m∂ξ

(
α

µ

)
− ∂ξψε
ψε

]}

= ε

Q̃(x, τ)
{ε−1δ′ +O(1)} > 0,

for τ ∈ (0, δ′) and for 0 < ε≪ 1, where we used (2.8), (2.9), and (3.2). Hence,
we can deduce that, by taking δ2 smaller, ∂ξwε(x, ξ) > 0 in D × (ξ∗, ξ∗ + δ2ε).
Similarly, ∂ξwε(x, ξ) < 0 in D × (ξ∗ − δ2ε, ξ

∗). Therefore, there exists δ2 > 0
such that for ε > 0 small, (3.9) holds and the maximum point of wε(x, ξ) is
attained within D̄ × [ξ∗ + δ2ε, ξ

∗ − δ2ε]; that is, (3.10) holds. ❐

Lemma 3.5. For each constant A > 1,

sup
D×(ξ∗,ξ∗)

wε ≤ Aε| log ε| for all sufficiently small ε.

Proof. Let A > 1 be a given constant. Set I(ε) = (ξ∗+δ2ε, ξ
∗−δ2ε), where

δ2 is given in Lemma 3.4. Again, by Lemma 3.4, it suffices to show

(3.11) sup
D×I(ε)

wε ≤ Aε| log ε|.

Fix x ∈ D and let Mε(x) := supI(ε)wε(x, ξ). If Mε(x) ≤ 0, there is nothing

to prove. Suppose that Mε(x) > 0 and choose some ξε(x) ∈ I(ε) such that
Mε(x) = wε(x, ξε(x)). By Lemma 3.3, wε is Lipschitz continuous in D × I(ε);
hence, there exists an interval I′(x, ε) ⊂ I(ε) such that for some c1 > 0,

ξε(x) ∈ I′(x, ε), inf
ξ∈I′(x,ε)

wε(x, ξ) ≥
Mε(x)

A
, |I′(x, ε)| ≥ c1Mε(x),

where c1 depends only on the Lipschitz constant of wε and is independent of x
and ε (Lemma 3.3). Hence, by using Lemma 2.1 and (3.2),

c1Mε(x) exp
(
Mε(x)

Aε

)
≤
∫

I′(x,ε)
exp

(
wε(x, ξ)

ε

)
dξ ≤ ûε(x) ≤ sup

D

ûε.

This implies that, for some constants c1 and C1 independent of ε but depending
on supD ûε (Lemma 2.1) and on the Lipschitz constant of wε in the cylinder
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D × (ξ∗ + δ2ε, ξ
∗ − δ2ε) (Lemma 3.3),

c1
Mε(x)

Aε
exp

(
Mε(x)

Aε

)
≤ C1

ε
,

where c1 and C1 are independent of ε and x ∈ D. This proves

Mε(x) ≤ Aε| log ε| for all x ∈ D

and all sufficiently small ε > 0; that is, (3.11) holds. ❐

Lemma 3.6. If
∫

D
ûε dx ≥ c0 for some c0 > 0, which is independent of ε, then

there exists C > 0 independent of ε such that

sup
D×I
wε ≥ −Cε, where I = (ξ∗, ξ∗).

Proof. By the hypotheses of the lemma,

c0 ≤
∫

D
ûε dx =

∫

D×I
ψε exp

(
wε

ε

)
dx dξ ≤ C exp




sup
D×I
wε

ε


 ,

and the assertion follows. ❐

Proof of Proposition 3.2. In this proof, we omit for the sake of clarity the sub-
script k in εk. By Lemmas 3.5 and 3.6, and (2.4), we have

−Cε ≤ sup
D×(ξ∗,ξ∗)

wε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

wε ≤ Cε| log ε|,

where δ2 is given in Lemma 3.4. This and the uniform Lipschitz estimate in
Lemma 3.3 imply that, up to a sequence, wε converges uniformly to some (Lip-
chitz) function w ∈ C(D̄ × [ξ∗, ξ∗]) in compact subsets of D̄ × (ξ∗, ξ∗), such
that supD×(ξ∗,ξ∗)w = 0. Furthermore, Lemma 3.3 implies that

‖∇xwε‖L∞(D×(ξ∗+δ2ε,ξ∗−δ2ε)) ≤ Cε.

Hence, w = w(ξ) is a function of ξ but is independent of x, and such that

sup
(ξ∗,ξ∗)

w(ξ) = 0.

It remains to show that w satisfies equation (3.5) in the viscosity sense. Let
ρ(ξ) be a C2 function of ξ such that ξ0 is a local maximum of w − ρ. Then,
w−ρ−(ξ−ξ0)

4 has a strict local maximum at some interior point ξ0 ∈ (ξ∗, ξ∗).
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We can then deduce that for all ε > 0 small, wε(x, ξ) − ρ(ξ) − (ξ − ξ0)
4 has a

local maximum (xε, ξε) ∈ D̄ × I such that ξε → ξ0 as ε → 0. Hence,

∇xwε(xε, ξε) = 0, ∆xwε(xε, ξε) ≤ 0;

∂ξwε(xε, ξε) = ∂ξρ(ξε)+ 4(ξε − ξ0)
3;

∂2
ξwε(xε, ξε) ≤ ∂2

ξρ(ξε)+ 12(ξε − ξ0)
2.

Now, we can deduce, by evaluating (3.4) at the point (xε, ξε), that

− |∂ξρ(ξε)+ 4(ξε − ξ0)
3|2 − 2ε[∂ξρ(ξε)+ 4(ξε − ξ0)

3] ∂ξ(logψε)(xε, ξε)

− ε ∂2
ξρ(ξε)− 12ε(ξε − ξ0)

2 − ε2
∂2
ξψε

ψε
(xε, ξε) ≤ −H(ξε; ûε).

By letting ε → 0, we have ξε → ξ0 and ûε → û in C(D̄), so that

−|∂ξρ(ξ0)|2 ≤ −H(ξ0; û).

Next, if w − ρ has a local minimum at a point ρ0, we can show with a similar
argument that

−|∂ξρ(ξ0)|2 ≥ −H(ξ0; û).

Hence, w is a viscosity solution of (3.5). ❐

In general, the viscosity solution of the nonstandard, constrained (3.5) may
not be unique. The following lemma enumerates two additional properties of
those solutions of (3.5) that are realized as the limits of wεk .

Lemma 3.7. Suppose that along a sequence εk → 0, ûεk → û uniformly in D,
and wεk → w locally uniformly in D̄ × (ξ∗, ξ∗). Then, the following hold:

(i) H(ξ, û) ≥ 0 for all ξ ∈ [ξ∗, ξ∗] and min[ξ∗,ξ∗]H(·, û) = 0.
(ii) If (xk, ξk) is a local maximum of wεk , then

dist(ξk, {ξ : H(ξ, û) = 0})→ 0.

Proof. First, it follows from equation (3.5) that H(ξ, û) ≥ 0 for all ξ. Second,
notice that at any local maximum point (xε, ξε) of wε, (3.4) implies

H(ξε; ûε) ≤ ε2
∂2
ξψε

ψε

∣∣∣∣
(x,ξ)=(xε ,ξε)

= O(ε2).

