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Résumé
Cette thèse est dédiée à l’étude des propriétés de propagation de différents systèmes de réac-

tion – diffusion issus de la dynamique des populations.
Dans la première partie, on étudie la limite de forte compétition de systèmes compétitifs diffu-

sifs à deux espèces. À l’aide de la ségrégation spatiale, on détermine le signe de la vitesse de l’onde
progressive bistable. La généralisation aux ondes pulsatoires bistables en milieu spatialement pé-
riodique est ensuite envisagée afin d’étudier le rôle de l’hétérogénéité spatiale. Après avoir donné
une condition suffisante pour l’existence de telles ondes ainsi qu’une condition suffisante pour
l’existence d’états stationnaires stables susceptibles au contraire de bloquer la propagation, on
montre que quand une famille d’ondes pulsatoires fortement compétitives existe, on peut établir
un résultat très semblable à celui obtenu en milieu homogène.
Dans la seconde partie, des systèmes de type KPP à un nombre arbitraire d’espèces sont

considérés. On étudie l’existence d’états stationnaires et d’ondes progressives, les propriétés qua-
litatives de ces solutions ainsi que la vitesse asymptotique de propagation de certaines solutions
du problème de Cauchy. Cela résout notamment plusieurs questions ouvertes sur les systèmes de
mutation – compétition – diffusion, qui constituent le prototype de système de type KPP.
Dans la troisième et dernière partie, on revient aux systèmes compétitifs diffusifs à deux

espèces. Considérant cette fois-ci le cas monostable, on étudie les vitesses asymptotiques de
propagation de certaines solutions du problème de Cauchy et, ce faisant, on montre l’existence
de terrasses de propagation décrivant l’invasion d’un territoire inhabité par un compétiteur faible
mais rapide suivie de l’invasion de ce territoire par un compétiteur fort mais lent.
Mots clés : systèmes de réaction – diffusion, phénomènes de propagation, dynamique des popu-

lations.

Abstract
This thesis is dedicated to the study of propagation properties of various reaction–diffusion

systems coming from population dynamics.
In the first part, we study the strong competition limit of competition–diffusion systems with

two species. Thanks to the spatial segregation, we determine the sign of the speed of the bistable
traveling wave. The generalization to bistable pulsating fronts in spatially periodic media is then
considered in order to study the role of spatial heterogeneity. We find a condition sufficient
for the existence of such fronts as well as a condition sufficient for the existence of stable steady
states which might on the contrary block the propagation. Then we show that whenever a family
of strongly competing pulsating fronts exists, we can establish a result very similar to the one
obtained in homogeneous media.
In the second part, systems of KPP type with any number of species are considered. We study

the existence of steady states and traveling waves, the qualitative properties of these solutions as
well as the asymptotic speed of spreading of certain solutions of the Cauchy problem. This settles
several open questions on the prototypical KPP systems that are mutation–competition–diffusion
systems.
In the third part, we go back to competition–diffusion systems with two species. Considering

this time the monostable case, we study the asymptotic speeds of spreading of certain solutions
of the Cauchy problem. By so doing, we show the existence of propagating terraces describing
the invasion of an uninhabited territory by a weak but fast competitor followed by the invasion
by a strong but slow competitor.
Keywords: reaction–diffusion systems, propagation phenomena, population dynamics.
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Introduction

Cadre général, état de l’art et objectifs

Définition mathématique des systèmes de réaction – diffusion
Un système de réaction – diffusion tel qu’entendu dans cette thèse est un système d’équations

aux dérivées partielles (EDP dans la suite, PDE en anglais) de la forme

∂u
∂t
−D∆xu = f (u, t, x) ,

où le vecteur colonne u est une fonction d’une variable temporelle réelle t ∈ R et d’une va-
riable spatiale euclidienne x ∈ Rn, ∂

∂t désigne la dérivée partielle par rapport à t (on privilégiera
l’écriture compacte ∂t dans la suite), ∆x désigne le Laplacien spatial, c’est-à-dire la somme des
dérivées partielles secondes ∂2

∂x2
i
avec x = (xi)i∈{1,. . . ,n} (on privilégiera l’écriture compacte ∆

dans la suite), D est une matrice diagonale à coefficients diagonaux strictement positifs appe-
lée matrice de diffusion et f est une fonction possiblement non-linéaire en u appelée terme de
réaction. La matrice D étant diagonale, l’éventuel couplage entre les équations est réalisé par
le terme de réaction et n’implique aucune dérivée partielle de u : le système est dit faiblement
couplé. Par ailleurs, le système peut être vu comme un système d’équations de la chaleur avec
second membre et est donc dit parabolique.
Plus généralement, le système peut ne gouverner l’évolution de u qu’à partir d’un certain

temps initial t0 ∈ R, que jusqu’à un certain temps final T ∈ R ou encore que dans un certain
domaine spatial Ω ⊂ Rn. Dans ce cas, l’ensemble de définition de (t, x) 7→ u (t, x) est restreint
en conséquence et l’on adjoint au système de réaction – diffusion des conditions initiales, finales
ou de bord. En particulier, un problème formé d’un système de réaction – diffusion posé dans
(t0,+∞)×Rn accompagné d’une condition initiale est appelé problème de Cauchy. Les solutions
définies sur R× Rn sont appelées solutions entières.

Dans le cas où u est en fait une quantité scalaire, on obtient une unique équation de réaction –
diffusion de la forme

∂tu− d∆u = f (u, t, x) .

Dans le cas où u et f ne dépendent pas de x, on obtient un système d’équations différentielles
ordinaires (EDO dans la suite, ODE en anglais) de la forme

u′ = f (u, t) .

Dans le cas où u et f ne dépendent pas de t, on obtient un système d’EDP elliptiques faiblement
couplé de la forme

−D∆u = f (u, x) .
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Si f ne dépend que de sa variable u, le système est dit posé en milieu homogène. Dans le
cas contraire, le système est dit posé en milieu hétérogène (spatialement ou temporellement).
De la même manière, un système pourra être posé en milieu (spatialement ou temporellement)
périodique, aléatoire, et ainsi de suite. Un milieu homogène est un cas (très) particulier de milieu
périodique ou aléatoire.

Les systèmes de réaction – diffusion en tant que modèles de dynamique des
populations
La branche de l’écologie, et donc de la biologie, qui s’intéresse à la fluctuation dans le temps

du nombre d’individus au sein d’une population d’êtres vivants non-humains est la dynamique
des populations non-humaines (ci-après simplement dynamique des populations ; la dynamique
des populations humaines, qui doit prendre en compte des aspects socio-économiques, n’est plus
à proprement parler de la biologie et n’est pas l’objet de cette thèse). De par son caractère
quantitatif, ses origines historiques (lire à ce sujet l’ouvrage de Bacaër [9]) et sa tendance à l’abs-
traction, il s’agit d’une des branches les plus mathématisées de la biologie. Deux grandes familles
de modèles mathématiques existent en dynamique des populations (et plus généralement en bio-
logie) : les modèles déterministes et les modèles stochastiques. Parmi les modèles déterministes,
on trouve de nombreux systèmes de réaction – diffusion.
Les systèmes de réaction – diffusion émergent en tant que modèles de dynamique des popu-

lations essentiellement de deux manières : soit à la suite des équations de réaction – diffusion
scalaires, soit à la suite des systèmes d’EDO. Dans le premier cas, il s’agit de prendre en compte
des couplages entre différentes populations, tandis que dans le second cas, il s’agit d’ajouter
une structure spatiale au problème et de prendre en compte la dispersion des individus. À titre
d’exemple et parce qu’il s’agit cependant d’exemples particulièrement importants pour la suite,
la modélisation sous-jacente à une équation de réaction – diffusion particulière, l’équation de
Fisher – Kolmogorov – Petrovsky – Piskunov (Fisher – KPP ou simplement KPP dans la suite),

∂tu−∆u = u (1− u) ,

ainsi que la modélisation sous-jacente à un système d’EDO particulier, le système de Lotka –
Volterra compétitif à deux espèces, {

u′ = u (1− u− av)
v′ = rv (1− v − bu) ,

où a, b et r sont des constantes strictement positives, vont maintenant être détaillées.
Les hypothèses suivantes sont communes aux deux modèles :
1. le nombre d’individus dans une population ainsi que les échelles spatiales et temporelles

sont suffisamment grands pour que le nombre d’individus, qui est par essence une quantité
discrète, soit correctement approché par une densité de population continue ;

2. les nouveaux-nés deviennent instantanément adultes ou, de manière équivalente, les nou-
veaux nés n’influencent pas la démographie et les individus ne sont comptés qu’à partir de
l’âge adulte (pas de structure en âge) ;

3. si la reproduction est sexuée, la distribution des mâles et des femelles est homogène, de
sorte qu’il suffit de connaitre la densité totale pour connaitre exactement la population
(pas de structure sexuée).

Pour aboutir à l’équation de Fisher – KPP, on se dote d’une unique densité de population u et
on suppose que :
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1. la population diffuse dans l’espace avec un taux d > 0, ou en d’autres termes le flux de po-
pulation est proportionnel au gradient de population avec un coefficient de proportionnalité
−d ;

2. en un point de l’espace donné, la partie de la variation de la densité de population ∂tu
u due

aux naissances et aux morts est logistique, c’est-à-dire a la forme r
(
1− u

K

)
avec r > 0 et

K > 0. Cette hypothèse implique la présupposition suivante, que les écologistes appellent
absence d’effet Allee : du fait de la compétition pour les ressources entre individus, le
taux de croissance de la population est une fonction strictement décroissante de la densité,
positive si et seulement si u ≤ K et maximale en u = 0 où elle vaut r. Par conséquent, les
constantes r et K sont respectivement appelées taux de croissance intrinsèque et capacité
de charge.

Figure 0.0.1 – Courbe de croissance logistique

Ces hypothèses conduisent à l’équation

∂tu− d∆u = r
(

1− u

K

)
u.

En posant les quantités adimensionnelles ũ = u
K , t̃ = rt et x̃ =

√
r
dx puis en se débarrassant des

~, on obtient bien l’équation de Fisher – KPP normalisée.
Pour aboutir au système de Lotka – Volterra compétitif, on se dote de deux densités de

population u et v et on suppose que :
1. en l’absence de l’autre densité, chaque densité croît de manière logistique ;
2. quand les deux densités sont présentes, du fait de la compétition interspécifique, on re-

tranche à chaque taux de croissance un terme supplémentaire positivement proportionnel
à la densité du compétiteur (autrement dit, chaque taux de croissance est désormais une
fonction affine strictement décroissante d’une certaine combinaison linéaire, à coefficients
strictement positifs, des deux densités).

Ces hypothèses conduisent au système :u
′ = r1u

(
1− u

K1
− v

L1

)
v′ = r2v

(
1− v

K2
− u

L2

) .
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En posant t̃ = r1t, ũ = u
K1

, a = K2
L1

, r = r2
r1
, ṽ = v

K2
et b = K1

L2
puis en se débarrassant des ~, on

obtient bien le système de Lotka – Volterra compétitif à deux espèces normalisé.
Toutes ces hypothèses faites à l’échelle de la densité de population, dite macroscopique, ont

également des interprétations à l’échelle des individus, dite microscopique. Pour plus de détails
sur les hypothèses microscopiques ainsi que l’histoire de la compétition entre modélisation ma-
croscopique et modélisation microscopique, lire par exemple l’ouvrage d’Israel [98]. Discuter le
bien-fondé de ces hypothèses est évidemment crucial lors de mises en application mais n’est pas
l’objet de cette thèse.
En couplant de manière compétitive deux équations de Fisher – KPP, ou encore en ajoutant

de la diffusion spatiale dans le système de Lotka – Volterra, on obtient finalement un premier
exemple de système de réaction – diffusion : le système de compétition – diffusion de Lotka –
Volterra à deux espèces, {

∂tu−∆u = u (1− u− av)
∂tv − d∆v = rv (1− v − bu) .

On précise d’ores et déjà qu’en autorisant a et b à changer de signe, on obtient deux autres
importants exemples de couplage : prédation (ab < 0) et mutualisme (a < 0, b < 0). Plus
généralement, un couplage est dit de Lotka – Volterra s’il a la forme u◦ (Cu) avec C une matrice
carrée et ◦ le produit composante par composante de deux vecteurs, dit produit de Hadamard.

On note également que, là où les motivations de Fisher [72] et de Kolmogorov, Petrovsky
et Piskunov [104] relevaient de la génétique des populations et plus précisément de problèmes
de compétition entre deux allèles, la dérivation purement démographique proposée ci-dessus in-
troduit directement l’équation de Fisher – KPP en tant qu’équation logistique diffusive. Cette
dérivation plus tardive est due à Skellam [134]. L’immense majorité des études récentes de l’équa-
tion de Fisher – KPP dans la littérature de mathématiques appliquées ou d’écologie est motivée
par le modèle de Skellam et non par le modèle génétique originel.

Réaction – diffusion et phénomènes de propagation
Une des principales raisons du succès des modèles de réaction – diffusion en dynamique des

populations est leur capacité à décrire des invasions.

Ondes progressives, méthodes EDO, méthodes EDP

S’intéresser à des invasions à vitesse et direction constante et en milieu homogène conduit
naturellement à s’intéresser aux solutions entières de la forme u : (t, x) 7→ ϕ (x · e− ct), avec
e ∈ Sn−1 une direction de propagation, c ∈ R une vitesse de propagation et ϕ un profil de
propagation. Les solutions de cette forme sont généralement appelées ondes progressives (ou plus
précisément ondes progressives planes quand on considère un milieu multidimensionnel pouvant
également accueillir des ondes progressives plus variées, comme les ondes progressives radiales
ou coniques).
Une telle onde progressive satisfait un système d’EDO de la forme

−Dϕ′′ − cϕ′ = f (ϕ) .

Grâce à cette observation, l’existence et les propriétés de telles solutions peuvent être traitées
avec des méthodes issues de la littérature sur les EDO (théorème de Cauchy – Lipschitz, méthode
de tir, variétés stables et instables, et ainsi de suite) ou avec des méthodes issues de la littérature
sur les EDP elliptiques (théorie de Schauder, calcul variationnel, principe du maximum et de
comparaison, inégalités de Harnack, et ainsi de suite).
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La littérature sur les ondes progressives peut donc être scindée en deux familles, selon le type
d’arguments (EDO ou EDP) utilisé. Le parti pris de cette thèse est d’utiliser autant que possible
des méthodes EDP afin de pouvoir généraliser les preuves à des milieux hétérogènes convenables
et afin également de pouvoir traiter dans la foulée les propriétés de propagation des problèmes
de Cauchy, qui elles ne peuvent être abordées qu’avec des arguments de type EDP.

Dimension du milieu

Lors d’études d’ondes progressives en milieu homogène, on peut supposer sans perte de gé-
néralité que le milieu est unidimensionnel et que e = +1, ce qui simplifie les notations et sera
donc systématiquement fait dans la suite. Dans ce cadre, l’unicité d’une onde progressive doit
être entendue comme unicité à rotation de e et à translation de ϕ près.
Évidemment, de telles simplifications ne peuvent être réalisées dans le cadre d’études de pro-

blèmes de Cauchy avec des données initiales non-unidimensionnelles, pour lesquelles sera donc
précisée la dimension du milieu.