Hence, any limit point ξ0 of {ξε} satisfies H(ξ0; û) ≤ 0, and thus H(ξ0; û) = 0.
This proves (ii). Furthermore, it follows that the set {ξ : H(ξ; û) = 0} is non-
empty; this proves (i). ❐
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In some cases, we can determine the limit w = limk→∞wεk uniquely, as the
following result shows.

Proposition 3.8. Given a sequence εk → 0, let uεk be a positive steady state
of (1.1), and wεk be defined by (3.3). Suppose that

ûεk → û in C(D̄),

wεk → w in Cloc(D̄ × (ξ∗, ξ∗)).

If

∃ξ′ ∈ [ξ∗, ξ∗] : H(ξ, û)

{
= 0 when ξ = ξ′;
> 0 when ξ ∈ [ξ∗, ξ∗] \ {ξ′},

that is, H(·, û) has a unique minimum point ξ′ ∈ [ξ∗, ξ∗], then

û(x) = θξ′(x) and uεk(x, ξ)→ δ0(ξ − ξ′)θξ′(x)

in the distribution sense. In particular, λ(ξ, ξ′) = H(ξ; û) ≥ 0 for all ξ ∈ I.

Proof. We claim that w(ξ′) = 0. Let the maximum of wεk in D̄ × (ξ∗, ξ∗)
be attained at some (xk, ξk) ∈ D̄ × (ξ∗, ξ∗), then by Lemmas 3.5 and 3.6,

−Cεk ≤ wεk(xk, ξk) ≤ Cεk| log εk|.

By Lemma 3.4, ξk ∈ [ξ∗ + δ2εk, ξ
∗ − δ2εk], we can then use the equicontinuity

ofwεk (Lemma 3.3) and the fact that ξk → ξ′ (Lemma 3.7 (ii)) to pass to the limit
to obtain w(ξ′) = 0.

Claim 3.9. w(ξ) is strictly increasing (respectively, decreasing) for ξ < ξ′ (re-
spectively, ξ > ξ′).

Proof. Suppose not; then, w(ξ) has another local maximum point ξ′′ ≠ ξ′.
We claim that ξ′′ ∈ {ξ∗, ξ∗}. For if ξ′′ is an interior local maximum point of
w; then by the property of w being a viscosity solution of (3.5), we must have
H(ξ′′, û) ≤ 0; that is, H(ξ′′, û) = 0, and thus ξ′′ = ξ′, by the hypotheses of
the proposition. Hence, w has at least two (and at most three) distinct, strict
local maximum points. This implies that for k large, wεk has another sequence
of local maximum points (x′′k , ξ

′′
k ) such that ξ′′k 6→ ξ′. This contradiction to

Lemma 3.7 (ii) establishes the claim. ❐

As a consequence of Claim 3.9, w(ξ′) = 0 and w < 0 for ξ ≠ ξ′. Hence,

(3.12) uε(x, ξ)→ δ0(ξ − ξ′)û(x) in the distribution sense.



Concentration Phenomena in an Integro-PDE Model 901

It remains to show that û = θξ′ in D. First, we note that for the qi defined in
(2.11),

(3.13)

q1(x)→
α(ξ′)
µ(ξ′)

û(x), q2(x)→
1

µ(ξ′)
û(x),

q3(x)→ ∂2
ξ

(
1
µ

)∣∣∣∣
ξ=ξ′

û(x),

uniformly in D as ε → 0.

Claim 3.10. If (3.12) holds, then û(x) ≤ θξ′(x) in D.

Proof. Multiply (2.10) by a non-negative test function ρ(x), and integrate by
parts; then, we have

∫

D
{∇xρ · (∇xûε − q1∇xm)+ ρ[−(r − ûε)q2 − ε2q3]}dx

= ε2
∫

D
ρq4 dx ≤ 0,

where we used q4 ≤ 0 (from (2.12)). By passing to the limit and using (3.13), we
deduce that û is a weak subsolution of (1.2) with ξ = ξ′. Hence, û ≤ θξ′ , the
latter being the unique positive solution of (1.2). This proves the claim. ❐

On the other hand,

0 ≤ H(ξ′, û) ≤ H(ξ′, θξ′) = 0,

where the first inequality follows from Lemma 3.7 (i), the second from the eigen-
value comparison principle such that the equality holds if and only if û ≡ θξ′ ,
and the third equality by definition of the principal eigenvalue H(ξ′;θξ′) (as θξ′
clearly gives the positive eigenfunction). In particular, the equality holds, and
hence, û ≡ θξ′ . By (3.12), we deduce

uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution as ε → 0.

Although we have passed to a sequence ε = εk in the above procedure, the
fact that the limit û = θξ′ is uniquely determined implies that the convergence
limε→0 ûε = θξ′ is independent of sequences. ❐

4. NON-VANISHING SELECTION GRADIENT

In this section, we consider the case when the selection gradient does not vanish

in a closed bounded interval Ī0 = [ξ, ξ̄] ⊂ R+. For definiteness, we discuss the
case when

(4.1) ∂ξ2
λ(ξ, ξ) > 0 for all ξ ≤ ξ ≤ ξ.
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Theorem 4.1. Suppose (4.1) holds for some closed bounded interval Ī0 = [ξ, ξ̄].
Then, there is δ1 > 0 such that for any subinterval I = (ξ∗, ξ∗) ⊂ Ī0 such that
|I| ≤ δ1, any positive steady state uε of (1.1) satisfies ûε → θξ∗ uniformly in D and

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x) in the distribution sense, as ε → 0.

Lemma 4.2. Suppose (4.1) holds for some closed bounded interval Ī0 = [ξ, ξ̄].
Then, there is δ1 > 0 such that for each subinterval I = (ξ∗, ξ∗) ⊂ Ī0 with |I| ≤ δ1,
there exists c0 > 0 independent of 0 < ε≪ 1 and steady state uε of (1.1) so that

(4.2) inf
ξ∈I
∂ξH(ξ, ûε(·)) ≥ c0 and

∫

D
ûε dx ≥ c0,

where ûε(x) =
∫

I
uε(x, ξ)dξ.

Proof. Suppose to the contrary there is a sequence of open intervals Ik ⊂ Ī0
such that δk = |Ik| → 0, but the associated solution {ûk,ε}ε>0 of (2.1) does not
satisfy (4.2). By passing to a further subsequence, we may assume that Ik → {ξ0}
in the Hausdorff sense for some ξ0 ∈ Ī0. Now, by (4.1) and the smoothness of
H(ξ, θξ0

) = λ(ξ0, ξ) in ξ, there exists δ2 > 0 such that

min
ξ∈[ξ0−δ2,ξ0+δ2]

∂ξH(ξ, θξ0
(·)) > 0 and

∫

D
θξ0

dx > 0.

Now, by Lemma 2.6, we may choose δ1 ∈ (0, δ2] so that for each open interval
I ⊂ (ξ0 − δ1, ξ0 + δ1); then, ûε is close enough to θξ0

in C(D̄) for all small ε.
This implies that for k large enough, (4.2) holds for the solution {ûk,ε}ε>0 of (2.1)
associated with Ik. This is a contradiction. ❐

Proof of Theorem 4.1. Fix δ1 small enough as in Lemma 4.2 and choose any
open interval I ⊂ Ī0 such that |I| ≤ δ1. Then, for ε small, (4.2) holds. Pass
to a sequence so that ûε converges uniformly to some û in D. By Lemma 4.2,
H(·; û) has a unique minimum point at ξ∗ in the closure [ξ∗, ξ∗] of I. By
Proposition 3.8, û = θξ∗ and

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x)

in the distribution sense as ε → 0. This proves the theorem. ❐

5. INTERIOR CSS ξ̂

In this section, we consider the case when the adaptive dynamics has an interior

continuously stable strategy (CSS), denoted as ξ̂.
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Definition 5.1. We say that ξ̂ ∈ I0 is a local CSS if (Cv) holds and

(5.1) ∂2
ξ2
λ(ξ̂, ξ̂) > 0.

Theorem 5.2. Suppose that ξ̂ ∈ I0 is a local CSS in the sense of Definition 5.1.

Then, there is δ1 > 0 such that for each fixed I = (ξ∗, ξ∗) ⊂ (ξ̂ − δ1, ξ̂ + δ1), any
positive steady state uε of (1.1) satisfies, as ε → 0, ûε(x)→ θξ′(x) in C(D̄) and

uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in the distribution sense,

where the point of concentration ξ′ is the point in [ξ∗, ξ∗] closest to ξ̂; that is,

ξ′ =





ξ̂ if ξ̂ ∈ [ξ∗, ξ∗],
ξ∗ if ξ̂ < ξ∗ = inf I,

ξ∗ if ξ̂ > ξ∗ = sup I.

Lemma 5.3. Suppose that ξ̂ ∈ I0 is a local CSS in the sense of Definition 5.1.
There exists δ1 > 0 such that

(5.2) ∂ξ2
λ(ξ′, ξ′)




> 0 for all ξ′ ∈ (ξ̂, ξ̂ + δ1),

< 0 for all ξ′ ∈ (ξ̂ − δ1, ξ̂).

Moreover, for each fixed interval I ⊂ (ξ̂−δ1, ξ̂+δ1), there exists c0 > 0 independent
of ε≪ 1 and steady state uε of (1.1) such that

(5.3) inf
ξ∈I
∂2
ξH(ξ, ûε(·)) ≥ c0 and

∫

D
ûε dx ≥ c0,

where ûε(x) =
∫ ξ∗

ξ∗
uε(x, ξ)dξ.

Proof. First, (5.2) follows from (Cv), by choosing δ1 > 0 small. Inequal-
ity (5.1) implies that for some δ2 > 0,

inf
ξ∈[ξ̂−δ2, ξ̂+δ2]

∂2
ξH(ξ, θξ̂(·)) > 0 and

∫

D
θ
ξ̂
dx > 0,

sinceH(ξ, θ
ξ̂
(·))=λ(ξ̂, ξ) is C2 in ξ. By Lemma 2.6, we may choose δ1∈(0, δ2]

smaller if necessary so that for each fixed open interval I ⊂ (ξ̂ − δ1, ξ̂ + δ1), and
for all ε small, ûε is close enough to θ

ξ̂
in C(D̄) so that (5.3) holds. ❐
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Proof of Theorem 5.2. Fix δ1 small enough as in Lemma 5.3 and choose any

open interval I ⊂ (ξ̂ − δ1, ξ̂ + δ1). Then, for ε small, (5.3) holds. Next, use
Remark 2.4 to pass to a sequence so that ûε → û in C(D̄).

By Lemma 5.3, H(·; û) has a unique minimum point ξ′ ∈ [ξ∗, ξ∗], and
by Proposition 3.8, uε(x, ξ) → δ0(ξ − ξ′)θξ′(x) in the distribution sense, and
û = θξ′ .

Claim 5.4.

(a) If ξ′ > ξ̂, then ξ′ = ξ∗.

(b) If ξ′ < ξ̂, then ξ′ = ξ∗.

Proof. Suppose that ξ′ > ξ̂; then, by (5.2),

∂ξ2
λ(ξ′, ξ′) > 0 and λ(ξ′, ξ′) = 0

so that λ(ξ′, ξ) < 0 for all ξ less than but close to ξ′. As λ(ξ′, ξ) = H(ξ, θξ′) ≥ 0

in I (by Lemma 3.7 (i)), this shows (ξ̂, ξ′) ∩ I = ∅. Since ξ′ ∈ [ξ∗, ξ∗], we

deduce that ξ′ = ξ∗ and thus ξ̂ < ξ∗. This proves part (a) of the claim. Part (b)
can be similarly handled and we omit the details. ❐

To finish the proof of the theorem, suppose first ξ′ ≠ ξ̂; then, by the above

claim, we deduce that ξ̂ 6∈ [ξ∗, ξ∗]. This says that if ξ̂ ∈ [ξ∗, ξ∗], then ξ′ = ξ̂.

Next, let ξ̂ < ξ∗; then, ξ′ > ξ̂ (as ξ′ ∈ [ξ∗, ξ∗]). Then, Claim 5.4 (a) implies

that ξ′ = ξ∗. Similarly, ξ̂ > ξ∗ implies ξ′ = ξ∗. This completes the proof. ❐

6. EVOLUTIONARY BRANCHING

In this section, we consider the case when the adaptive dynamics has a branching

point, denoted as ξ̂.

Definition 6.1. We say that ξ̂ ∈ I0 is a branching point if (Cv) holds and

∂2
ξ2
λ(ξ̂, ξ̂) < 0.

The following theorem is the main result of this section.

Theorem 6.2. Let ξ̂ be a branching point in the sense of Definition 6.1. There
exists δ1 > 0 such that, for each interval I = (ξ∗, ξ∗) satisfying

(6.1) I ⊂ (ξ̂ − δ1, ξ̂ + δ1), λ(ξ∗, ξ∗) < 0, and λ(ξ∗, ξ∗) < 0,

there is εk → 0 such that any positive steady state uεk of (1.1) satisfies

(6.2) uεk(x, ξ)→ δ0(ξ − ξ∗)û1(x)+ δ0(ξ − ξ∗)û2(x)

in the distribution sense. Furthermore, (û1, û2) is a positive solution of (1.5).



Concentration Phenomena in an Integro-PDE Model 905

Remark 6.3. In fact, one can show that for δ1 small and ξ∗ < ξ∗, chosen
as above, (1.5) has a unique positive steady state. In that case, the conclusion of
Theorem 6.2 can be strengthened to be independent of sequences εk → 0. We
leave this issue for future studies.

Lemma 6.4. Suppose ξ̂ is a branching point in the sense of Definition 6.1. Then,

there is some δ1 > 0 such that for each subinterval I = (ξ∗, ξ∗) ⊂ (ξ̂ − δ1, ξ̂ + δ1),
for all ε sufficiently small,

sup
ξ∈(ξ∗,ξ∗)

∂2
ξH(ξ, ûε) ≤ −c0 and

∫

D
ûε dx ≥ c0,

for some c0 > 0 independent of ε.