Équations scalaires

Les recherches sur les invasions produites par des équations de réaction – diffusion ont débuté
en 1937. Les résultats fondateurs sont les théorèmes suivants.

Théorème. [104] La solution u d’un problème de Cauchy associé à l’équation de Fisher – KPP
unidimensionnelle avec donnée initiale bornée positive non-nulle à support compact satisfait

lim
t→+∞

sup
|x|>ct

u (t, x) = 0 pour toute vitesse c > 2,

lim
t→+∞

sup
|x|<ct

u (t, x) = 1 pour toute vitesse c < 2.

Les écologistes s’intéressent bel et bien à des invasions de population initialement confinées
dans l’espace, introduites à un endroit précis. En établissant qu’une telle invasion se déroule
asymptotiquement à vitesse constante, ce premier théorème montre que les solutions entières
intéressantes sont en effet les ondes progressives et conduit donc à un second théorème.

Définition. Une onde progressive de vitesse positive décrivant l’invasion de 0 par 1 pour l’équa-
tion de Fisher – KPP est une onde progressive dont le profil est strictement décroissant et a pour
limite en −∞ et +∞ 1 et 0 respectivement.

Théorème. [104] L’équation de Fisher – KPP admet une solution sous forme d’onde progressive
à vitesse c ≥ 0 décrivant l’invasion de 0 par 1 si et seulement si c ≥ 2. Cette solution est unique.

En retour, il est ensuite possible de démontrer le théorème suivant.

Théorème. [104] Soient u la solution du problème de Cauchy associé à l’équation de Fisher –
KPP unidimensionnelle avec donnée initiale 1]−∞,0[ et ϕ2 le profil de l’onde progressive de vitesse
2 pour cette même équation.
Alors il existe m : R→ R telle que, quand t→ +∞,

m (t) = o (t) ,

sup
x∈R
|u (t, x− 2t−m (t))− ϕ2 (x)| → 0.
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u(t, x) u(t+ 1, x)

c

x

u

1

0

Figure 0.0.2 – Une onde progressive pour l’équation de Fisher – KPP

Autrement dit, à une correction m (t) près, l’onde progressive de vitesse minimale correspond
bien au comportement en temps long de la solution du problème de Cauchy. Le développement
asymptotique de m (t) a après 1937 fait l’objet de nombreuses recherches, initiées par Bramson
[29, 30] avec des méthodes probabilistes. L’article récent de Hamel, Nolen, Roquejoffre et Ryzhik
[90] revient sur les résultats de Bramson avec des méthodes EDP et donne quelques références
bibliographiques.
Rappelant que les variables t et x sont adimensionnelles, on trouve en revenant aux variables

physiques que la vitesse 2 est remplacée par c? = 2
√
rd. Grâce à la simplicité inattendue de cette

formule, le modèle mathématique peut être confronté efficacement aux données empiriques.

Figure 0.0.3 – Graphiques issus de l’article de Skellam illustrant la propagation à vitesse
constante du rat musqué en Europe centrale et motivant l’utilisation de l’équa-
tion de Fisher – KPP pour la modélisation.

En particulier, cette formule ne dépend pas de la capacité de charge K. C’est une conséquence
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immédiate du fait que c? est linéairement déterminée : elle coïncide avec la vitesse minimale
d’existence de solutions positives non-nulles pour l’équation

−dϕ′′ − cϕ′ = rϕ,

qui n’est autre que l’équation satisfaite par le profil ϕ d’une onde progressive de vitesse c linéarisée
en 0. Cette équation, qui n’indique a priori que le comportement du profil là où la densité de
population est encore négligeable, détermine en fait complètement la vitesse c?.
Les travaux de 1937 ont inspiré par la suite une vaste littérature sur les équations de réaction –

diffusion et plus tard sur les systèmes de réaction – diffusion. En particulier, étant donné un
nouveau problème de réaction – diffusion, les théorèmes ci-dessus conduisent à systématiquement
poser la question d’existence d’ondes progressives ainsi que la question du lien entre la vitesse non-
linéaire et la vitesse linéaire. Sans s’engager dans une impossible revue exhaustive des résultats
existants à ce jour, on cite tout de même un résultat marquant de Fife et McLeod [71] qui servira
par la suite.

Théorème. [71] L’équation
∂tu−∆u = u (u− θ) (1− u)

avec θ ∈ ]0, 1[ admet une unique solution sous forme d’onde progressive connectant 0 et 1.
De plus, la vitesse c de cette onde progressive a le signe de

∫ 1
0 u (u− θ) (1− u) du = 1

6
( 1

2 − θ
)
.

Définition. Une onde progressive connectant 0 et 1 pour l’équation

∂tu−∆u = u (u− θ) (1− u)

est une onde progressive dont le profil a pour limite en −∞ et +∞ 1 et 0 respectivement.

Le signe de la vitesse est aisément obtenu par intégration par parties de l’équation satisfaite
par le profil ϕ multipliée par ϕ′.
Ce résultat est fondamentalement différent de celui obtenu pour le terme de réaction u (1− u) :

l’onde progressive est unique, la vitesse n’est pas linéairement déterminée et même son signe
dépend des paramètres. Pour les écologistes, un terme de réaction de la forme u (u− θ) (1− u)
modélise un effet Allee, c’est-à-dire un effet de dépendance positive en la densité : le taux de
croissance (u− θ) (1− u) est strictement croissant en u si u < θ+1

2 .
Mathématiquement, une différence importante entre u (1− u) et u (u− θ) (1− u) est la clas-

sification des états stationnaires constants. Dans le premier cas, les états stationnaires constants
sont exactement 0 et 1 et, pour l’EDO sous-jacente,

u′ = u (1− u) ,

0 est instable et 1 est localement asymptotiquement stable (et même globalement attractif pour
les données initiales positives non-nulles). Dans le second cas, les états stationnaires constants
sont exactement 0, θ et 1 et, pour l’EDO sous-jacente,

u′ = u (u− θ) (1− u) ,

0 et 1 sont localement asymptotiquement stables tandis que θ est instable.
Cette observation conduit à une classification des termes de réaction f réguliers, dépendant

seulement de u, s’annulant en 0 et dont l’ensemble des zéros strictement positifs admet un
maximum. À renormalisation près, on peut supposer que ce maximum est 1. De plus, on exclut
le cas où f est strictement positive à droite de 1 afin de n’obtenir que des solutions globalement
bornées et ainsi f ′ (1) ≤ 0.
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1. S’il existe θ ∈ ]0, 1[ tel que f est nulle sur [0, θ] et positive dans ]θ, 1[, f est dite ignition.
2. Si 0 et 1 sont les seuls zéros positifs de f , f est dite monostable.
3. Si f est monostable et satisfait f ′ (0)u ≥ f (u) pour tout u ∈ [0, 1], f est dite KPP.
4. Si f admet exactement trois zéros positifs 0, θ et 1 et si f ′ (0) < 0, f ′ (θ) > 0 et f ′ (1) < 0,
f est dite bistable.

5. Si les zéros positifs de f sont tous isolés et s’il y en a au moins quatre, f est dite multistable.
Cette classification n’est pas exhaustive mais couvre cependant l’immense majorité des cas inté-
ressants du point de vue des applications.
Le cas monostable non-KPP modélise lui aussi un effet Allee, dit faible par opposition à l’effet

Allee fort du cas bistable. Le théorème de base sur ce cas est le suivant.

Théorème. [8] Il existe c? ≥ f ′ (0) telle que l’équation monostable

∂tu−∆u = f (u)

admette une solution sous forme d’onde progressive à vitesse c ≥ 0 décrivant l’invasion de 0 par
1 si et seulement si c ≥ c?. Cette solution est unique.

La question de l’égalité c? = f ′ (0), c’est-à-dire de la détermination linéaire de la vitesse
minimale, revêt dans ce cas une importance évidemment toute particulière. Bien que dans le cas
KPP elle soit vraie, dans le cas général elle est fausse.

Systèmes

La classification des termes de réaction multidimensionnels f est évidemment bien plus com-
plexe. D’un côté, il est possible de généraliser la classification scalaire (voir par exemple l’ouvrage
de Volpert, Volpert et Volpert [139]), mais une telle classification n’est pas toujours appropriée
pour traiter les systèmes intéressants du point de vue des applications. D’un autre côté, il est
possible de suivre la classification induite par les applications, dont trois cas seraient par exemple
Lotka – Volterra compétitif, Lotka – Volterra prédatif, Lotka – Volterra mutualiste, mais une
telle classification échoue parfois à mettre en exergue la proximité mathématique de différents
modèles.
Les deux classifications sont parfois utilisées conjointement. Cela conduit par exemple à la

classification standard pour le système de Lotka – Volterra compétitif à deux espèces détaillée
ci-dessous et à laquelle on se réfèrera par la suite.

1. Si a ≤ 1 ou b ≤ 1, le système est monostable : le système d’EDO sous-jacent possède
un unique état stationnaire localement asymptotiquement stable. On distingue ensuite les
sous-cas suivants :
a) a = b = 1 : cas dégénéré généralement écarté ;

b) a < 1 et b < 1 : cas de coexistence, l’état stable est
(

1−a
1−ab ,

1−b
1−ab

)
;

c) a ≥ 1, b ≤ 1 et a 6= b : cas de semi-extinction, l’état stable est (0, 1) ;
d) b ≥ 1, a ≤ 1 et a 6= b : cas de semi-extinction, l’état stable est (1, 0).

2. Si a > 1 et b > 1, le système est bistable : le système d’EDO sous-jacent possède exactement
deux états stationnaires localement asymptotiquement stables, qui sont (1, 0) et (0, 1). On
parle aussi du cas d’exclusion mutuelle.
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Dans cet exemple, l’augmentation de la complexité par rapport à une équation scalaire provient
de l’amenuisement des contraintes topologiques en dimension 2 et intervient déjà dans le système
d’EDO sous-jacent, dépourvu de structure spatiale.
Cependant, la richesse topologique due à la dimension du système n’est pas la seule cause des

difficultés rencontrées lors de l’étude des systèmes de réaction – diffusion. Des phénomènes plus
subtils, tels que les instabilités de Turing [138] dues à l’interaction entre des diffusions inégales et
des termes de réaction particuliers, peuvent émerger. Les systèmes concernés par ces phénomènes
présentent un défaut de structure par rapport aux équations scalaires, bien souvent un manque de
principe de comparaison ou de structure variationnelle. L’étude de ces systèmes, parmi lesquels
se trouve la majorité des systèmes issus de la dynamique des populations, est particulièrement
difficile.
En particulier, pour l’étude des ondes progressives des systèmes dépourvus de principe de

comparaison, les méthodes EDO paraissent parfois incontournables. Réussir à n’employer que
des méthodes EDP devient alors un enjeu en soi, puisque cela ouvre par la suite des directions de
recherche difficilement abordables avec les méthodes EDO. Cela explique par exemple pourquoi
les résultats sur le système de Lotka – Volterra prédatif à deux espèces{

∂tu−∆u = u (1− u− av)
∂tv − d∆v = v (−1 + bu)

(avec a > 0 et b > 0), d’abord obtenus grâce à des méthodes EDO par Dunbar dans les années
80 [63, 64], ont été établis de nouveau avec des méthodes EDP par Fu et Tsai en 2015 [75]. Le
délai de plus de trente ans illustre d’ailleurs tout à fait les difficultés auxquelles les spécialistes
des méthodes EDP doivent faire face quand le principe de comparaison fait défaut.
Au contraire, les exceptionnels systèmes monotones, c’est-à-dire doté d’un principe de compa-

raison, ou variationnels peuvent bien souvent être traités comme des EDP scalaires et vérifient
donc des propriétés de propagation similaires. C’est par exemple le cas du système de com-
pétition – diffusion de Lotka – Volterra à deux espèces, qui est en effet monotone et dont les
cas monostable et bistable sont fortement analogues aux cas scalaires correspondants. Cepen-
dant, dès qu’un troisième compétiteur est introduit, la monotonie du système est perdue et des
phénomènes nouveaux surviennent (par exemple, sous certaines conditions, Kishimoto [102] a
montré l’existence d’états stationnaires stables non-constants et Chen et Hung [95] ont montré
l’inexistence d’ondes progressives).
Il faut également pointer le fait que le système suivant est à la fois monotone et variationnel

et pourtant encore très incomplètement compris :{
∂tu−∆u = u

(
1− u2 − av2)

∂tv − d∆v = rv
(
1− v2 − bu2) .

Ce système très important, issu de la physique quantique et appelé système de Gross – Pitaevskii
pour les condensats de Bose – Einstein à deux espèces, est l’objet d’innombrables articles. Bien
qu’il puisse passer pour une simple modification variationnelle du système de compétition –
diffusion de Lotka – Volterra à deux espèces, certaines questions posées par les applications et
certains arguments de preuves ne peuvent se transposer d’un système à l’autre. Les littératures
sur ces deux systèmes ont en fait tendance à se développer indépendamment l’une de l’autre et
les rapprochements sont désormais rares (des efforts récents étant dus par exemple à Dancer,
Wang et Zhang [48, 50, 51] ou Soave et Zilio [135]). Ceci est révélateur de la complexité accrue
des systèmes (les termes de réaction scalaires u (1− u) et u

(
1− u2) étant au contraire tous deux

traités conjointement, en tant que termes de réaction KPP).
Sans plus s’attarder sur ces généralités, on présente maintenant les systèmes étudiés dans cette

thèse ainsi que les résultats obtenus.
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Contributions
Les contributions de cette thèse à l’étude générale des propriétés de propagation des systèmes

de réaction – diffusion issus de la dynamique des populations sont de deux ordres.
1. La première direction est l’étude de questions ouvertes précédemment posées par la vaste

littérature sur le système de Lotka – Volterra compétitif à deux espèces.
a) Pour le système bistable, quand un des deux états stables envahit l’autre, duquel

s’agit-il ? L’hétérogénéité spatiale est-elle susceptible de bloquer cette invasion ou de
la renverser ?

b) Pour le système monostable avec semi-extinction, l’état de semi-extinction instable
est-il susceptible d’envahir un territoire inhabité avant de se faire remplacer par l’état
de semi-extinction stable, et si oui quelles sont les deux vitesses en jeu ?

2. La seconde direction est l’ouverture d’un programme de recherche sur une large classe
de systèmes non-monotones et non-variationnels mais analogues, par bien des aspects,
à l’équation de Fisher – KPP et survenant dans de nombreux modèles de dynamique
des populations. Après les vérifications d’usage (positivité et bornitude des solutions), un
critère nécessaire et suffisant pour la persistance des populations est établi et les propriétés
de propagation sont étudiées. Mise à part l’unicité des ondes progressives, qui reste un
problème ouvert et à la solution très certainement complexe, on découvre bien des propriétés
de propagation évoquant celles de l’équation de Fisher – KPP.

Sur le système de Lotka – Volterra compétitif à deux espèces
Dans toute cette sous-section, le système{

∂tu−∆u = u (1− u− av)
∂tv − d∆v = rv (1− v − bu) (0.0.1)

est simplement dénoté (0.0.1).

En régime bistable avec forte compétition

Dans toute cette sous-sous-section, on suppose que (0.0.1) est bistable, c’est-à-dire que a > 1
et b > 1.
En 1982, Gardner [77] a démontré le théorème suivant.