Proof. The proof is analogous to that of Lemma 5.3 and is omitted. ❐

Proof of Theorem 6.2. Let δ1 be chosen as in Lemma 6.4 and the interval I
chosen satisfying (6.1).

Claim 6.5. There is a sequence εk → 0 such that wεk → w locally uniformly
in D̄ × (ξ∗, ξ∗) and (6.2) holds in the distribution sense, for some non-trivial non-
negative functions ûi ∈ C(D̄), i = 1,2.

Proof. Recall that, as shown in the proof of Lemma 3.7, if a viscosity solution
w of (3.5) has an interior maximum point ξ0, then necessarily H(ξ0; û) ≤ 0.
Since H(·; û) is non-negative (Lemma 3.7 (i)) and strictly concave (Lemma 6.4),
we deduce that H(ξ; û) > 0 in (ξ∗, ξ∗) and thus w cannot have any interior
local maximum point. Therefore, we conclude that exactly one of the following
alternatives holds:

(i) w(ξ∗) = 0 and w(ξ) < 0 in (ξ∗, ξ∗].
(ii) w(ξ∗) = 0 and w(ξ) < 0 in [ξ∗, ξ∗).

(iii) w(ξ∗) = w(ξ∗) = 0 and w(ξ) < 0 in (ξ∗, ξ∗).
In each case, w(ξ) < 0 in (ξ∗, ξ∗), and hence, for each K1 ⋐ (ξ∗, ξ∗),

uε(x, ξ) = ψε(x, ξ) exp
(
w(ξ)+ o(1)

ε

)
= O

(
exp

(
−δK
ε

))

holds for (x, ξ) ∈ D × K1, where we have used (3.2). Thus, Lemma 2.5 is appli-
cable and implies that (6.2) holds in the distribution sense, for some non-negative
functions ûi (i = 1,2). It remains to show that neither of the ûi is identically
zero. Suppose û2 ≡ 0; then, by arguing as in the proof of Proposition 3.8, one
deduces that û1 = θξ∗ , and hence, by Lemma 3.7 (i)

λ(ξ∗, ξ) = H(ξ;θξ∗) = H(ξ; û) ≥ 0 for all ξ∗ ≤ ξ ≤ ξ∗,

but then, we have λ(ξ∗, ξ∗) ≥ 0, contradicting (6.1). Similarly, û1 cannot be
identically zero. This proves Claim 6.5. ❐
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Claim 6.6. (û1, û2) is a positive steady state of (1.5).

Proof. Let ûε,1(x) =
∫ ξ̂

ξ∗
uε dξ and ûε,2(x) =

∫ ξ∗

ξ̂
uε dξ. By Lemma 2.5,

ûε,i → ûi uniformly in D for i = 1,2. By arguments similar to Claim 3.10, we
have

(6.3)

{
∇x · (µi∇xûi − αiûi∇xm)+ ûi(r(x)− û) ≥ 0 in D,

µi ∂nûi −αiûi ∂nm = 0 on ∂D,

where i = 1,2, µ1 = µ(ξ∗), α1 = α(ξ∗), µ2 = µ(ξ∗), and α2 = α(ξ∗). Also,
obviously, û = û1 + û2. This implies, by properties of the principal eigenvalue,
that

H(ξ∗; û) ≤ 0 and H(ξ∗; û) ≤ 0.

By Lemma 3.7 (i), H(ξ∗; û) ≥ 0 and H(ξ∗; û) ≥ 0. Hence, we have that
H(ξ∗; û) = H(ξ∗; û) = 0. Therefore, by arguments similar to Claim 3.10, the
equalities in (6.3) hold. ❐

This completes the proof of Theorem 6.2. ❐

Next, we derive Theorem 1.4 as a special case of Theorem 6.2.

Proof of Theorem 1.4. Suppose that ξ̂ is a branching point in the sense of Def-
inition 6.1. It remains to show that for ξ∗, ξ∗ such that

(6.4) ξ∗ ≤ ξ̂ ≤ ξ∗ and |ξ∗ − ξ̂| + |ξ∗ − ξ̂| ≪ 1,

then λ(ξ∗, ξ∗) < 0 and λ(ξ∗, ξ∗) < 0.
Denote for i, j = 1,2

λij := ∂2λ

∂ξi ∂ξj
(ξ̂, ξ̂).

From the fact that λ(ξ, ξ) ≡ 0 for all ξ, we differentiate once at ξ̂ and deduce
∂ξ1
λ + ∂ξ2

λ = 0 at (ξ1, ξ2) = (ξ̂, ξ̂). By (Cv), (ξ̂, ξ̂) is a critical point of λ.
Differentiate again, and we have λ11 + 2λ12 + λ22 = 0. Based on these facts, we

may Taylor expand λ near (ξ̂, ξ̂) as

(6.5) λ(ξ1, ξ2) =
ξ1 − ξ2

2
[λ11(ξ1 − ξ̂)− λ22(ξ2 − ξ̂)+ o(|ξ1 − ξ̂| + |ξ2 − ξ̂|)].

Also, the second condition in (Cv) says that λ12 + λ22 > 0. Together with Defini-
tion 6.1, we deduce that

(6.6) λ22 < 0 and λ11 = −2(λ12 + λ22)+ λ22 < λ22 < 0.
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Therefore, for ξ∗, ξ∗ satisfying (6.4), we have

λ(ξ∗, ξ∗)

= ξ
∗ − ξ∗

2
[λ11(ξ

∗ − ξ̂)− λ22(ξ∗ − ξ̂)+ o(|ξ∗ − ξ̂| + |ξ∗ − ξ̂|)]

= −|ξ
∗ − ξ∗|

2

[
|λ11| |ξ∗ − ξ̂| + |λ22| |ξ∗ − ξ̂| + o(|ξ∗ − ξ̂| + |ξ∗ − ξ̂|)

]

< 0.

Similarly, one can show that λ(ξ∗, ξ∗) < 0 as well. Thus, one can apply Theo-
rem 6.2 to obtain the desired conclusion. ❐

Next, we prove that evolutionarily stable dimorphism can occur even if the

branching point ξ̂ is not contained in the interval I.

Corollary 6.7. Under the assumptions of Theorem 6.2, there exist ξ∗ > ξ∗ > ξ̂,
so that if we choose I = (ξ∗, ξ∗), then the conclusion of Theorem 6.2 holds.

Proof. It remains to choose ξ∗ > ξ∗ > ξ̂ so that (6.1) holds. Note that
by (6.6),

λ11

λ22
= 2(λ12 + λ22)− λ22

−λ22
> 1 -⇒ arctan

λ11

λ22
∈
(
π

4
,
π

2

)
.

So, we may choose τ ∈ (arctan(λ11/λ22, π/2), and choose

(ξ∗, ξ∗) := (ξ̂ + r cosτ, ξ̂ + r sinτ).

Then, ξ∗ > ξ∗ > ξ̂, and by (6.5),

λ(ξ∗, ξ∗) =
r(cosτ − sinτ)

2
· (λ11r cosτ − λ22r sinτ + o(r))

= −λ22r
2(sinτ − cosτ) cosτ

2

(
λ11

λ22
− tanτ + o(1)

)
< 0

and

λ(ξ∗, ξ∗) =
r(sinτ − cosτ)

2
· (λ11r sinτ − λ22r cosτ + o(r))

<
r(sinτ − cosτ)

2
· (λ11r cosτ − λ22r cosτ + o(r))

= r
2 cosτ(sinτ − cosτ)

2
(λ11 − λ22 + o(1))

= r
2 cosτ(sinτ − cosτ)

2
[−2(λ12 + λ22)+ o(1)] < 0

for r ≪ 1, where we have used λ11 + 2λ12 + λ22 = 0 for the last equality, and
λ12 + λ22 > 0 (from (Cv)) for the last inequality. ❐
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7. EXAMPLE 1: EVOLUTION OF ADVECTION

In this section, we apply our results to the case µ ≡ µ0 for some positive constant
µ0, α(ξ) = ξ and I0 = R+:





∇x · (µ0∇xu− ξu∇xm)+ ε2uξξ +u(r(x)− û) = 0 in D × I,
µ0 ∂nu− ξu∂nm = 0 on ∂D × I,
u = 0 on D × ∂I.

Then, the invasion exponent λ(ξ1, ξ2) is the principal eigenvalue of

{
∇x · (µ0∇xφ− ξ2φ∇xm)+ (r(x)− θµ0,ξ1

)+ λφ = 0 in D,

µ0 ∂nφ− ξ2φ∂nm = 0 on ∂D.
(7.1)

Theorem 7.1 ([45]). Suppose that r(x) =m(x), and D ⊂ RN is convex with
diameter d and d‖∇x logm‖L∞(D) ≤ Λ1, where Λ1 ≈ 0.814 is the unique positive
root of the function t ֏ 4t + e−t + 2 log t − 1 − 2 logπ . Then, for each µ0 > 0

sufficiently small, there exists a local CSS ξ̂ > 0 with respect to the selection gradient
λ given by the principal eigenvalue of (7.1).

Proof. From [45, Theorem 2.2], we verify (Cv). Also, (5.1) follows from
Theorem 2.5 of [45]. ❐

8. EXAMPLE 2: EVOLUTION OF DIFFUSION RATE

In this section, we apply our results to the case µ(ξ) = ξ, α(ξ) = α0 for some
positive constant α0, and I0 = R+:





∇x · (ξ∇xu−α0u∇xm)+ ε2uξξ +u(r(x)− û) = 0 in D × I,
ξ ∂nu−α0u∂nm = 0 on ∂D × I,
u = 0 on D × ∂I.

(8.1)

The invasion exponent λ(ξ1, ξ2) is the principal eigenvalue of

{
∇x · (ξ2∇xφ−α0φ∇xm)+ (r(x)− θξ1,α0

)+ λφ = 0 in D,

ξ2 ∂nφ−α0φ∂nm = 0 on ∂D.
(8.2)

Theorem 8.1 ([46]). Let r(x) = m(x), D ⊂ RN be convex with diameter d
and d‖∇x logm‖L∞(D) ≤ Λ2, where Λ2 ≈ 0.615 is the unique positive root of the
function

t ֏
t2

π2
− e−4t

(
2t

2t − 1
− 1

)
.

Then, for each positive small α0, there exists a local CSS ξ̂ > 0 with respect to the
selection gradient λ given by the principal eigenvalue of (8.2).
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Theorem 8.2 ([48]). Suppose Ω = (0, L),m(x) = x, r , rx > 0 in [0, L], and

(logr)x(x) < 2(log r)x(y) for all x,y ∈ [0, L].

(i) If (logr)x is decreasing and non-constant, then for each small α0 > 0, there

exists a local ESS ξ̂ > 0 with respect to the selection gradient λ given by the
principal eigenvalue of (8.2).

(ii) If (log r)x is increasing and non-constant, then for all small α0 > 0, there

exists a branching point ξ̂ > 0 with respect to the selection gradient λ given
by the principal eigenvalue of (8.2).

Proof. Assertion (i) follows from [48, Corollary 6.6 (i)]. Assertion (ii) follows
from the proof of Theorem 6.5: specifically, equation (57) and the sentence that
follows. ❐

Remark 8.3. Although m(x) = x does not satisfy the requirement (M) that
∂nm ≤ 0 on ∂D, we may approximate m(x) by m̃(x) ∈ C∞(D̄) in the C(D̄)
topology, and notice that λ(ξ1, ξ2) is defined by the variational formula

λ(ξ1, ξ2) = inf
φ∈H1(D)\{0}

∫

D
eα0m/ξ2[ξ2|∇xφ|2 + (θξ1,α0

− r(x))φ2]dx
∫

D
eα0m/ξ2φ2

dx
,

which implies that the mapping T : C(D̄)→ C∞(Ī0× Ī0) given bym(·)֏ λ(·, ·)
is smooth. Hence, if for some α0, m(x) = x and r(x), we have a branching

point ξ̂, then we may find a smooth m̃(x) ≈ x in the topology C(D̄) so that

∂m̃/∂n ≤ 0 on ∂D for which there is a branching point ξ̂′ ≈ ξ̂.

9. NUMERICAL RESULTS

In order to illustrate Theorem 8.2, we present some numerical results of the corre-
sponding time-dependent system of (8.1) in one-dimensional case withm(x) = x
and α0 = 1 on D × I = (0,1) × (0.5,1.5), specifically, the case related to Theo-
rem 8.2:

(9.1)





ut = (ξux −u)x + ε2uξξ

+ u(r(x)− û) for x ∈ (0,1), ξ ∈ (0.5,1.5), t > 0,

ξux −u = 0 on x = 0,1, t > 0,

u = 0 on ξ = 0.5,1.5, t > 0.

Here, we choose r(x) = e(1−a)x+ax2
and ε = 10−3. First, we take initial

conditions in the form of one Dirac mass on the phenotypic space, and investigate
their evolution for a = ± 1

4 . We use the second-order finite difference schemes to
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FIGURE 9.1. Contour plot of
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u(x, ξ, t)dx as a function of ξ

and time (log(time) for vertical axis) for a = 1
4 (left) and a = − 1

4
(right), with ε = 10−3.
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discretize [ξ,x] domain, and use the adaptive backward Euler method to solve
the time-dependent system (9.1) numerically. We take 50× 50 uniform grids on
both x and ξ directions, and the final time is 105.

By Theorem 8.2, there is an ESS ξ̂ when a ∈ (− 1
3 ,0), so that Theorem 1.3

predicts the existence of a positive steady state concentrating at ξ = ξ̂ (see the
right picture of Figure 9.1).

On the other hand, there is a branching point when a ∈ (0, 1
3), so that The-

orem 1.4 applies to predict the existence of steady states with two Dirac masses,
respectively. This is illustrated by the left picture of Figure 9.1. Note that the in-
terval I = (0.5,1.5) may not need to be small, as seen from the numerical results.