Théorème. [77] (0.0.1) admet une solution sous forme d’onde progressive connectant (0, 1) et
(1, 0).

Définition. Une onde progressive connectant (0, 1) et (1, 0) pour (0.0.1) est une onde progressive
dont le profil a pour limite en −∞ et +∞ (1, 0) et (0, 1) respectivement. L’onde progressive est
dite monotone si son profil (ϕ,ψ) est tel que ϕ et −ψ sont toutes deux décroissantes et est dite
strictement monotone si ϕ et −ψ sont toutes deux strictement décroissantes.

Ce résultat a par la suite été raffiné par Kan-on [100].

Théorème. [100] (0.0.1) admet une unique solution sous forme d’onde progressive connectant
(0, 1) et (1, 0).
De plus, cette onde progressive est strictement monotone et sa vitesse c satisfait −2

√
rd < c <

2.
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Déterminer le signe de c devient alors d’une importance fondamentale, puisque cela donne le
sens de l’invasion :

1. si c < 0, alors (0, 1) envahit (1, 0) ;
2. si c > 0, alors (1, 0) envahit (0, 1).

Autrement dit, le signe de c permet de comparer dynamiquement la stabilité de (0, 1) et celle de
(1, 0).
Contrairement à l’équation bistable scalaire étudiée par Fife et McLeod [71], on ne peut pas ici

déterminer le signe de c par une simple intégration par parties (du fait de l’absence de structure
variationnelle). À vrai dire, à ce jour, aucun résultat parfaitement général n’est connu. Quand
les recherches de cette thèse ont démarré, le seul résultat partiel était celui de Guo et Lin [83].

Théorème. [83] Le signe de la vitesse c de l’unique onde progressive solution de (0.0.1) satisfait
les propriétés suivantes.

1. Si r = d, alors c a le signe de b− a.
2. Si r > d et a ≥

(
r
d

)2
b, alors c < 0.

3. Si r < d et b ≥
(
d
r

)2
a, alors c > 0.

4. Quel que soit λ > 0, changer (d, r) en λ (d, r) ne change pas le signe de c.
5. Si r > d, a ≥ 2 et b ≤ 1 + d

r , alors c < 0.
6. Si r > d, a ≥ 5r

d et (3rb− d) b ≤ (4r − d) a, alors c < 0.
7. Si r = d

4 et (a, b) =
( 5

4 ,
4
3
)
, alors c = 0.

8. Si r = d
4 , a ≥

5
4 , b ≤

4
3 et (a, b) 6=

( 5
4 ,

4
3
)
, alors c < 0.

9. Si r = d
4 , a ≤

5
4 , b ≥

4
3 et (a, b) 6=

( 5
4 ,

4
3
)
, alors c > 0.

La preuve de ce résultat repose sur les propriétés de monotonie de c par rapport à (r, a, b)
établies par Kan-on [100].
Dans cette thèse, on propose une approche complètement différente pour aborder ce problème.

Il s’agit de s’appuyer sur les propriétés d’un régime asymptotique particulier, appelé régime de
forte compétition : (r, a, b) =

(
r, k, αkr

)
avec α > 0 et k → +∞. Ce régime correspond ainsi à la

limite singulière k → +∞ du système suivant :{
∂tuk −∆uk = uk (1− uk)− kukvk
∂tvk − d∆vk = rvk (1− vk)− αkukvk

.

Dans ce régime, le théorème de Guo et Lin laisse une large zone d’incertitude. Non seulement
les conditions des points 5 à 9 ne peuvent pas être remplies si k est assez grand, mais de plus les
points 1 à 4 ne donnent que le résultat partiel suivant.

Corollaire. Le signe de la vitesse ck satisfait les propriétés suivantes.
1. Si r = d, alors ck a le signe de α− r.
2. Si r > d et d2 ≥ αr, alors ck < 0.
3. Si r < d et αr ≥ d2, alors ck > 0.
4. Quel que soit λ > 0, changer (d, r, α) en λ (d, r, α) ne change pas le signe de ck.

Par exemple, si α = r = 1, le signe de ck reste complètement indéterminé hormis dans le cas
d = 1 (trivial par symétrie).
Les premiers articles sur le régime de forte compétition remontent aux années 90 et sont dus

à Dancer et à ses collaborateurs [45, 46]. Le principal résultat, très générique et naturellement
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déduit du système, est le suivant : à la limite k → +∞, les solutions ((uk, vk))k>1 convergent
vers une paire (u∞, v∞) dont les deux composantes sont positives et spatialement ségrégées,
c’est-à-dire satisfaisant u∞v∞ = 0.
Par ailleurs, pour un système à deux espèces tel que celui ci-dessus, on peut utiliser la forme

particulière du couplage de Lotka – Volterra pour combiner linéairement les deux équations et
obtenir

∂t (αuk − vk)−∆ (αuk − dvk) = αuk (1− uk)− rvk (1− vk) .

Dans cette équation, la dépendance en k n’est plus qu’implicite, et on peut raisonnablement
espérer que l’on puisse passer à la limite. En utilisant la relation u∞v∞ = 0 et en notant w∞ la
limite de (αuk − vk)k>1, on peut identifier αu∞ = w+

∞ et v∞ = w−∞, où les parties positive et
négative de w∞ sont définies de sorte que w∞ = w+

∞ − w−∞, et ainsi écrire l’équation limite :

∂tw∞ −∆ ((1w∞>0 + d1w∞<0)w∞) = w+
∞

(
1− w∞

α

)
− rw−∞ (1 + w∞) .

Sous réserve que w∞ ne s’annule que sur un ensemble négligeable, cette équation est une équation
parabolique quasilinéaire. La limite w∞ peut donc gagner une certaine régularité et un problème
de frontière libre émerge, régissant le mouvement de l’interface.
Ce raisonnement formel sera développé rigoureusement plus loin dans cette thèse. L’idée ici est

simplement de montrer comment un système de deux équations couplées est réduit, en régime
de forte compétition, à une unique équation quasilinéaire. Étant donné que l’on sait calculer
aisément le signe de la vitesse d’une onde progressive bistable scalaire, cette réduction devrait
par conséquent révéler le signe de la limite c∞ des vitesses (ck)k>1.
Plus précisément, le premier résultat obtenu dans le cadre de cette thèse, en collaboration avec

Grégoire Nadin, est le suivant.

Théorème. [GN15] La famille de vitesses (ck)k>1 converge vers une limite c∞ ∈
]
−2
√
rd, 2

[
ayant le signe de α2 − rd.
De plus, la convergence est localement uniforme par rapport à d et c∞ est continue par rapport

à d.

La continuité de ck par rapport à d étant encore une question ouverte à ce jour, la continuité
de c∞ n’est pas une simple conséquence de la convergence localement uniforme.
Dans le cas simplifié où α = r = 1, le signe de c∞ est celui de 1 − d. Autrement dit, l’espèce

ayant le plus fort taux de diffusion chasse l’autre : l’important n’est pas d’être très concentré
au voisinage de l’interface mais plutôt de pouvoir envoyer des éclaireurs loin dans le territoire
adverse. Par conséquent, ce résultat a été nommé « L’union ne fait pas la force ».
Il est aisé de vérifier que notre résultat est compatible avec celui de Guo et Lin. Par exemple,

si l’on suppose r > d et d2 ≥ αr, qui impliquent ensemble d’après Guo et Lin ck < 0 (et donc
c∞ ≤ 0), on a bien α2 ≤ rd, et même α2 < rd :

α2

rd
= α2r2

dr3 ≤
d3

r3 < 1.

En montrant qu’un fort taux de compétition interspécifique favorise l’espèce la plus mobile,
notre résultat soulève plusieurs questions intéressantes. En particulier, il met en perspective un
résultat célèbre de type « L’union fait la force » pour le système en milieu borné hétérogène ∂tu−∆u = u (r (x)− u− v) dans Ω

∂tv − d∆v = v (r (x)− v − u) dans Ω
∂nu = ∂nv = 0 sur ∂Ω

(0.0.2)
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dû à Dockery, Hutson, Mischaikow et Pernarowski [58]. Ce renversement du résultat est-il dû
avant tout à l’hétérogénéité spatiale ou l’affaiblissement considérable de la compétition interspé-
cifique est-il également responsable ?
Afin d’aborder cette question, nous avons étudié le rôle de l’hétérogénéité spatiale en considé-

rant le cas particulier, mathématiquement agréable, d’hétérogénéités spatiales périodiques unidi-
mensionnelles. En effet, tandis que les phénomènes de propagation en milieu hétérogène général
sont considérablement complexes, en milieu périodique ils se simplifient grandement et de nom-
breuses similitudes avec les milieux homogènes se dégagent. En particulier, la notion d’onde
progressive est naturellement généralisée par celle d’onde pulsatoire.

Définition. Une onde pulsatoire connectant (0, 1) et (1, 0) pour{
∂tu− ∂xxu = µ (x)u (1− u)− kuv
∂tv − d∂xxv = ν (x) v (1− v)− αkuv , (0.0.3)

où µ et ν sont deux fonctions régulières positives périodiques de même période L > 0, est
une solution entière de la forme (u, v) : (t, x) 7→ (ϕ,ψ) (x− ct, x), avec c ∈ R une vitesse de
propagation et (ϕ,ψ) un profil de propagation satisfaisant les propriétés suivantes :

1. ϕ et −ψ sont toutes deux strictement décroissantes par rapport à leur première variable ;
2. ϕ et ψ sont toutes deux L-périodiques par rapport à leur seconde variable ;
3. les limites uniformes suivantes sont satisfaites :

lim
ξ→−∞

sup
x∈[0,L]

|(ϕ,ψ) (ξ, x)− (1, 0)| = 0,

lim
ξ→+∞

sup
x∈[0,L]

|(ϕ,ψ) (ξ, x)− (0, 1)| = 0.

Avant d’aller plus loin, on précise que l’on se restreint dans cet exposé introductif aux systèmes
de la forme (0.0.3) mais que les résultats ci-dessous issus de [Gir17, GN18] sont en fait démontrés
sous des hypothèses légèrement plus générales sur le terme de réaction. La comparaison entre
(0.0.2) et (0.0.3) est bel et bien pertinente. Les hypothèses exactes seront énoncées dans les
chapitres adéquats.
Les recherches sur les ondes pulsatoires en réaction – diffusion ont démarré beaucoup plus

récemment que celles sur les ondes progressives (les travaux pionniers sur les ondes pulsatoires
scalaires étant ceux de Gärtner, Freidlin [79] et Xin [143, 144] et remontant aux années 80 et 90).
Lorsque nous nous sommes penchés sur cette question, nous avons réalisé que l’existence d’ondes
pulsatoires pour le système bistable (0.0.3) n’avait encore jamais été abordée.
Une telle question peut cependant être traitée grâce au cadre théorique très général élaboré

récemment par Fang et Zhao [69]. Sans entrer ici dans les détails techniques, leur conclusion
générale est la suivante : les solutions sous forme d’onde progressive ou pulsatoire pour des pro-
blèmes bistables existent pourvu que tous les états stationnaires intermédiaires, respectivement
constants ou périodiques, soient instables et puissent être envahis par les deux états stables ex-
trémaux (c’est-à-dire qu’il existe des ondes monostables de vitesse au signe adéquat). C’est ainsi
qu’en démontrant le résultat suivant, on déduit immédiatement l’existence d’ondes pulsatoires
pour (0.0.3).

Théorème. [Gir17] Soient A > 0, B > 0 et L = π

(
1√
A

+
√

d
B

)
. Supposons que L < L,

max
[0,L]

µ = A et max
[0,L]

ν = B.

Alors il existe k? > 0 tel que, si k ≥ k?, tout état stationnaire L-périodique de coexistence pour
(0.0.3) est instable et peut être envahi par les états stables (1, 0) et (0, 1).
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Introduction

La condition L < L permet en fait de garantir que le problème limite

−∆ ((1w∞>0 + d1w∞<0)w∞) = µ (x)w+
∞

(
1− w∞

α

)
− ν (x)w−∞ (1 + w∞)

n’admette aucune solution périodique, non-nulle et changeant de signe. Elle est déduite des deux
observations suivantes :
— une solution périodique, non-nulle et changeant de signe peut être vue comme une succes-

sion de solutions de problèmes de Dirichlet posés dans des intervalles de tailles strictement
inférieures à L ;

— un tel problème de Dirichlet n’admet une solution positive que si l’intervalle dans lequel il
est posé est suffisamment grand, la taille minimale pouvant être estimée explicitement.

Il est parfaitement naturel de se demander si ce résultat est optimal, c’est-à-dire si l’on peut
construire des contre-exemples où L < L n’est pas satisfaite et où un état stationnaire pério-
dique de coexistence stable ou ne pouvant être envahi existe. Cette question a fait l’objet d’une
collaboration avec Alessandro Zilio et a conduit au résultat suivant, dont la démonstration est
encore une fois basée sur le passage à la limite k → +∞.

Théorème. [GZ18] Soient A > 0, B > 0 et r0 > 0, rµ > 0 et rν > 0 tels que 2r0 +2rµ+2rν = 1.
On définit les deux fonctions 1-périodiques µ? et ν? satisfaisant

(µ?)|[0,1] = A1[0,rµ] +A1[rµ+2r0+2rν ,1],

(ν?)|[0,1] = B1[rµ+r0,rµ+r0+2rν ],

ainsi que, pour tout L > 0, la fonction L-périodique

(µL, νL) : x 7→ (µ?, ν?)
( x
L

)
.

Il existe L > 0 tel que, pour tout L > L, il existe k? > 1 tel que, pour tout k ≥ k?, (0.0.3)
avec (µ, ν) = (µL, νL) ou (µ, ν) = (µL + νL, µL + νL) admet un état stationnaire L-périodique
de coexistence linéairement stable.
De plus, pour tout L > L, il existe un voisinage UL de (µL, νL) dans la topologie de

(
L∞L-per

)2
et un voisinage VL de µL + νL dans la topologie de L∞L-per tels que, pour tout (µ, ν) ∈ UL et tout
ρ ∈ VL, il existe k? > 1 tel que, pour tout k ≥ k?, (0.0.3) avec (µ, ν) ou (ρ, ρ) admet un état
stationnaire L-périodique de coexistence linéairement stable.