Next, we take initial conditions in the form of two Dirac masses on the phe-
notypic space, and investigate their evolution for a = ± 1

4 . The simulation results
are illustrated by Figure 9.2.

In addition, we also explore the steady state solution of (9.1) with different
values of a. Figure 9.3 shows that the one Dirac mass becomes two Dirac masses,

as a varies from − 1
4 to 1

4 .

APPENDIX A. A LIOUVILLE-TYPE RESULT

In this chapter we prove a Liouville-Type result in cylinder domains. Our proof is
inspired by arguments in [58].

Proposition A.1. Let ϕ ∈ C2(D̄) be strictly positive on D̄ and h ∈ C(D̄),
where D is a bounded smooth domain in RN . Suppose W(x,y) ∈ C2(D̄ × R) is a
non-trivial, non-negative solution of





−ϕ−2(x)∇x · (ϕ2(x)∇xW)
− ∂2

yW + h(x)W = 0 for x ∈ D, y ∈ R,
∂nW = 0 for x ∈ ∂D, y ∈ R.

Let (σ1,φ1) be the principal eigenpair of

{
−ϕ−2(x)∇x · (ϕ2(x)∇xφ)+ h(x)φ = σφ in D,

∂nφ = 0 on ∂D.
(A.1)

Then, σ1 ≥ 0 and for some C1, C2 ≥ 0,

W(x,y) = (C1e
√
σ1y + C2e

−√σ1y)φ1(x).

Remark A.2. For the convenience of the readers, we supply some basic facts
concerning the eigenpairs {(σk,φk)}∞k=1 of (A.1): it can be arranged so that

(i) σk ∈ R for all k such that σ1 < σ2 ≤ σ3 ≤ · · · and σk →∞ as k→∞.

(ii)
∫

D
φiφjϕ

2 dx = δij.
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(iii) σ1 is a simple eigenvalue and the corresponding eigenfunctionφ1 is strictly
positive in D̄.

(iv) σ1 is the unique eigenvalue with a non-negative eigenfunction; that is,φk
changes sign on D for all k ≥ 2.

(See, for example, [32, Section 6.5] or Chapters 28 and 29 of [50].)

A special case of Proposition A.1 arises when σ1 = 0.

Corollary A.3. Let ϕ ∈ C2(D̄) be strictly positive on D̄, where D is a bounded
smooth domain in RN . Suppose W(x,y) ∈ C2(D̄ ×R) is a non-negative solution of

{
ϕ−2(x)∇x · (ϕ2(x)∇xW)+ ∂2

yW = 0 for x ∈ D, y ∈ R,
∂nW = 0 for x ∈ ∂D, y ∈ R.

Then, W(x,y) is a constant.

Before we prove Proposition A.1, we establish the following elementary lemma.

Lemma A.4. Let γk, 1 ≤ k ≤ k0 be given positive constants, and ak, bk,
1 ≤ k ≤ k0 be given real numbers; then, the function f : R → R defined by

f (y) :=
k0∑

k=1

(ak cos(γky)+ bk sin(γky))

has at least one real root.

Proof. Let

F(y) :=
k0∑

k=1

(
ak

γk
sin(γky)−

bk

γk
cos(γky)

)
.

If F has at least one critical point, then we are done, since f = F ′. Suppose not;
then, F is strictly monotone, and since t →∞,

t−1
∫ t

0
F(y)dy → F(+∞) and t−1

∫ 0

−t
F(y)dy → F(−∞).

However, by properties of trigonometric polynomials, we also have

t−1
∫ t

0
F(y)dy → 0 and t−1

∫ 0

−t
F(y)dy → 0.

Hence, F(−∞) = F(+∞) = 0 and F ≡ 0. This contradicts the assumption that F
has no critical points. ❐

Proof of Proposition A.1. Since W is non-trivial and non-negative, the strong
maximum principle implies that W(x,y) > 0 for all x ∈ D, y ∈ R.
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Let (σk,φk) be the k-th eigenpair of (A.1) counting multiplicities, so that
σ1 < σ2 ≤ σ3 ≤ · · · . Then, by defining

ck(y) :=
∫

D
W(x′, y)φk(x′)ϕ2(x′)dx′,

we have W(x,y) = ∑∞
k=1 ck(y)φk(x), and that (∂2/∂y2)ck = σkck. Hence,

for each k, there exist some Ak, Bk such that, for y ∈ R,

ck(y) =





Ake
√
σky + Bke−

√
σky if σk > 0,

Ak + Bky if σk = 0,

Ak cos(
√−σky)+ Bk sin(

√−σky) if σk < 0.

Now, by applying the Harnack inequality to W(x,y) on D̄× [y0−2, y0+2] for
any y0 ∈ R, there exists some constant C independent of y0 ∈ R such that

sup
x∈D, |y−y0|≤1

W ≤ C inf
x∈D, |y−y0|≤1

W.

Hence, there exist c1, c2 > 0 such that 0 ≤ W(x,y) ≤ c1e
c2|y| for all x ∈ D and

y ∈ R. This implies that

|ck(y)| =
∣∣∣∣
∫

D
W(x,y)φk(x)ϕ

2(x)dx

∣∣∣∣ ≤ c′1ec2|y| for y ∈ R.

As σk → ∞ when k → ∞, it is necessarily the case that Ak = Bk = 0 for all
sufficiently large k. We may henceforth choose the largest positive integer k0 such
that at least one of Ak0 , Bk0 is non-zero; that is,

(A.2) W(x,y) =
k0∑

k=1

ck(y)φk(x).

Claim A.5. If k0 > 1, then σk0 ≤ 0.

Proof. Suppose not; let σk0 > 0. Then, the term with the highest growth in y
is multiplied to φk(x), a function of x that changes sign. This is a contradiction.
Hence, σk0 ≤ 0. ❐

Claim A.6. If k0 > 1, then σk0 < 0.

Proof. Suppose to the contrary that k0 > 1, and there is 1 < k̃ ≤ k0 (k̃ > 1, as
the principal eigenvalue must be simple) such that σk̃=σk̃+1=· · · = σk0=0 and

σk̃−1 < 0; that is, W(y) contains the terms
∑k0

k=k̃Akφk(x) + y
∑k0

k=k̃ Bkφk(x),
and at least one of Ak0 , Bk0 is non-zero.



914 WENRUI HAO, KING-YEUNG LAM & YUAN LOU

We claim that Bk̃ = · · · = Bk0 = 0. Now, every term of (A.2) is bounded

from below, except possibly the term y
∑k0

k=k̃ Bkφk(x). Suppose not; then, by

linear independence of {φk}k0

k=k̃,
∑k0

k=k̃ Bkφk(x) is non-trivial, and changes sign

(since it is orthogonal in L2(D) to the positive function ϕ2φ1). This implies that
for large y , W(x,y) changes sign in x. This is a contradiction, so we conclude
that Bk̃ = · · · = Bk0 = 0 and Ak0 ≠ 0.

Next, observe that

t−1
∫ t

−t
W(x,y)dy →

k0∑

k=k̃
Akφk(x) as t →∞.

Again, we notice that
∑k0

k=k̃Akφk(x) changes sign, which contradicts the non-
negativity of W . This proves Claim A.6. ❐

Claim A.7. k0 = 1.