L’existence d’un tel état de coexistence empêche d’appliquer le résultat de Fang et Zhao mais
pourrait même bel et bien bloquer la propagation et assurer la non-existence d’ondes pulsatoires.
Pour ce faire, il faudra vérifier dans des travaux ultérieurs le signe de la vitesse de l’onde pulsatoire
bistable connectant cet état à un des deux états de semi-extinction. Quoi qu’il en soit, ce résultat
complète de manière intéressante un résultat de Ding, Hamel et Zhao [57] montrant que pour
une classe particulière, mais naturelle, de termes de réaction, l’existence d’état de coexistence
stable n’est possible que si la période n’est ni trop grande, ni trop petite.
Le contre-exemple du précédent théorème repose sur un choix particulier de (µL, νL) décri-

vant une situation où se succèdent périodiquement des territoires fertiles (où µL et νL sont des
constantes positives) et des territoires neutres, ni fertiles ni délétères (où µL = νL = 0). L’état
stationnaire obtenu dépeint alors la possibilité pour u et v de s’installer dans les territoires fer-
tiles à numéro pair et impair respectivement. Autrement dit, ce résultat admet une interprétation
biologique intéressante : une forte hétérogénéité de l’habitat est susceptible de conduire à une
forte ségrégation spatiale et, sur le long terme, à une véritable spéciation. Ce résultat est ainsi,
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en soi, un premier complément intéressant au résultat de Dockery et al. : en milieu hétérogène,
là où une faible compétition interspécifique ne laisse aucune chance à la coexistence, une forte
compétition interspécifique peut au contraire la favoriser.
L’existence d’ondes pulsatoires sous hypothèse de haute fréquence étant néanmoins établie, la

méthode développée avec Grégoire Nadin dans le cas homogène peut être appliquée au système
périodique (0.0.3) sur des bases non-vides. De nouveau, le signe de la vitesse peut être déterminé
grâce au problème limite.

u
v

x

(u, v)

k1

k2

k3

+∞

Figure 0.0.4 – Ségrégation d’ondes pulsatoires (k1 < k2 < k3 < +∞)

Théorème. [GN18] Il existe c∞ ∈ R tel que :

1. c∞ ∈
]
−c?d,ν , c?1,µ

[
, où c?δ,ρ > 0 est la vitesse minimale des ondes pulsatoires pour l’équation

de Fisher – KPP périodique unidimensionnelle

∂tz − δ∂xxz = ρ (x) z (1− z) ;

2. c∞ = 0 si et seulement si α
2

d ∈ Ir, où Ir est un intervalle fermé non-vide satisfaisant{∫ L
0 ν∫ L
0 µ

}
⊂ Ir ⊂

min
[0,L]

ν

max
[0,L]

µ
,

max
[0,L]

ν

min
[0,L]

µ

 ;

3. c∞ < 0 si α
2

d < min Ir ;

4. c∞ > 0 si α
2

d > max Ir ;
5. c∞ est la limite, localement uniforme par rapport à d, de toute famille (ck)k≥k? de vitesses

d’onde pulsatoire pour (0.0.3) ;
6. c∞ est continue par rapport à d.
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Comme le laisse transparaitre l’énoncé ci-dessus, l’unicité de l’onde pulsatoire (uk, vk) : (t, x) 7→
(ϕk, ψk) (x− ckt, x) n’a pas été rigoureusement établie lors de ces travaux dont l’objet était plutôt
l’étude de la limite singulière. Toutefois, elle peut bel et bien être démontrée par des arguments
de glissements très similaires à ceux qui seront présentés plus loin dans cette thèse.
Établir le théorème précédent est considérablement plus difficile qu’établir son analogue en

milieu homogène. En effet, là où le profil d’une onde progressive vérifie un agréable système
elliptique, le profil d’une onde pulsatoire vérifie un système elliptique dégénéré, ce qui oblige
de fait à repasser régulièrement en coordonnées paraboliques (t, x) et implique notamment une
disjonction des cas selon la nullité de c∞. De plus, dans le cas c∞ 6= 0, la frontière libre induite par
le problème limite ne se réduit plus trivialement à un point. Une véritable étude de ce problème
de frontière libre est donc nécessaire pour caractériser le profil limite. Cette étude est conduite
en utilisant le principe du maximum, la monotonie en temps de la position de la frontière libre
(dont la vitesse moyenne est bien c∞) et des procédures régularisantes. Même dans le cas c∞ = 0,
une difficulté supplémentaire émerge du fait de la possible multiplicité des solutions du problème
limite (cet obstacle ayant déjà été mis en exergue par Ding, Hamel et Zhao [57]). Cependant,
ces solutions existent si et seulement si α

2

d ∈ Ir. Un résultat d’exclusion mutuelle déduit de la
caractérisation des profils quand c∞ 6= 0 permet d’établir que c∞ 6= 0 si et seulement si α

2

d /∈ Ir,
ce qui permet finalement d’obtenir le signe de c∞.
On constate qu’encore une fois, le résultat est de type « L’union ne fait pas la force ». Une

telle généralisation montre que l’inversion du résultat pour (0.0.2) repose fondamentalement sur
l’affaiblissement de la compétition interspécifique. Bien que l’hétérogénéité spatiale favorise le
compétiteur le plus sédentaire, son effet est négligeable face à celui de la compétition, qui elle
favorise au contraire le plus mobile.
Le résultat de Dockery et al. sur (0.0.2) est donc loin de trancher la question du lien entre taux

de diffusion et avantage compétitif. D’autres recherches devront être conduites. Ceci a par la suite
été confirmé par Risler [130] qui a su démontrer avec des techniques complètement différentes
un résultat supplémentaire de type « L’union ne fait pas la force », cette fois-ci pour le système
perturbatif en milieu homogène{

∂tu−∆u = u (1− u)− (1 + γ)uv
∂tv − (1 + ε) ∆v = v (1− v)− (1 + γ)uv

où ε > 0 et γ > 0 sont deux paramètres infinitésimaux. Contrairement au régime de forte
compétition, ce système n’est qu’une modification marginale de (0.0.2) et pourtant suffit bel et
bien à inverser la conclusion.

En régime monostable avec semi-extinction

Dans toute cette sous-sous-section, on suppose que (0.0.1) est monostable avec semi-extinction,
c’est-à-dire que a < 1 et b > 1 (quitte à inverser les rôles de u et v) . L’état stable est donc (1, 0)
tandis que (0, 1) est instable.
Les ondes progressives de ce système, définies comme dans le cas bistable, ont d’abord été étu-

diées en 1989 par Hosono [92] et Okubo, Maini, Williamson et Murray [123] sous des hypothèses
restrictives sur les paramètres puis de manière générale en 1997 par Kan-on [101]. Le résultat de
ce dernier, évoquant fortement le cas monostable scalaire, est le suivant.

Théorème. [101] Il existe c? ≥ 2
√

1− a telle que (0.0.1) admette une solution sous forme d’onde
progressive monotone à vitesse c ≥ 0 décrivant l’invasion de (0, 1) par (1, 0) si et seulement si
c ≥ c?.

Par analogie avec les équations scalaires monostables, il a été naturellement conjecturé que :
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(a) 1945 (b) 2000 (c) 2010

Figure 0.0.5 – Invasion de l’écureuil gris dans le territoire des iles Britanniques de l’écureuil
roux, classiquement modélisée par un système de la forme (0.0.1) avec a < 1 < b.
Quadrillage fin : écureuil gris ; quadrillage moyen : zone tampon ; quadrillage
grossier : écureuil roux.
Source : Red Squirrel Survival Trust (couleurs modifiées).

— c? est également la vitesse de propagation asymptotique des solutions avec données initiales
unidimensionnelles de la forme (u0, 1− v0) ∈ [0, 1]2 avec (u0, v0) à support compact et
u0 6= 0 ;

— la détermination linéaire c? = 2
√

1− a est parfois, mais pas toujours, vérifiée.
Les travaux du début des années 2000 dus à Lewis, Li et Weinberger [108, 110, 142] ont confirmé la
première conjecture et ont donné des conditions suffisantes pour la détermination linéaire. Plus
récemment, Huang et Han [94] sont parvenus à fournir un contre-exemple à la détermination
linéaire, achevant ainsi la confirmation de la seconde conjecture. Ainsi la question de l’invasion
de u dans un territoire initialement occupé par v est aujourd’hui plutôt bien comprise, même
si les conditions sur les paramètres équivalentes à la détermination linéaire ne sont pas encore
connues.
Au contraire, l’invasion conjointe de u et v dans un environnement initialement inhabité était

un problème largement ouvert avant cette thèse. Les travaux les plus proches concernaient soit
le cas bistable, traité très récemment par Carrère [35], ou le cas monostable avec coexistence,
partiellement traité en 2012 par Lin et Li [112]. La conclusion générale de ces deux articles est
la possibilité d’obtenir plusieurs vagues d’invasion successives :
— dans le cas bistable, si les conditions initiales sont convenables et si 2

√
rd > 2, (0, 0) est

envahi par (0, 1) qui est ensuite lui-même envahi par (1, 0) ;
— dans le cas monostable avec coexistence, si 2

√
rd (1− b) > 2, (0, 0) est envahi par (0, 1)

qui est ensuite lui-même suivi par une zone d’incertitude elle-même suivie par une invasion
de
(

1−a
1−ab ,

1−b
1−ab

)
.

On note que, tandis que le résultat de Carrère parait optimal (la bistabilité rendant les hypo-
thèses sur les conditions initiales nécessaires), celui de Lin et Li peut être clarifié. Dans la zone
d’incertitude, assiste-t-on simplement à une invasion de (0, 1) par

(
1−a
1−ab ,

1−b
1−ab

)
ou bien à une
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(a) Cas c(1,0)→(0,1) > 0 (b) Cas c(1,0)→(0,1) < 0

Figure 0.0.6 – Simulations numériques de Carrère [35] illustrant les deux invasions successives,
de vitesses respectives 2

√
rd et c(1,0)→(0,1) (vitesse de l’onde progressive bistable

connectant (0, 1) à (1, 0)).

invasion de (0, 1) par (1, 0) puis à une invasion de (1, 0) par
(

1−a
1−ab ,

1−b
1−ab

)
?

Quoi qu’il en soit, ces vagues d’invasion successives évoquent les terrasses de propagation de
la littérature sur les équations de réaction – diffusion scalaires. Ces solutions, décrites mathé-
matiquement pour la première fois par Fife et McLeod [71] dans le cadre de termes de réaction
multistables, nommées systèmes d’ondes par Volpert, Volpert et Volpert [139] et renommées suite
aux travaux de Matano, Ducrot et Giletti [62], ont bénéficié récemment d’une certaine attention.
Mais le résultat de Lin et Li montre que le prisme des équations scalaires multistables ne

suffit pas pour comprendre le type de terrasses qui est à l’œuvre ici. En effet, alors que seul le
premier état stationnaire d’une terrasse scalaire multistable est susceptible d’être instable, Lin
et Li démontrent le remplacement de l’état instable (0, 0) par l’état lui aussi instable (0, 1). Deux
ondes monostables se succèdent donc. Les ondes monostables ayant typiquement une demi-droite
de vitesses admissibles tandis que les ondes bistables n’ont qu’une unique vitesse admissible,
l’ensemble des terrasses potentiellement engendrées par (0.0.1) est considérablement plus grand.
Il s’avère qu’adopter le point de vue des terrasses de propagation pour étudier l’invasion

conjointe de u et v permet d’obtenir des résultats complets et novateurs, y compris dans le
cas de données initiales à support compact. Une collaboration avec Adrian Lam a ainsi conduit
aux résultats suivants.
On définit la fonction auxiliaire

f :
[
2
√

1− a,+∞
[
→

]
2
√
a, 2

(√
1− a+

√
a
)]

c 7→ c−
√
c2 − 4 (1− a) + 2

√
a
.

Celle-ci est décroissante et bijective et satisfait en particulier

f (2) = 2,

f−1 : c̃ 7→ c̃

2 −
√
a+ 2 (1− a)

c̃− 2
√
a
.

Dans l’énoncé qui suit, l’espace sous-jacent est unidimensionnel et c? est bien la vitesse minimale
des ondes progressives monotones décrivant l’invasion de (0, 1) par (1, 0).
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Théorème. [GL18] Soient u0 ∈ C (R, [0, 1]) \ {0} dont le support est inclus dans une demi-droite
dirigée vers la gauche, v0 ∈ C (R, [0, 1]) \ {0} à support compact et (u, v) la solution de (0.0.1)
avec données initiales (u0, v0).

1. Supposons 2
√
rd < 2. Alors

lim
t→+∞

sup
x≥0
|v (t, x)| = 0,

lim
t→+∞

sup
0≤x<(2−ε)t

|u (t, x)− 1| = 0 pour tout ε ∈ ]0, 2[ ,

lim
t→+∞

sup
(2+ε)t<x

|u (t, x)| = 0 pour tout ε > 0.

2. Supposons 2
√
rd ∈ ]2, f (c?)[. Soit

cacc = f−1
(

2
√
rd
)

=
√
rd−

√
a+ 1− a√

rd−
√
a
∈ ]c?, 2[ .

Alors

lim
t→+∞

sup
0≤x<(cacc−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 pour tout ε ∈ ]0, cacc[ ,

lim
t→+∞

sup
(cacc+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 pour tout ε ∈
]

0, 2
√
rd− cacc

2

[
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 pour tout ε > 0.

3. Supposons 2
√
rd ≥ f (c?). Alors

lim
t→+∞

sup
0≤x<(c?−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 pour tout ε ∈ ]0, c?[ ,

lim
t→+∞

sup
(c?+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 pour tout ε ∈
]

0, 2
√
rd− c?

2

[
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 pour tout ε > 0.

Ce résultat est remarquable pour au moins trois raisons.
— Le second cas montre que l’invasion de u est accélérée (cacc > c?) si celle de v est trop lente

(2
√
rd < f (c?)).

— La vitesse accélérée cacc est donnée par une formule algébrique explicite.
— L’énoncé ne dépend pas de la détermination linéaire de c?.

La fonction f , qui donne pour tout c ≥ 2
√

1− a la plus grande racine de l’équation en c̃

c̃2 − 4λ (c) c̃+ 4 (λ (c) c− 1) = 0,

où
λ (c) = 1

2

(
c−

√
c2 − 4 (1− a)

)
,

apparait naturellement dans le problème.
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Supposons que v envahit le territoire inhabité à vitesse 2
√
rd et que u chasse v à vitesse

c2 ∈
[
c?, 2
√
rd
[
. Dans la zone où v ' 1, u ressemble à la queue exponentielle de l’onde progressive

monostable connectant (0, 1) à (1, 0) à vitesse c2, c’est-à-dire

u (t, x) ' e−λ(c2)(x−c2t).

Si l’on se place alors dans un voisinage de x = c̃t, avec c̃ ∈
]
c2, 2
√
rd
[
, on ne peut observer des

quantités non-négligeables qu’à condition de considérer la fonction redimensionnée

w : (t, x) 7→ u (t, x) eλ(c2)(c̃−c2)t

plutôt que u elle-même.
Or, dans un voisinage de x = c̃t avec c̃ > 2

√
rd, où (u, v) ' (0, 0), w satisfait au premier ordre

∂tw − ∂xxw = (1 + λ (c2) (c̃− c2))w

et l’ansatz exponentiel w (t, x) = e−Λ(c2,c̃)(x−c̃t) conduit à l’équation

(Λ (c2, c̃))2 − c̃Λ (c2, c̃) + (1 + λ (c2) (c̃− c2)) = 0.

La racine minimale étant

Λ (c2, c̃) = 1
2

(
c̃−

√
c̃2 − 4 (1 + λ (c2) (c̃− c2))

)
,

on déduit que c̃ doit précisément satisfaire

c̃2 − 4λ (c2) c̃+ 4 (λ (c2) c2 − 1) ≥ 0,

soit c̃ ≥ f (c2). Prenant la limite c̃→ 2
√
rd, on trouve bien 2

√
rd ≥ f (c2).