Proof. Suppose not; then, k0 > 1 and for each 1 ≤ k ≤ k0, σk ≤ σk0 < 0. For
x0 ∈ D, W(x0, y) is a linear combination of trigonometric functions, so we can
invoke Lemma A.4 to find some y0 such that W(x0, y0) = 0. This is impossible,
as W > 0 for all x ∈ D and y ∈ R. Hence, Claim A.7 holds. ❐

As k0 = 1, we must have σ1 ≥ 0, since otherwise

W(x,y) = (A1 cos(
√−σ1y)+ B1 sin(

√−σ1y))φ1(x)

changes sign. Hence, W(x,y) = (A1e
√
σ1y + B1e

−√σ1y)φ1(x), and we must
have A1, B1 ≥ 0. This completes the proof of Proposition A.1. ❐

APPENDIX B. LOCALIZATION

Lemma B.1. Let I = (ξ∗, ξ∗) ⊂ R
+ be a bounded open interval. Suppose

(along a sequence (ε, I) = (εk, Ik)) the following:

(i) ε/|I| → 0.
(ii) For some ξ̂ > 0, I → {ξ̂} in the Hausdorff sense.

Then, any positive solution uε of (2.1) satisfies

ûε(x) ⇀ θξ̂(x)

weakly in H1(D) and strongly in C(D̄).

Proof. Define δ1 := |I|. By the proof of Lemma 2.3, ‖ûε‖Cγ(D̄) is bounded
uniformly for small ε and δ1. It follows that ûε is precompact in C(D̄). Next, we
show that it is also bounded, and hence weakly precompact, in H1(D).



Concentration Phenomena in an Integro-PDE Model 915

Claim B.2. There exists some constant C > 0 independent of ε and I such that
‖ûε‖H1(D) ≤ C.

Proof. In order to see the claim, divide (2.1) by µ = µ(ξ) and integrate in
ξ ∈ (ξ∗, ξ∗) to obtain (2.10). Multiply (2.10) by ûε, and integrate by parts; we
have

∫

D
|∇xûε|2 dx ≤

∫

D
[q1∇xm · ∇xûε + (r − ûε)q2ûε + ε2q3ûε]dx

≤ 1
2

∫

D
|∇xûε|2 dx +

∫

D
|q1|2 |∇xm|2 dx + C,

where q1, q2, q3 are given in (2.11), such that

‖qi‖L∞(D) ≤ C sup
D

ûε ≤ C′ for i = 1,2,3.

Note that we have used in the first inequality ∂nûε = q1 ∂nm (by (M)) together

with the fact that [∂ξuε/µ]
ξ∗

ξ=ξ∗ ≤ 0; and the uniform boundedness of supD ûε
(Lemma 2.1) throughout. This proves Claim B.2. ❐

Hence, by passing to a sequence, there exists û0 ∈ H1(D)∩Cγ(D̄) such that
ûε → û0 weakly in H1(D) and strongly in C(D̄).

Claim B.3. û0 is a weak lower solution to (1.2) with ξ = ξ̂. In particular,

û0 ≤ θξ̂ , where θ
ξ̂

is the unique positive solution to (1.2) when ξ = ξ̂.

Proof. We pass to the limit by using the weak formulation. Multiply (2.10)
by a non-negative test function ρ(x) ∈ C∞(D̄), and integrate by parts; we have

∫

D
∇xρ · (∇xûε − q1∇xm)dx −

∫

D
ρ[(r − û)q2 + ε2q3]dx(B.1)

= ε2
∫

D
ρq4 dx ≤ 0.

Let δ1, ε/δ1 → 0 and use the boundedness of supD ûε; we have (recall the defini-
tion of qi in (2.11))

q1(x)→
α0

µ0
û0, q2 →

û0

µ0
, q3 → ∂2

ξ

(
1
µ

)∣∣∣∣
ξ=ξ̂
û0,

where α0 = α(ξ̂), µ0 = µ(ξ̂). Thus, (B.1) becomes

∫

D

[
∇xρ ·

(
∇xû0 −

α0

µ0
û0∇xm

)
− ρû0(r − û0)

]
dx ≤ 0.

Since ρ is an arbitrary non-negative test function, this implies that û is a weak
lower solution of (1.2) (see, e.g., [30]). This proves the claim. ❐
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Next, define σ1 to be the principal eigenvalue of

(B.2)

{
−µ0∆xφ− α0∇xm · ∇xφ+ (û0 − r)φ = σφ in D,

∂nφ = 0 on ∂D.

Claim B.4. Let σ1 be the principal eigenvalue of (B.2); then, σ1 ≤ 0 and
σ1 = 0 if and only if û0 = θξ̂ almost everywhere, where θ

ξ̂
is the unique positive

solution of (1.2) with (µ(ξ),α(ξ)) = (µ0, α0).

Proof. To establish the assertion, we observe that the principal eigenvalue of




−µ0∆xφ− α0∇xm · ∇xφ+ (θξ̂ − r)φ = σφ in D,

∂nφ = 0 on ∂D

is zero, as a positive eigenfunction is given by e−α0m/µ0θ
ξ̂
. Recall that û0 ≤ θξ̂ . It

follows by the variational characterization

σ1 = inf
φ∈H1(D)\{0}

∫

D
eα0m/µ0[µ0|∇xφ|2 + (û0 − r)φ2]dx

∫

D
eα0m/µ0φ2

dx

that σ1 ≤ 0 and equality holds if and only if û0 = θξ̂ almost everywhere. The

claim is proved. ❐

Next, denote the midpoint of I by ξ′, and define

ṽε(x, ξ) := e−αm/µuε(x, ξ), Wε(x, τ) := ṽε(x, ξ
′ + ετ)

sup
x∈D

ṽε(x, ξ
′)

;

then, Wε(x, τ) is a positive solution of





µ∆xWε + α∇xm · ∇xWε
+ ∂2

τWε + 2ε ∂ξ

(
α

µ

)
m∂τWε

+ ε2


∂2
ξ

(
α

µ

)
m+

(
∂ξ
α

µ

)2

m2


Wε

+ Wε(r − ûε) = 0 in D × (−δ1/(2ε), δ1/(2ε)),

∂nWε = 0 on ∂D × (−δ1/(2ε), δ1/(2ε)),

sup
D

Wε(x,0) = 1,

where µ = µ(ξ′ + ετ) and α = α(ξ′ + ετ) remain bounded.
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By applying the Harnack inequality, for each M > 1, there exists CM (in-
dependent of small ε) such that supD×[−M,M]Wε ≤ CM . Hence, we may apply
Lp estimates to extract a sequence of δ1, ε/δ1 → 0 so that Wε → W weakly in

W
2,p
loc (D̄×R) and strongly in C1

loc(D̄×R), where W(x,τ) is a non-negative, non-
trivial solution of





µ0∆xW +α0∇xm · ∇xW + ∂2
τW + (r − û0)W = 0 in D ×R,

∂nW = 0 on ∂D ×R,
sup
D

W(x,0) = 1.