L’essentiel de la preuve consiste donc à rendre rigoureuse cette observation à l’aide de sur-
solutions et sous-solutions finement construites.
Le théorème précédent est complété par deux autres qui seront présentés en détail dans le

chapitre adéquat mais qui caractérisent l’ensemble des paires de vitesses possibles pour les ter-
rasses de propagation engendrées par des données initiales exponentiellement décroissantes. La
fonction f joue de nouveau un rôle essentiel et, de ce fait, l’ensemble est parfois strictement plus
petit que l’ensemble maximal{

(c1, c2) ∈
[
2
√
rd,+∞

[
× [c?,+∞[ | c1 > c2

}
.

Sur les systèmes KPP non-monotones
Dans cette sous-section, les inégalités vectorielles ≥ 0, > 0 et � 0 sont respectivement com-

prises comme positivité de toutes les composantes, positivité de toutes les composantes avec
inégalité stricte pour au moins une composante et stricte positivité de toutes les composantes.
De plus, la notation [N ] désigne l’ensemble {1, . . . , N}.
On appelle système KPP un système de réaction – diffusion de la forme

∂tu−D∆u = Lu− c (u) ◦ u, (0.0.4)

avec u ∈ RN , L ∈ RN×N une matrice carrée irréductible et essentiellement positive (c’est-à-
dire dont seuls les termes diagonaux sont possiblement strictement négatifs) et c un champ de
vecteurs de RN vérifiant les propriétés suivantes :
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1. c (u) ≥ 0 si u ≥ 0, avec égalité si u = 0 ;
2. il existe α ≥ 1, δ ≥ 1 et c � 0 tels que, pour tous α ≥ α, i ∈ [N ] et n > 0 satisfaisant
|n| = 1, l’on ait

N∑
j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn) .

La seconde hypothèse est en particulier satisfaite si c (v) croit au moins linéairement quand
|v| → +∞, donc en particulier si c (v) = Cv avec C� 0.
Ainsi, l’exemple typique de système KPP est le système de Lotka – Volterra compétitif avec

mutations :
∂tu−D∆u = diag (r) u + Mu−Cu ◦ u,

où r � 0, C � 0 et M est une matrice carrée irréductible essentiellement positive satisfaisant
N∑
i=1

mi,j = 0 quel que soit j ∈ [N ], comme par exemple une matrice de la forme MLapdiag (w)

avec w� 0 et MLap le laplacien discret avec conditions de Neumann :

MLap =



−1 1 0 . . . 0

1 −2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −2 1

0 . . . 0 1 −1


.

L’essentiel de la littérature et des travaux contemporains se concentrant sur le système de mu-
tation – compétition – diffusion présenté ci-dessus, celui-ci suffit tout à fait pour un exposé
introductif de l’état de l’art et des résultats. Toutefois, le cadre général des systèmes KPP per-
met d’aborder des problèmes issus d’applications fort différentes : introduction de classes d’âge
dans l’équation de Fisher – KPP, système de Gross – Pitaevskii pour les condensats de Bose –
Einstein à deux espèces avec couplage de Rabi, et ainsi de suite. Ces systèmes ainsi que les
questions de modélisation sous-jacentes seront abordés dans les chapitres adéquats.
Les premiers travaux traitant des phénomènes de propagation pour les systèmes KPP sont

dus à Freidlin [74]. À l’aide de méthodes probabilistes, ce dernier a étudié un système KPP à
deux composantes admettant un état stationnaire non-nul globalement attractif. Inspirés par
cette étude, Barles, Evans et Souganidis [10] ont traité en 1990 un cas beaucoup plus général
à l’aide de méthodes EDP. Grâce au changement de variables WKB et à la limite de viscosité
évanescente, ils ont su caractériser la vitesse de propagation des solutions du problème de Cauchy
initialement à support compact. Bien que leur méthode, très utilisée aujourd’hui notamment pour
traiter les modèles issus de la dynamique adaptative, n’emploie pas le cadre des ondes progressives
mis en avant dans cette thèse, elle fournit donc le même genre de résultat et soulève ainsi très
naturellement la question des ondes progressives.
La pertinence biologique des systèmes KPP a elle été rendue claire en 1998 par Dockery et

al. [58] quand ils ont introduit des mutations de faible amplitude dans (0.0.2) afin de vérifier si
« L’union fait la force » restait vrai dans un tel contexte. Néanmoins, à cause d’obstacles théo-
riques majeurs (pas de structure variationnelle, pas de principe de comparaison), un traitement
plus exhaustif de ces systèmes était alors hors de portée, ce qui les a conduit à suggérer que
le seul cas mathématiquement abordable était celui du système à deux composantes avec des
mutations évanescentes. En effet, dans un tel cas, le système limite est précisément (0.0.1) et est
donc bien mieux compris du fait du principe de comparaison.
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Par conséquent, à de rares exceptions près, les recherches qui ont suivi se sont concentrées sur
ce cas particulier. En 2012, Elliott et Cornell [65] ont publié une étude heuristique et numérique
renouvelant l’intérêt, notamment pour la question des ondes progressives. En 2014, la question
de la détermination linéaire a été posée formellement par Cosner [39]. En 2016, Griette et Raoul
[82] ont montré pour la toute première fois qu’une onde progressive existe bel et bien et ont
caractérisé la forme de son profil dans un régime particulier. En 2017, Morris, Börger et Crooks
[115] ont établi avec des techniques encore différentes un résultat d’existence plus général et
ont également obtenu un résultat sur la propagation de données initiales unidimensionnelles à
support compact.
Cependant, ces résultats restent cantonnés au cas particulier du système à deux composantes

avec petites mutations. Le cas général restait, avant le début de cette thèse, complètement ouvert.
L’approche employée dans cette thèse pour traiter le cas général est différente de celles précé-

demment employées. Elle repose sur l’observation suivante : le terme de réaction Lu− (Cu) ◦ u
est analogue au terme de réaction ru− u2

K , c’est-à-dire à un terme de réaction de type KPP. En
particulier, les solutions du problème linéarisé ∂tu−D∆u = Lu peuvent former des sur-solutions,
bien que le système non-linéaire ne bénéficie pas d’un principe de comparaison.
Grâce à cette observation, les résultats suivants peuvent être démontrés.

Théorème. [Gir18b] Toute solution positive u de (0.0.4) posé dans ]0,+∞[ × R telle que x 7→
u (0, x) soit non-nulle satisfait u (t, x)� 0 pour tout (t, x) ∈ ]0,+∞[× R.

Théorème. [Gir18b] Il existe une fonction g : [0,+∞[ → RN continue, dont toutes les com-
posantes sont croissantes et satisfaisant g (0) � 0 telle que toute solution positive u de (0.0.4)
posé dans ]0,+∞[× R satisfasse

u (t, x) ≤
(
gi

(
sup
x∈R

ui (0, x)
))

i∈[N ]
pour tout (t, x) ∈ [0,+∞[×R

et si de plus x 7→ u (0, x) est bornée, alors(
lim sup
t→+∞

sup
x∈R

ui (t, x)
)
i∈[N ]

≤ g (0) .

Dans ce qui suit, λPF (L) désigne la valeur propre de Perron – Frobenius de L et nPF (L)
désigne son vecteur propre satisfaisant nPF (L)� 0 et |nPF (L)| = 1.

Théorème. [Gir18b] Supposons λPF (L) ≤ 0. Alors toute solution bornée positive de (0.0.4)
posé dans ]0,+∞[×R converge en temps long, uniformément en espace, vers 0 pourvu que l’une
des conditions suivantes soit satisfaite :

1. λPF (L) < 0, et dans ce cas la convergence est exponentielle en temps ;
2. λPF (L) = 0 et c (αnPF (L)) > 0 pour tout α > 0.

Ce théorème correspond au cas dit d’extinction et sa preuve, relativement élémentaire, repose
sur la comparaison avec la sur-solution formée par la solution du système linéarisé. Au contraire,
le cas dit de persistance, donné par le théorème suivant, est prouvé à l’aide d’un habile jonglage
entre l’instabilité de 0 et l’inégalité de Harnack établie en 2009 par Földes et Poláčik [73].

Théorème. [Gir18b] Supposons λPF (L) > 0. Alors il existe ν > 0 tel que toute solution bornée
positive non-nulle u de (0.0.4) posé dans ]0,+∞[×R satisfasse, pour tout intervalle borné I ⊂ R,(

lim inf
t→+∞

inf
x∈I

ui (t, x)− ν
)
i∈[N ]

≥ 0.
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De plus, il existe un état stationnaire constant positif non-nul, qui est donc à valeurs dans
N∏
i=1

[ν, gi (0)] .

Une fois ces théorèmes basiques établis, on peut laisser de côté le cas d’extinction, se concentrer
sur le cas plus intéressant de persistance et se tourner vers les phénomènes de propagation.
On constate rapidement que le comportement en temps long est difficile à caractériser plus
précisément en toute généralité (en particulier, de multiples états stationnaires localement stables
peuvent exister). On adopte donc une définition plus faible des ondes progressives, énoncée ci-
dessous.

Définition. Une solution sous forme onde progressive pour (0.0.4) est une solution entière,
positive, bornée, de la forme u : (t, x) 7→ p (x− ct), avec une vitesse c ≥ 0 et un profil p ∈
C 2 (R,RN) satisfaisant (

lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

> 0 et lim
ξ→+∞

p (ξ) = 0.

pi

ξ0

ν

max
i∈[4]

gi(0)

Figure 0.0.7 – Exemple de profil d’onde progressive pour un système KPP à quatre compo-
santes. Le comportement à l’arrière est volontairement représenté comme non-
convergent, en l’absence de résultat plus probant.

Le théorème suivant est ensuite prouvé en adaptant des idées dues à Berestycki, Nadin, Per-
thame et Ryzhik [19] permettant de contourner le défaut de principe de comparaison.

Théorème. [Gir18b] Supposons λPF (L) > 0. Soit

c? = min
µ>0

(
λPF

(
µ2D + L

)
µ

)
.

La quantité c? est strictement positive et est la vitesse minimale des ondes progressives ainsi
que la vitesse de propagation des données initiales unidimensionnelles à support inclus dans une
demi-droite dirigée vers la gauche, dans le sens suivant :
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1. pour toute c ∈ [0, c?[, il n’existe pas de solution de (0.0.4) sous forme d’onde progressive
de vitesse c ;

2. si Dc (v) ≥ 0 pour tout v ≥ 0, alors pour toute c ≥ c?, il existe une solution de (0.0.4)
sous forme d’onde progressive de vitesse c ;

3. pour tout x0 ∈ R et toute fonction continue, bornée, positive, non-nulle v, la solution u de
(0.0.4) posé dans ]0,+∞[× R avec donnée initiale v1(−∞,x0) satisfait(

lim
t→+∞

sup
x>y

ui (t, x+ ct)
)
i∈[N ]

= 0 pour toute c ∈]c?,+∞[ et tout y ∈ R,

(
lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)
)
i∈[N ]

∈ K++ pour toute c ∈ [0, c?[ et tout R > 0.

De plus, le profil p de toute onde progressive satisfait

p ≤ g (0) et
(

lim inf
ξ→−∞

pi (ξ)− ν
)
i∈[N ]

≥ 0.

À partir de la formule explicite donnant c?, diverses estimations peuvent également être dé-
duites. Celles-ci seront détaillées dans le chapitre adéquat.
Tandis que les résultats ci-dessus sont démontrés en utilisant exclusivement les sur-solutions et

sous-solutions classiques de la littérature sur l’équation de Fisher – KPP, l’emploi de méthodes
plus variées permet de raffiner les résultats qualitatifs sur les profils d’ondes progressives.
On définit, pour toute c ≥ c?, les quantités

µc = min
{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
,

kc =
{

0 si c > c?,
1 si c = c?.

La quantité µc est bien définie et strictement positive (voir les chapitres adéquats).

Théorème. [Gir18a] Pour toute onde progressive de profil p et de vitesse c, il existe A > 0 tel
que, quand ξ → +∞, p (ξ) ∼ Aξkce−µcξnPF

(
µ2
cD + L

)
,

p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .
Par conséquent, les composantes de p sont toutes, dans un voisinage de +∞, strictement

décroissantes et convexes.

De multiples preuves de ce théorème sont envisageables. Ayant fait le choix d’éviter les mé-
thodes EDO mais ne pouvant appliquer une méthode purement EDP du fait de l’absence de
principe de comparaison, on propose dans cette thèse une preuve utilisant des résultats généraux
d’analyse réelle (un théorème d’Ikehara et les propriétés de la transformée de Laplace bilaté-
rale). Il est raisonnable d’espérer que cette preuve puisse être généralisée au contexte des ondes
pulsatoires en milieu spatialement périodique.
Sous des hypothèse restrictives sur les paramètres, on peut utiliser la forme de Jordan de L

et la projection de Perron – Frobenius pour réduire le système KPP à une simple équation de
Fisher – KPP. Ceci est indiqué par les deux théorèmes suivants.
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Théorème. [Gir18a] Supposons λPF (L) > 0, D = I ainsi que l’existence de b : RN → R telle
que, pour tout v ≥ 0 et tout i ∈ [N ], ci (v) = b (v) et la fonction w 7→ b (wei + v) est strictement
croissante dans ]0,+∞[.
Soient α? > 0 l’unique solution de b (αnPF (L)) = λPF (L) et v? = α?nPF (L).
Alors toutes les solutions bornées positives non-nulles de (0.0.4) posé dans ]0,+∞[×R convergent

en temps long, localement uniformément en espace, vers v?.
Par conséquent, l’ensemble des solutions stationnaires bornées positives est exactement {0,v?}.

Théorème. [Gir18a] Supposons que les hypothèses du théorème précédent sont toujours vérifiées.
Pour toute c ∈ [c?,+∞[, soit pc ∈ C 2 (R) tel que u : (t, x) 7→ p (x− ct) est l’unique onde

progressive solution de l’équation de Fisher – KPP

∂tu− ∂xxu = λPF (L)u− b (unPF (L))u

connectant 0 à α? et satisfaisant pc (0) = α?

2 .
Alors tout profil d’onde progressive pour (0.0.4) de vitesse c a la forme

p : ξ 7→ pc (ξ − ξ0) nPF (L) avec ξ0 ∈ R

et par conséquent, l’onde progressive de vitesse c est unique et connecte 0 à v?.

Puisque D = I implique c? = 2
√
λPF (L), cette quantité est bien à la fois la vitesse minimale

des ondes progressives de (0.0.4) et celle pour l’équation de Fisher – KPP scalaire apparaissant
dans l’énoncé.
Enfin, pour le système à deux composantes, l’idée selon laquelle la limite de mutations éva-

nescentes vérifie un principe de comparaison peut être rigoureusement appliquée en considérant
la limite η → 0 du système suivant :{

∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1 + ηm1 (u2 − u1)
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2 + ηm2 (u1 − u2) .

On dénote (α1, α2) =
(
r1
c1,1

, r2
c2,2

)
les capacités de charge en absence de mutations et, si

c1,1c2,2 6= c1,2c2,1, on dénote

vm = 1
c1,1c2,2 − c1,2c2,1

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
l’état de coexistence en absence de mutations. On suppose en outre que le système sans mutations
est monostable, c’est-à-dire qu’il existe i ∈ {1, 2} tel que

ri
r3−i

>
ci,3−i
c3−i,3−i

.

L’état stable est alors

vs =
{
αiei si ri

r3−i
≥ ci,i

c3−i,i
,

vm si ri
r3−i

<
ci,i
c3−i,i

.

Théorème. [Gir18a] Soient (pη)η>0 et (cη)η≥0 telles que :
1. pour tout η > 0, (t, x) 7→ pη (x− cηt) soit une onde progressive pour le problème avec taux

de mutation η ;
2. cη → c0 quand η → 0.
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Alors il existe (ζη)η>0 telle que, quand η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0 converge à extraction
près dans C 2

loc

(
R,R2) × R vers la paire profil – vitesse (p, c0) d’une onde progressive pour le

système sans mutations {
∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2

réalisant l’une des connections suivantes :
1. 0 à vs,
2. α3−ie3−i à vs,
3. 0 à αiei avec p3−i = 0.

Dans le chapitre adéquat, on présente quelques simulations numériques qui conduisent à une
conjecture générale couvrant également le cas bistable. Cette conjecture permettra d’orienter
efficacement les futures recherches.

Perspectives
Les perspectives de recherche future ouvertes par cette thèse sont nombreuses. On ne présentera

ici que les plus intéressantes, susceptibles d’être étudiées dans un avenir très proche.
Tout d’abord, concernant la limite de forte compétition et les théorèmes de type « L’union ne

fait pas la force », il pourrait être intéressant d’étudier comment des stratégies de mouvement
plus complexes qu’une simple diffusion influencent le résultat. Par exemple, Potts et Petrovskii
[127] ont récemment illustré numériquement qu’un résultat de type « L’union fait la force »
pouvait émerger pour le système{

∂tu−∆u+ s1∇ · (u∇v) = u (1− u− av)
∂tv − d∆v + s2∇ · (v∇u) = rv (1− v − bu) ,

où les termes s1∇ · (u∇v) et s2∇ · (v∇u) modélisent, si s1 > 0 et s2 > 0, un tactisme agressif
poussant un compétiteur vers l’habitat de l’autre. Il serait intéressant de déterminer un régime
de paramètres dans lequel une confirmation analytique rigoureuse est possible. La piste la plus
évidente est le régime s1 = s, s2 = σs, s → +∞, analogue d’une certaine manière à la limite
de forte compétition. Toutefois l’existence d’ondes progressives pour un tel système, fortement
couplé, est un problème réellement difficile.
Les résultats obtenus avec Adrian Lam sur les propriétés de propagation de système de Lotka –

Volterra compétitif monostable pourraient être renforcés en prouvant la convergence localement
uniforme des solutions vers des ondes progressives. Des avances ou retards à la Bramson [30,
29] sont évidemment attendus et posent de remarquables obstacles. Il pourrait également être
intéressant de se tourner vers la classification des solutions entières du système, dans laquelle les
terrasses de propagation que nous avons exhibées joueront un rôle central.
Ensuite, concernant les systèmes KPP, la limite de mutations évanescentes pour le système

à deux composantes et la conjecture susmentionnée méritent une étude plus approfondie. La
principale difficulté lors du passage à la limite est de trouver une normalisation correcte : où
centrer l’observation pour que la limite ne soit pas un état stationnaire constant ? Là où le
théorème cité ci-dessus utilise une normalisation connue du cas monostable, le cas bistable semble
bien plus mystérieux.
Toujours au sujet des systèmes KPP, il parait également important d’étudier la possible gé-

néralisation des théorèmes réduisant le système KPP à une équation scalaire : est-il possible
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de supprimer l’hypothèse D = I ? Est-il possible de changer ci (v) = b (v) en ci (v) = b (v) ai
avec a� 0 ? Naïvement, toutes les réponses paraissent envisageables à ce stade. Des simulations
numériques devront donc être réalisées.
Enfin, une autre direction de recherche sur les systèmes KPP serait la généralisation des résul-

tats obtenus dans cette thèse aux milieux périodiques unidimensionnels et aux ondes pulsatoires.
Une telle généralisation résoudrait de nombreuses questions laissées en suspens par Alfaro et
Griette [2].
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General setting, state of the art and goals

Mathematical definition of a reaction–diffusion system
A reaction–diffusion system as understood in this thesis is a system of partial differential

equations (PDEs hereafter) of the form

∂u
∂t
−D∆xu = f (u, t, x) ,

where the column vector u is a function of a real time variable t ∈ R and of a Euclidean space
variable x ∈ Rn, ∂

∂t denotes the partial derivative with respect to t (the compact notation ∂t
will be often used hereafter), ∆x denotes the spatial Laplacian, that is the sum of the second
order partial derivatives ∂2

∂x2
i
with x = (xi)i∈{1,. . . ,n} (the compact notation ∆ will be often used

hereafter), D is a diagonal matrix with positive diagonal entries referred to as the diffusion
matrix and f is a function possibly non-linear with respect to u referred to as the reaction term.
The matrix D being diagonal, any coupling between the equations is due to the reaction term
and involves no partial derivatives of u: the system is referred to as weakly coupled. Furthermore,
the system can be understood as a system of heat equations with internal heat generation and
is therefore referred to as parabolic.
More generally, the system can govern the evolution of u starting from some initial time t0 ∈ R,

until some final time T ∈ R or in some spatial domain Ω ⊂ Rn. In such a case, the domain
of definition of (t, x) 7→ u (t, x) is accordingly restricted and the reaction–diffusion system is
supplemented with initial conditions, final conditions or boundary conditions. In particular, a
problem formed of a reaction–diffusion system set in (t0,+∞)×Rn supplemented with an initial
condition is referred to as a Cauchy problem. Solutions defined in R×Rn are referred to as entire
solutions.

Provided u is actually a scalar quantity, we obtain a single reaction–diffusion equation of the
form

∂tu− d∆u = f (u, t, x) .
Provided u and f do not depend on x, we obtain a system of ordinary differential equations

(ODEs herefater) of the form
u′ = f (u, t) .

Provided u and f do not depend on t, we obtain a system of weakly coupled elliptic PDEs of
the form

−D∆u = f (u, x) .
If f depends only on its variable u, the system is referred to as set in homogeneous media. The

contrary case is referred to as set in (spatially or temporally) heterogeneous media. Similarly,
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a system can be set in (spatially or temporally) periodic media, random media, and so on. A
homogeneous medium is a (very) particular case of periodic or random medium.

Reaction–diffusion systems as population dynamic models
The branch of ecology, and therefore of biology, concerned with the evolution in time of

the number of individuals in a population of non-human lifeforms is the non-human population
dynamics (hereafter simply population dynamics; human population dynamics, which takes into
account socio-economical aspects, is not proper biology and is not the subject of this thesis).
Due to its qualitative side, its historical origins (read on this subject the book by Bacaër [9])
and its inclination for abstraction, it is one of the most mathematized branches of biology.
Two main families of mathematical models exist in population dynamics (and more generally in
biology): deterministic models and stochastic models. Among deterministic models, we find a
lot of reaction–diffusion systems.
Reaction–diffusion systems arise as population dynamic models mainly in two ways: either as a

refinement of scalar reaction–diffusion equations or as a refinement of ODE systems. In the former
case, the point is to account for coupling between different populations, whereas in the latter case,
the point is to introduce a spatial structure in the problem and to take into account the dispersal
of individuals. Let us now present the underlying modeling for one example of reaction–diffusion
equation, the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP or simply KPP hereafter),

∂tu−∆u = u (1− u) ,

as well as that for one example of ODE system, the Lotka–Volterra system of two competitive
species, {

u′ = u (1− u− av)
v′ = rv (1− v − bu) ,

where a, b and r are positive constants. These two examples will turn out to be very important
examples hereafter.
The assumptions shared by the two models are:
1. the number of individuals in a population and the spatial and temporal scales are so large

that the number of individuals, which is really a discrete quantity, is correctly approximated
by a continuous population density;

2. newborns become instantly adults or, equivalently, newborns do not influence the demog-
raphy and only adult individuals are counted (no age structure);

3. if the reproduction of individuals is sexual, the distribution of males and females is homo-
geneous, so that it suffices to know the total density to know exactly the population (no
sexual structure).

In order to obtain the Fisher–KPP equation, we consider one population density u and we assume
the following:

1. the population is diffusing in space with a rate d > 0, or in other words the population flux
is proportional to the population gradient with a proportionality constant −d;

2. at a given point in space, the part of the variation of the population density ∂tu
u due to

births and deaths is logistic, that is has the form r
(
1− u

K

)
with r > 0 and K > 0. This

assumption implies the following presupposition, referred to by ecologists as absence of
Allee effect: because of the competition for resources between individuals, the growth rate
of the population is a decreasing function of the density, nonnegative if and only if u ≤ K
and maximized at u = 0 where it equals r > 0. Consequently, the constants r and K are
respectively referred to as intrinsic growth rate and carrying capacity.
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Figure 0.0.1 – Logistic growth curve

These assumptions lead to the equation

∂tu− d∆u = r
(

1− u

K

)
u.

Setting dimensionless quantities ũ = u
K , t̃ = rt and x̃ =

√
r
dx and then getting rid of the ~, we

obtain indeed the normalized Fisher–KPP equation.
In order to obtain the competitive Lotka–Volterra system, we consider two population densities

u and v and we assume the following:
1. in the absence of the other density, each density grows logistically;
2. when both densities are present, because of the interspecific competition, we subtract

from each growth rate an additional term positively proportional to the density of the
competitor (in other words, each growth rate is now a decreasing affine function of some
linear combination, with positive coefficients, of the two densities).

These assumptions lead to the systemu
′ = r1u

(
1− u

K1
− v

L1

)
v′ = r2v

(
1− v

K2
− u

L2

) .
Setting t̃ = r1t, ũ = u

K1
, a = K2

L1
, r = r2

r1
, ṽ = v

K2
and b = K1

L2
and then getting rid of the ~, we

obtain indeed the normalized Lotka–Volterra system of two competitive species.
All these assumptions done at the population density scale, referred to as the macroscopic scale,

can also be interpreted at the individual scale, referred to as the microscopic scale. More details
on the microscopic assumptions and on the history of the competition between macroscopic
modeling and microscopic modeling can be found for instance in the book by Israel [98] (in
French). Of course, discussing the assumptions is crucial when applying the models but this is
not the point of this thesis.
By coupling competitively two Fisher–KPP equations, or by introducing spatial diffusion in

the Lotka–Volterra system, we finally get a first example of reaction–diffusion system: the two-
species competition–diffusion Lotka–Volterra system,{

∂tu−∆u = u (1− u− av)
∂tv − d∆v = rv (1− v − bu) .
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We point out right now that by letting a and b have any arbitrary sign, we obtain two other
important types of coupling: predative (ab < 0) and mutualistic (a < 0, b < 0). More generally,
a coupling is of Lotka–Volterra type if it has the form u ◦ (Cu) with C a square matrix and ◦
the Hadamard product, namely component-by-component product.
We emphasize also that, although the motivations of Fisher [72] and of Kolmogorov, Petro-

vsky and Piskunov [104] came from population genetics and more precisely from problems of
competition between two alleles, the above purely demographic derivation directly presents the
Fisher–KPP equation as the logistic equation with diffusion. This later derivation is due to
Skellam [134]. Nowadays, most studies of the Fisher–KPP equation in the applied mathematics
literature or in the ecology literature are motivated by the model of Skellam and not by the
original genetic model.

Reaction–diffusion and propagation phenomena
One of the main reasons of the success of reaction–diffusion models in population dynamics is

their ability to describe invasions.

Traveling waves, ODE methods, PDE methods

Investigating invasions with constant speed and direction in homogeneous media naturally
brings forth entire solutions of the form u : (t, x) 7→ ϕ (x · e− ct), with e ∈ Sn−1 a direction of
propagation, c ∈ R a speed of propagation and ϕ a profile of propagation. Such solutions are
generally referred to as traveling waves (or, more precisely, traveling plane waves, when having
in mind multidimensional media in which more various traveling waves, like radial or conical
traveling waves, can exist).
Such a traveling wave satisfies an ODE system of the form

−Dϕ′′ − cϕ′ = f (ϕ) .

Thanks to this observation, the existence and the properties of such solutions can be addressed
with methods coming from the ODE literature (Picard–Lindelöf theorem, shooting method,
stable and unstable manifolds, and so on) or with methods coming from the elliptic PDE literature
(Schauder theory, variational calculus, maximum principle and comparison principle, Harnack
inequalities, and so on).
The literature on traveling waves can therefore be separated into two families, according to the

type of arguments (ODE or PDE) that are used. In this thesis, we try to use as much as possible
PDE methods, in order to be able to generalize the proofs to suitable heterogeneous media and
also in order to be able to study concurrently the propagation properties of the Cauchy problem,
which truly require PDE arguments.

Dimension of the medium

When studying traveling waves in a homogeneous medium, we can assume without loss of
generality that this medium is one-dimensional and that e = +1. These assumptions simplify
the notations and therefore will be always assumed hereafter. In this setting, the uniqueness of
a traveling wave is understood as uniqueness up to rotation of e and up to translation of ϕ.
Of course, such simplifications cannot be performed anymore when studying Cauchy problems

with non-one-dimensional initial data. For such problems, the dimension of the medium will
always be precised.
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Scalar equations

Research on invasions produced by reaction–diffusion equations started in 1937. The founding
results are the following theorems.

Theorem. [104] The solution u of a Cauchy problem associated with the one-dimensional Fisher–
KPP equation with bounded nonnegative nonzero compactly supported initial data satisfies

lim
t→+∞

sup
|x|>ct

u (t, x) = 0 for all speeds c > 2,

lim
t→+∞

sup
|x|<ct

u (t, x) = 1 for all speeds c < 2.

Ecologists are indeed interested in invasions of initially spatially confined populations, in-
troduced at some precise place. By establishing that such an invasion occurs asymptotically at
constant speed, this first theorem shows that the relevant entire solutions are indeed the traveling
waves and therefore leads to a second theorem.

Definition. A traveling wave with nonnegative speed describing the invasion of 0 by 1 for the
Fisher–KPP equation is a traveling wave whose profile is decreasing and has limits 1 and 0 at
−∞ and +∞ respectively.

Theorem. [104] The Fisher–KPP equation admits a traveling wave solution with speed c ≥ 0
describing the invasion of 0 by 1 if and only if c ≥ 2. This solution is unique.

u(t, x) u(t+ 1, x)

c

x

u

1

0

Figure 0.0.2 – A traveling wave for the Fisher–KPP equation

In return, it is then possible to prove the following theorem.

Theorem. [104] Let u be the solution of the Cauchy problem associated with the one-dimensional
Fisher–KPP equation with initial condition 1(−∞,0) and ϕ2 be the profile of the traveling wave
with speed 2 for this equation.
Then there exists m : R→ R such that, as t→ +∞,

m (t) = o (t) ,

sup
x∈R
|u (t, x− ct−m (t))− ϕ2 (x)| → 0.
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In other words, up to a correctionm (t), the traveling wave with minimal speed corresponds in-
deed to the long-time behavior of the solution of the Cauchy problem. The asymptotic expansion
of m (t) became after 1937 an important research subject, first considered by Bramson [30, 29]
with probabilistic methods. The recent paper by Hamel, Nolen, Roquejoffre and Ryzhik [90]
offers a PDE proof of the main result of Bramson and provides some bibliographical references.
Recalling that t and x are dimensionless variables, we find by going back to the physical

variables that the speed 2 is replaced by c? = 2
√
rd. Thanks to the unexpected simplicity of this

formula, the mathematical model can be efficiently compared to empirical data.