By Proposition A.1 (taking ϕ2 = exp(α0m/µ0) and h = û− r ), we deduce that
the principal eigenvalue σ1 of (B.2) is non-negative. Hence, by Claim B.4, we
must have σ1 = 0, and that û0 = θξ̂ almost everywhere. By the uniqueness of the

limit û0, we deduce that the convergence actually holds for the full family of ûε
as δ1, ε/δ1 → 0. This proves Lemma B.1. ❐

APPENDIX C. AN EXTENSION LEMMA

In this section we prove an extension lemma that is used in the proof of Lemma 2.3.
Our arguments are adapted from [35].

Proposition C.1. Let R, ε be given positive constants,

B′ := {x′ ∈ Rn−1 : |x′| < R},
and

B+ := {(x′, xn) ∈ Rn : |x′| < R + 2ε, 0 < xn < 2ε}.

Then, there exists a linear operator T : C∞(B′)→ C∞0 (B+), Tg = G such that

G(x′,0) = 0 and ∂xnG(x
′,0) = g(x′) for x′ ∈ B′.

Moreover, for each r ≥ 1 and 1 ≤ p < nr/(n− 1), there exists C > 0 such that

‖G‖W 1,p(B+) ≤ C‖g‖Lr (B′).

Proof. Fix non-negative test functions ψ : C∞0 ([0,∞)) and ϕ : C∞(Rn−1)

such that ψ(0) = 1, ψ′(0) = 0,

suppϕ ⊂ {x′ ∈ Rn−1 : |x′| < 1},
∫

Rn−1
ϕ(y ′)dy ′ = 1.

Define for x′ ∈ Rn−1, xn ≥ 0

G(x′, xn) := ψ(xn)xn
∫

Rn−1
g(x′ − xny ′)ϕ(y ′)dy ′.
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It is easy to see that G satisfies the desired boundary conditions when xn = 0. By
rewriting G as

G(x′, xn) = ψ(xn)|xn|2−n
∫

Rn−1
g(y ′)ϕ

(
x′ −y ′
xn

)
dy ′,

we may put the derivatives onto ϕ and get

∂xjG(x
′, xn) = ψ(xn)

∫

Rn−1
g(x′ − xny ′)ϕj(y ′)dy ′

+ δjnψ′(xn)xn
∫

Rn−1
g(x′ − xny ′)ϕ(y ′)dy ′,

where

ϕj(y
′) = ∂yjϕ(y ′) if j < n,

and

ϕn(y
′) = (2−n)ϕ(y ′)+

n−1∑

j=1

∂yjϕ(y
′)yj .

The proposition thus follows from the following lemma.

Lemma C.2. Let ϕ̃ ∈ C∞0 (Rn−1) be a test function. For each r ≥ 1, and each
1 ≤ p < rn/(n− 1), there exists C > 0 such that

G̃(x′, xn) =
∫

Rn−1
g̃(x′ − xny ′)ϕ̃(y ′)dy ′;

then, ∫

Rn−1
|G̃(x′, xn)|p dx′ ≤ Cx(1−n)(p/r−1)

n

∥∥g̃
∥∥p
Lr (B′).

Proof. Write

|G̃(x′, xn)| =
∣∣∣∣x1−n
n

∫
ϕ̃

(
x′ −y ′
xn

)
g̃(y ′)dy ′

∣∣∣∣

≤ x1−n
n

∫
ϕ̃1−1/r

(
x′ −y ′
xn

)
ϕ̃1/r

(
x′ −y ′
xn

)
|g̃(y ′)|dy ′

≤
(
x1−n
n

∫
ϕ̃

(
x′ −y ′
xn

)
dy ′

)1−1/r(
x1−n
n

∫
ϕ̃

(
x′ − y ′
xn

)
|g̃(y ′)|r dy ′

)1/r

≤ C
(
x1−n
n

∫
|g̃(y ′)|r dy ′

)1/r−1/p(
x1−n
n

∫
ϕ̃

(
x′ −y ′
xn

)
|g̃(y ′)|r dy ′

)1/p

≤ C
(
x1−n
n

∫
|g̃(y ′)|r dy ′

)1/r−1/p(∫
ϕ̃(y ′)|g̃(x′ − xny ′)|r dy ′

)1/p

,
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where we use
∫
ϕ̃(y ′)dy ′ = 1 for the second inequality, and the L∞-boundedness

of ϕ̃ in the third inequality. Note that, by using Fubini’s theorem,
∫∫
ϕ̃(y ′)|g̃(x′ − xny ′)|r dy ′ dx′

=
∫
ϕ̃(y ′)

[∫
|g̃(x′ − xny ′)|r dx′

]
dy ′ ≤ C

∥∥g̃
∥∥r
Lr .

Hence, we may raise both sides of the above inequality to the p-th power, and
integrate in x′ to derive the result. ❐

By Lemma C.2, we see that for each 1 ≤ j ≤ n,
∫

Rn−1
|∂xjG(x′, xn)|p dx′ ≤ C(|ψ′(xn)xn| +ψ(xn))px

(1−n)(p/r−1)
n

∥∥g
∥∥q
Lr (B′).

By our choice of p < rn/(n − 1), the exponent of xn is greater than −1. Inte-
grating with respect to xn yields the desired result. ❐

The next result follows from Proposition C.1 via a partition of unity argu-
ment.

Proposition C.3. There exists a linear operator T :C∞(∂Ω) → C∞(Ω̄), Tg=G
such that G|∂Ω = 0, ∂ν̄G|∂Ω = g (ν̄ is the outward unit normal vector on ∂Ω), and
for each r ≥ 1, 1 ≤ p < nr/(n− 1) there exists C > 0 such that

‖G‖W 1,p(Ω) ≤ C‖g‖Lr (∂Ω).

Proof. Now, there exists a locally finite open cover {Uk} of ∂Ω, and corre-
sponding C2-smooth transformation

Ψk : B = {y ∈ Rn : |y| < 1} → Uk
such that Uk∩∂Ω = Ψk(B′)with B′={y ∈ B : yn=0}, and, for each x ∈ ∂Ω∩Uk
and smooth function ϕ on Ω̄,

∂ν̄ϕ(x) = aijDiϕ(x) = [∂xn(ϕ ◦ Ψk)] ◦ Ψ−1
k (x);

that is, we may straighten the boundary so that the boundary condition becomes a
zero Neumann boundary condition. Take a partition of unity {ηk} subordinated
to {Uk}; then, apply Proposition C.1 to (ηk ◦ Ψk)(g ◦ Ψk). By Proposition C.1,
there exists G̃k ∈ C∞0 (Ψ−1

k [Uk ∩ Ω̄]) satisfying G̃k = 0 and

∂ynG̃k = (ηk ◦ Ψk)(g ◦ Ψk) on Ψ−1
k [Uk ∩ ∂Ω].

Let Gk(x) := (G̃k ◦ Ψ−1)(x); we get

Gk(x) = 0 and ∂ν̄Gk(x) = aij ∂xiG(x) = ηk(x)g(x) on Uk ∩ ∂Ω.

Finally, we set G(x) :=∑kGk(x). ❐
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