Figure 0.0.3 – Graphics from the article by Skellam illustrating the propagation at constant
speed of the muskrat in central Europe and motivating the use of the Fisher–KPP
equation as model.

In particular, this formula does not depend on the carrying capacity K. This is an immediate
consequence of the fact that c? is linearly determined: it coincides with the minimal speed of
existence of positive solutions for the equation

−dϕ′′ − ϕ′ = rϕ,

which is actually the equation satisfied by the profile ϕ of a traveling wave with speed c linearized
at 0. This equation, which a priori governs only the behavior of the profile where the population
density is negligible, determines in fact completely the speed c?.
The vast literature on reaction–diffusion equations, and then systems, developed after 1937 is

largely influenced by the founding papers on the Fisher–KPP equation. Especially, given a new
reaction–diffusion problem, the existence of traveling waves as well as the relation between the
nonlinear speed and the linear one are nowadays systematically investigated. Without trying to
provide an exhaustive overview of existing results, we cite nevertheless an important result of
Fife and McLeod [71] that will be used hereafter.

Theorem. [71] The equation

∂tu−∆u = u (u− θ) (1− u)

with θ ∈ (0, 1) admits a unique traveling wave solution connecting 0 and 1.
Furthermore, the speed c of this traveling wave has the sign of

∫ 1
0 u (u− θ) (1− u) du = 1

6
( 1

2 − θ
)
.
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Definition. A traveling wave connecting 0 and 1 for the equation

∂tu−∆u = u (u− θ) (1− u)

is a traveling wave whose profile converges to 1 and 0 at −∞ and +∞ respectively.

The sign of the speed is easily deduced by integration by parts of the equation satisfied by the
profile ϕ multiplied by ϕ′.
This result is deeply different from the one obtained for the reaction term u (1− u): the

traveling wave is unique, the speed is not linearly determined and even its sign depends on
the parameters. For ecologists, a reaction term of the form u (u− θ) (1− u) models an Allee
effect, that is an effect of positive dependency on the density: the growth rate (u− θ) (1− u) is
increasing with respect to u if u < θ+1

2 .
Mathematically, an important difference between u (1− u) and u (u− θ) (1− u) is the clas-

sification of constant stationary states. In the former case, the constant stationary states are
exactly 0 and 1 and, for the underlying ODE,

u′ = u (1− u) ,

0 is unstable and 1 is locally asymptotically stable (and actually globally attractive for positive
initial data). In the latter case, the constant stationary states are exactly 0, θ and 1 and, for the
underlying ODE,

u′ = u (u− θ) (1− u) ,
0 and 1 are locally asymptotically stable whereas θ is unstable.
This observation leads to a classification of the reaction terms f which are regular, depend only

on u, vanish at 0 and whose set of positive zeros admits a maximum. Up to a renormalization,
we can assume that this maximum is 1. Moreover we exclude the case where f is positive on the
right of 1 so that all solutions are globally bounded and hence f ′ (1) ≤ 0.

1. If there exists θ ∈ (0, 1) such that f is zero on [0, θ] and positive in (θ, 1), f is referred to
as ignition type.

2. If 0 and 1 are the only two nonnegative zeros of f , f is referred to as monostable.
3. If f is monostable and satisfies f ′ (0)u ≥ f (u) for all u ∈ [0, 1], f is referred to as KPP

type.
4. If f admits exactly three nonnegative zeros 0, θ and 1 and if f ′ (0) < 0, f ′ (θ) > 0 and
f ′ (1) < 0, f is referred to as bistable.

5. If the nonnegative zeros of f are all isolated and if there exist at least four of them, f is
referred to as multistable.

This classification is not exhaustive but covers most of the cases interesting from the application
viewpoint.
The monostable non-KPP case models also an Allee effect, referred to as weak by opposition

to the strong Allee effect of the bistable case. The basic theorem on this case follows.

Theorem. [8] Il existe c? ≥ f ′ (0) such that the monostable equation

∂tu−∆u = f (u)

admits a traveling wave solution with speed c ≥ 0 describing the invasion of 0 by 1 if and only if
c ≥ c?. This solution is unique.

Addressing the equality c? = f ′ (0), that is the linear determinacy of the minimal speed, is of
course highly important in such a case. Although it is true in the KPP case, in general it fails.
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Systems

The classification of multidimensional reaction terms f is of course much more complex. On
one hand, it is possible to generalize the scalar classification (see for instance the book by
Volpert, Volpert and Volpert [139]), but such a classification is not always appropriate to deal
with systems interesting from the application viewpoint. On the other hand, it is possible to
follow the classification induced by applications, which would contain for instance the three cases
competitive Lotka–Volterra, predative Lotka–Volterra, mutualistic Lotka–Volterra, but such a
classification sometimes fails to exhibit the mathematical links between different models.
The two classifications are sometimes used concurrently. This leads for instance to the standard

classification for the Lotka–Volterra system of two competitive species, detailed now and to which
we will frequently refer hereafter.

1. If a ≤ 1 or b ≤ 1, the system is monostable: the underlying ODE system admits a
unique locally asymptotically stable stationary state. The following subcases are then
distinguished:
a) a = b = 1: degenerated case usually discarded;

b) a < 1 and b < 1: coexistence case, the stable state is
(

1−a
1−ab ,

1−b
1−ab

)
;

c) a ≥ 1, b ≤ 1 and a 6= b: semi-extinction case, the stable state is (0, 1);
d) b ≥ 1, a ≤ 1 and a 6= b: semi-extinction case, the stable state is (1, 0).

2. If a > 1 and b > 1, the system is bistable: the underlying ODE system admits exactly two
locally asymptotically stable stationary states, which are (1, 0) and (0, 1). This case is also
referred to as the mutual exclusion case.

In this example, the increased complexity compared to a scalar equation is due to the loss of
topological constraints in dimension 2 and is already effective in the underlying ODE system,
without spatial structure.
However, the topological freedom due to the dimension of the system is not the only obstacle

encountered when studying reaction–diffusion systems. More delicate phenomena, such as Turing
instabilities [138] due to interactions between unequal diffusions and special reaction terms, can
arise. The systems concerned by these phenomena have a default of structure compared to scalar
equations, usually a default of comparison principle or variational structure. The study of these
systems, among which we find the vast majority of systems coming from population dynamics,
is especially difficult.
In particular, to investigate the traveling wave solutions of systems devoid of comparison

principle, the ODE methods sometimes seem unavoidable. Managing to use only PDE methods
becomes then a goal in itself, as these are required for some subsequent research directions. This
explains for instance why the results on the predator–prey Lotka–Volterra system{

∂tu−∆u = u (1− u− av)
∂tv − d∆v = v (−1 + bu)

(with a > 0 and b > 0), first obtained by Dunbar using ODE methods in the 80s [63, 64], were
recovered with PDE methods by Fu and Tsai in 2015 [75]. The delay of more than thirty years
illustrates perfectly the difficulties that PDE specialists have to overcome when the comparison
principle is missing.
On the contrary, the scarce monotone systems, that is satisfying a comparison principle, or

variational systems can quite often be dealt with similarly to scalar PDEs and satisfy therefore
similar propagation properties. This is for instance the case of the two-species competition–
diffusion Lotka–Volterra system, which is monotone and whose monostable and bistable cases are
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strongly analogous to the corresponding scalar cases. Nevertheless, as soon as a third competitor
is introduced, the monotony of the system is lost and new phenomena arise (for instance, under
certain conditions, Kishimoto [102] showed the existence of stable non-constant stationary states
and Chen and Hung [95] showed the nonexistence of traveling waves).
We also point out that the following system is both monotone and variational and is however

still incompletely understood: {
∂tu−∆u = u

(
1− u2 − av2)

∂tv − d∆v = rv
(
1− v2 − bu2) .

This very important system, coming from quantum physics and referred to as the Gross–
Pitaevskii system for two-component Bose–Einstein condensates, is the subject of countless ar-
ticles. Although it could be described as a mere variational modification of the two-species
competition–diffusion Lotka–Volterra system, some problems coming from the applications as
well as some proof arguments cannot be transferred from one system to the other. The lit-
eratures on these two systems have actually a tendency to grow independently and links are
nowadays rare (recent efforts being due for instance to Dancer, Wang and Zhang [50, 51] or
Soave and Zilio [135]). This illustrates very well the increased intricacy of systems (the scalar re-
action terms u (1− u) and u

(
1− u2) are on the contrary handled concurrently, as KPP reaction

terms).
Without further lingering, let us now present the systems studied in this thesis as well as the

obtained results.

Contributions
The contributions of this thesis to the general study of propagation properties of reaction–

diffusion systems coming from population dynamics are twofold.
1. First, we study open questions previously raised by the vast literature on the two-species

competition–diffusion Lotka–Volterra system.
a) For the bistable system, when one stable state invades the other, which one is it? Is

it possible to block or revert the invasion by introducing spatial heterogeneity?
b) For the monostable system with semi-extinction, is there a possibility of invasion of an

uninhabited territory by the unstable semi-extinct state followed by a replacement of
this state by the stable semi-extinct state, and if yes what are the two speeds involved?

2. Second, we initiate investigations on a large class of non-monotone and non-variational sys-
tems closely related to the Fisher–KPP equation and arising in several population dynamic
models. After the standard verifications (positivity and boundedness of the solutions), we
prove a necessary and sufficient criterion for the population persistence and we study the
propagation properties. Apart from the uniqueness of the traveling waves, which remains
an open problem and is likely very complex, we find indeed propagation properties remi-
niscent of those satisfied by the Fisher–KPP equation.

On the Lotka–Volterra system of two competitive species
In this whole subsection, the system{

∂tu−∆u = u (1− u− av)
∂tv − d∆v = rv (1− v − bu) (0.0.1)

is simply denoted (0.0.1).
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In strongly competing bistable regime

In this whole subsubsection, we assume that (0.0.1) is bistable, that is a > 1 and b > 1.
In 1982, Gardner [77] showed the following theorem.

Theorem. [77] (0.0.1) admits a traveling wave solution connecting (0, 1) and (1, 0).
Definition. A traveling wave connecting (0, 1) and (1, 0) for (0.0.1) is a traveling wave whose
profile converges to (1, 0) and (0, 1) at −∞ and +∞ respectively. The traveling wave is referred
to as monotonic if its profile (ϕ,ψ) is such that ϕ and −ψ are both non-increasing and is referred
to as strictly monotonic if ϕ and −ψ are both decreasing.
This result was then improved by Kan-on [100].

Theorem. [100] (0.0.1) admits a unique traveling wave solution connecting (0, 1) and (1, 0).
Furthermore, this traveling wave is strictly monotonic and its speed c satisfies −2

√
rd < c < 2.

Determining the sign of c becomes then very important, since it gives the direction of the
invasion:

1. if c < 0, then (0, 1) invades (1, 0);
2. if c > 0, then (1, 0) invades (0, 1).

In other words, the sign of c gives a criterion to compare dynamically the stability of (0, 1) and
that of (1, 0).
Contrarily to the scalar bistable equation studied by Fife and McLeod [71], here the sign

of c cannot be determined simply by integration by parts (because of the lack of variational
structure). Actually, to this day, no completely general result is known. When the research for
this thesis started, the only partial result was the one proved by Guo and Lin [83].
Theorem. [83] The sign of the speed c of the unique traveling wave solution of (0.0.1) satisfies
the following properties.

1. If r = d, then c has the sign of b− a.
2. If r > d and a ≥

(
r
d

)2
b, then c < 0.

3. If r < d and b ≥
(
d
r

)2
a, then c > 0.

4. For any λ > 0, replacing (d, r) by λ (d, r) does not change the sign of c.
5. If r > d, a ≥ 2 and b ≤ 1 + d

r , then c < 0.
6. If r > d, a ≥ 5r

d and (3rb− d) b ≤ (4r − d) a, then c < 0.
7. If r = d

4 and (a, b) =
( 5

4 ,
4
3
)
, then c = 0.

8. If r = d
4 , a ≥

5
4 , b ≤

4
3 and (a, b) 6=

( 5
4 ,

4
3
)
, then c < 0.

9. If r = d
4 , a ≤

5
4 , b ≥

4
3 and (a, b) 6=

( 5
4 ,

4
3
)
, then c > 0.

The proof of this result relies upon the monotonicities of c with respect to (r, a, b) established
by Kan-on [100].
In this thesis, we adopt a completely different viewpoint. Our idea is to exploit the properties

of a particular asymptotic regime, known as strong competition regime: (r, a, b) =
(
r, k, αkr

)
with

α > 0 and k → +∞. This regime corresponds to the singular limit k → +∞ of the following
system: {

∂tuk −∆uk = uk (1− uk)− kukvk
∂tvk − d∆vk = rvk (1− vk)− αkukvk

.

In this regime, the theorem of Guo and Lin leaves a large area of uncertainty. On one hand,
the conditions of the points 5 to 9 cannot be satisfied if k is large enough, and on the other hand,
the points 1 to 4 only give the following partial result.
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Corollary. The sign of the speed ck satisfies the following properties.
1. If r = d, then ck has the sign of α− r.
2. If r > d and d2 ≥ αr, then ck < 0.
3. If r < d and αr ≥ d2, then ck > 0.
4. For any λ > 0, replacing (d, r, α) by λ (d, r, α) does not change the sign of ck.

For instance, if α = r = 1, the sign of ck remains completely unknown, except in the case
d = 1 (trivial by symmetry).
The first papers on the strong competition regime were published in the 90s and are due to

Dancer and his collaborators [45, 46]. The main result, very generic and naturally deduced
from the system, is the following: as k → +∞, the solutions ((uk, vk))k>1 converge toward a
pair (u∞, v∞) whose components are nonnegative and spatially segregated, that is satisfying
u∞v∞ = 0.

Moreover, for a two-species system such as the one above, we can use the particular form of
the Lotka–Volterra coupling to linearly combine the two equations and obtain

∂t (αuk − vk)−∆ (αuk − dvk) = αuk (1− uk)− rvk (1− vk) .

In this equation, the dependency on k is only implicit, and it seems reasonable to try to pass to
the limit. Using the relation u∞v∞ = 0 and denoting w∞ the limit of (αuk − vk)k>1, we can
identify αu∞ = w+

∞ and v∞ = w−∞, where the positive and negative parts of w∞ are defined so
that w∞ = w+

∞ − w−∞, and by so doing we obtain the limiting equation:

∂tw∞ −∆ ((1w∞>0 + d1w∞<0)w∞) = w+
∞

(
1− w∞

α

)
− rw−∞ (1 + w∞) .

Provided w∞ is null only on a negligible set, this equation is a parabolic quasilinear equation.
The regularity of w∞ can therefore be enhanced and a free boundary problem governing the
motion of the interface arises.
This formal argument will be rigorously developed later in this thesis. Here, the idea is simply

to show how a two-component system is reduced, in the strong competition limit, to a single
quasilinear equation. Since the sign of a scalar bistable traveling wave is easily determined, this
reduction should consequently reveal the sign of the limit c∞ of the speeds (ck)k>1.
More precisely, the first result obtained in this thesis, in collaboration with Grégoire Nadin, is

the following.

Theorem. [GN15] The family of speeds (ck)k>1 converges to a limit c∞ ∈
(
−2
√
rd, 2

)
having

the sign of α2 − rd.
Furthermore, the convergence is locally uniform with respect to d and c∞ is continuous with

respect to d.

The continuity of ck with respect to d being still an open question, the continuity of c∞ is not
a mere consequence of the locally uniform convergence.
In the simplified case where α = r = 1, the sign of c∞ is that of 1−d. In other words, the species

having the strongest diffusion rate chases the other: what matters is not the concentration near
the interface but rather the ability to send individuals far away in the territory of the competitor.
Consequently, we named this result “Unity is not strength”.
It is easily verified that our result is compatible with that of Guo and Lin. Assuming for

instance r > d and d2 ≥ αr, which, according to Guo and Lin, imply together ck < 0 (and thus
c∞ ≤ 0), we find indeed α2 ≤ rd, and even α2 < rd:

α2

rd
= α2r2

dr3 ≤
d3

r3 < 1.
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By showing that a strong interspecific competition rate favors the more mobile species, our
result raises several interesting ensuing questions. In particular, it brings forth perspective to
a celebrated result of the opposite type, “Unity is strength”, for the system in heterogeneous
bounded media  ∂tu−∆u = u (r (x)− u− v) in Ω

∂tv − d∆v = v (r (x)− v − u) in Ω
∂nu = ∂nv = 0 on ∂Ω

(0.0.2)

due to Dockery, Hutson, Mischaikow and Pernarowski [58]. Is this inversion of the result mainly
caused by the spatial heterogeneity, or is the relatively weak interspecific competition responsible
as well?
In order to address this question, we studied the role of the spatial heterogeneity by consid-

ering the special case, mathematically comfortable, of one-dimensional spatially periodic het-
erogeneities. Indeed, although propagation phenomena in general heterogeneous media are sub-
stantially complex, in periodic media they become much simpler and several similarities with
homogeneous media arise. In particular, the notion of traveling wave is naturally generalized by
that of pulsating front.

Definition. A pulsating front connecting (0, 1) and (1, 0) for{
∂tu− ∂xxu = µ (x)u (1− u)− kuv
∂tv − d∂xxv = ν (x) v (1− v)− αkuv , (0.0.3)

where µ and ν are two regular positive periodic functions with period D > 0, is an entire
solution of the form (u, v) : (t, x) 7→ (ϕ,ψ) (x− ct, x), with c ∈ R a propagation speed and (ϕ,ψ)
a propagation profile satisfying the following properties:

1. ϕ and −ψ are both decreasing with respect to their first variable;
2. ϕ and ψ are both L-periodic with respect to their second variable;
3. the following uniform limits hold true:

lim
ξ→−∞

sup
x∈[0,L]

|(ϕ,ψ) (ξ, x)− (1, 0)| = 0,

lim
ξ→+∞

sup
x∈[0,L]

|(ϕ,ψ) (ξ, x)− (0, 1)| = 0.

Before going any further, let us precise that this introductory presentation only considers
systems of the form (0.0.3) but the forthcoming results taken from [Gir17, GN18] are actually
proved under slightly less restrictive assumptions on the reaction term. The comparison between
(0.0.2) and (0.0.3) is relevant indeed. The exact assumptions will be stated in the adequate
chapters.
Research on pulsating fronts in reaction–diffusion started much more recently than that on

traveling waves (pioneering works on scalar pulsating fronts are due to Gärtner, Freidlin [79] and
Xin [144, 143] and go back to the 80s and 90s). When we looked at this question, we realized
that the existence of pulsating fronts for the bistable system (0.0.3) had never been addressed
before.
Such a question can however be addressed with the general theoretical framework elaborated

recently by Fang and Zhao [69]. Omitting the technical details, their general conclusion is as
follows: traveling waves or pulsating fronts for bistable problems exist provided all intermedi-
ate stationary states, respectively constant or periodic, are unstable and invadable by the two
extremal stable states (namely, there exist monostable waves with speed of adequate sign). Con-
sequently, the following result immediately implies the existence of pulsating fronts for (0.0.3).
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Theorem. [Gir17] Let A > 0, B > 0 and L = π

(
1√
A

+
√

d
B

)
. Assume L < L, max

[0,L]
µ = A and

max
[0,L]

ν = B.

Then there exists k? > 0 such that, if k ≥ k?, any L-periodic coexistence stationary state for
(0.0.3) is unstable and invadable by the stable states (1, 0) and (0, 1).

The condition L < L is in fact sufficient to guarantee that the limiting problem

−∆ ((1w∞>0 + d1w∞<0)w∞) = µ (x)w+
∞

(
1− w∞

α

)
− ν (x)w−∞ (1 + w∞)

admits no periodic nonzero sign-changing solution. It is deduced from the following two obser-
vations:
— a periodic nonzero sign-changing solution can be understood as a juxtaposition of solutions

of Dirichlet problems set in intervals of size smaller than L;
— such a Dirichlet problem is solvable only if the interval in which it is set is large enough,

and the minimal size can be explicitly estimated.
It is perfectly natural to wonder whether this result is optimal, that is if it is possible to construct
counter-examples where L < L is not satisfied and where a stable or invadable periodic coexis-
tence stationary state exists. This question was the object of a collaboration with Alessandro
Zilio and lead to the following result, whose proof is again based on the limit k → +∞.

Theorem. [GZ18] Let A > 0, B > 0 and r0 > 0, rµ > 0 and rν > 0 such that 2r0+2rµ+2rν = 1.
We define two 1-periodic functions µ? and v? by

(µ?)|[0,1] = A1[0,rµ] +A1[rµ+2r0+2rν ,1],

(ν?)|[0,1] = B1[rµ+r0,rµ+r0+2rν ],

as well as, for all L > 0, the L-periodic function

(µL, νL) : x 7→ (µ?, ν?)
( x
L

)
.

There exists L > 0 such that, for all L > L, there exists k? > 1 such that, for all k ≥ k?,
(0.0.3) with (µ, ν) = (µL, νL) or (µ, ν) = (µL + νL, µL + νL) admits a linearly stable L-periodic
coexistence stationary state.
Furthermore, for all L > L, there exists a neighborhood UL of (µL, νL) in the topology of(
L∞L-per

)2 and a neighborhood VL of µL+νL in the topology of L∞L-per such that, for all (µ, ν) ∈ UL
and all ρ ∈ VL, there exists k? > 1 such that, for all k ≥ k?, (0.0.3) with (µ, ν) or (ρ, ρ) admits
a linearly stable L-periodic coexistence stationary state.

Because of the existence of such a coexistence state, the result of Fang and Zhao cannot
be applied. In fact, the coexistence state might even block the propagation and ensure the
nonexistence of pulsating fronts. To establish such a blocking, we will have to verify in ulterior
works the sign of the speed of the bistable pulsating front connecting this state to one of the
two semi-extinct states. Anyways, this result completes interestingly a result of Ding, Hamel
and Zhao [57] showing that for a particular but natural class of reaction terms, the existence of
stable coexistence state is possible only if the period is neither too large nor too small.
The counter-example of the preceding theorem relies upon a particular choice of (µL, νL)

describing a situation where fertile territories (where µL and νL are positive constants) are
periodically separated by neutral territories neither fertile nor deleterious (where µL = νL = 0).
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The stationary state obtained subsequently describes the possibility for u and v to settle in the
fertile territories respectively evenly numbered and oddly numbered. In other words, this result
admits an interesting biological interpretation: a strong heterogeneity of the habitat can lead to
a strong spatial segregation and eventually to speciation. This result is therefore in itself a first
interesting complement to the result of Dockery et al.: in heterogeneous media, although a weak
competition leaves no chance to coexistence, a strong competition can on the contrary favor it.
The existence of pulsating fronts under the high frequency assumption L < L being in any

cases established, the method developed with Grégoire Nadin in the homogeneous setting can
be applied meaningfully to the periodic system (0.0.3). Again, the sign of the speed can be
determined thanks to the limiting problem.

u
v

x

(u, v)

k1

k2

k3

+∞

Figure 0.0.4 – Segregation of pulsating fronts (k1 < k2 < k3 < +∞)

Theorem. [GN18] There exists c∞ ∈ R such that:

1. c∞ ∈
(
−c?d,ν , c?1,µ

)
, where c?δ,ρ > 0 is the minimal speed of pulsating fronts for the one-

dimensional periodic Fisher–KPP equation

∂tz − δ∂xxz = ρ (x) z (1− z) ;

2. c∞ = 0 if and only if α
2

d ∈ Ir, where Ir is a nonempty closed interval satisfying

{∫ L
0 ν∫ L
0 µ

}
⊂ Ir ⊂

min
[0,L]

ν

max
[0,L]

µ
,

max
[0,L]

ν

min
[0,L]

µ

 ;

3. c∞ < 0 if α
2

d < min Ir;

4. c∞ > 0 if α
2

d > max Ir;
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5. c∞ is the limit, locally uniform with respect to d, of any family (ck)k≥k? of speeds of
pulsating fronts for (0.0.3);

6. c∞ is continuous with respect to d.

As hinted by the above statement, the uniqueness of the pulsating front (uk, vk) : (t, x) 7→
(ϕk, ψk) (x− ckt, x) was not established rigorously during these works, whose object was really
the study of the singular limit. Nevertheless, it can be proved indeed by sliding arguments very
similar to those presented later in this thesis.
The proof of the previous theorem is especially more difficult than its homogeneous counter-

part. Indeed, although the profile of a traveling wave satisfies a comfortable elliptic system, the
profile of a pulsating front satisfies a degenerate elliptic system. Hence it is necessary to go back
and forth between the parabolic coordinates (t, x) and the traveling coordinates (ξ, x) and this
implies in particular a distinction of cases according to the nullity of c∞. Moreover, in the case
c∞ 6= 0, the free boundary induced by the limiting problem is not trivially reduced to a point
anymore. An involved study of this free boundary problem is required to characterize properly
the limiting profile. This study is performed using the maximum principle, the monotonicity in
time of the free boundary position (whose average speed is indeed c∞) and regularizing proce-
dures. Even in the case c∞ = 0, we have to face an additional difficulty: the possible multiplicity
of the solutions of the limiting problem (this fact was already pointed out by Ding, Hamel and
Zhao [57]). However, these solutions exist if and only if α2

d ∈ Ir. A mutual exclusion result
deduced from the characterization of the profiles when c∞ 6= 0 yields then that c∞ 6= 0 if and
only if α

2

d /∈ Ir, which finally leads to the sign of c∞.
Once again, the result is of “Unity is not strength” type. Such a generalization shows that the

inversion of the result for (0.0.2) relies heavily upon the weakening of the interspecific compe-
tition. Although spatial heterogeneity favors the less mobile competitor, its effect is negligible
compared to that of competition, which favors on the contrary the more mobile one.
The result of Dockery et al. on (0.0.2) is consequently not the end of the story between

diffusion rates and competitive advantage. Further research will have to be done. This was later
on confirmed by Risler [130] who was able to prove with completely different methods a new
result of “Unity is not strength” type, this time for the perturbative system in homogeneous
media {

∂tu−∆u = u (1− u)− (1 + γ)uv
∂tv − (1 + ε) ∆v = v (1− v)− (1 + γ)uv

where ε > 0 and γ > 0 are two infinitesimal parameters. Contrarily to the strong competition
regime, this system is just a marginal modification of (0.0.2) and still suffices to invert the
conclusion.

In monostable regime with semi-extinction

In this whole subsubsection, we assume that (0.0.1) is monostable with semi-extinction, that
is a < 1 and b > 1 (up to changing the roles of u and v). Therefore the stable state is (1, 0)
whereas (0, 1) is unstable.
The traveling waves of this system, defined as in the bistable case, were first studied in 1989

by Hosono [92] and Okubo, Maini, Williamson and Murray [123] under restrictive assumptions
on the parameters and then without such assumptions in 1997 by Kan-on [101]. The result of
Kan-on, strongly reminiscent of the scalar monostable setting, is the following.

Theorem. [101] There exists c? ≥ 2
√

1− a such that (0.0.1) admits a monotonic traveling wave
solution with speed c ≥ 0 describing the invasion of (0, 1) by (1, 0) if and only if c ≥ c?.
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(a) 1945 (b) 2000 (c) 2010

Figure 0.0.5 – Invasion of the gray squirrel in the territory of the red squirrel in the British Isles,
classically modeled as a system of the form (0.0.1) with a < 1 < b.
Fine grid: gray squirrel; intermediate grid: buffer; coarse grid: red squirrel.
Source : Red Squirrel Survival Trust (modified colors).

By analogy with the scalar monostable equations, it was naturally conjectured that:
— c? is also the asymptotic speed of propagation of the solutions with one-dimensional initial

data of the form (u0, 1− v0) ∈ [0, 1]2 with (u0, v0) compactly supported and u0 6= 0;
— the linear determinacy c? = 2

√
1− a is sometimes, but not always, verified.

The subsequent works of the beginning of the 2000s by Lewis, Li and Weinberger [108, 110, 142]
confirmed the first conjecture and gave sufficient conditions for linear determinacy. More recently,
Huang and Han [94] achieved the construction of a linear determinacy counter-example which
ends the confirmation of the second conjecture. Hence the question of the invasion of u in
a territory initially occupied by v is nowadays well understood, even though necessary and
sufficient conditions on the parameters for linear determinacy are not yet known.
On the contrary, the concurrent invasion of u and v in a territory initially uninhabited was

a problem mostly open before this thesis. Related works are concerned either with the bistable
case, very recently treated by Carrère [35], or with the monostable case with coexistence, partially
treated in 2012 by Lin and Li [112]. The general conclusion of these two articles is the possibility
to obtain successive invasion waves:
— in the bistable case, if the initial values are suitable and if 2

√
rd > 2, (0, 0) is invaded by

(0, 1) which is itself invaded subsequently by (1, 0);
— in the monostable case with coexistence, if 2

√
rd (1− b) > 2, (0, 0) is invaded by (0, 1)

which is itself followed by an area of uncertainty itself followed by an invasion of
(

1−a
1−ab ,

1−b
1−ab

)
.

We notice that, although the result of Carrère seems optimal (because of the bistability, as-
sumptions on the initial values are necessary), the one of Lin and Li could be clarified. In the
uncertainty area, is there simply an invasion of (0, 1) by

(
1−a
1−ab ,

1−b
1−ab

)
or is there an invasion of

(0, 1) by (1, 0) followed by an invasion of (1, 0) by
(

1−a
1−ab ,

1−b
1−ab

)
?
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(a) Case c(1,0)→(0,1) > 0 (b) Case c(1,0)→(0,1) < 0

Figure 0.0.6 – Numerical simulations by Carrère [35] illustrating the two successive invasions,
with respective speeds 2

√
rd and c(1,0)→(0,1) (speed of the bistable traveling wave

connecting (0, 1) to (1, 0)).

Anyways, these successive invasion waves are reminiscent of the propagating terraces of the
literature on scalar reaction–diffusion equations. These solutions, first mathematically described
by Fife and McLeod [71] in the multistable setting, named systems of waves by Volpert, Volpert
and Volpert [139] and renamed after the works of Matano, Ducrot and Giletti [62], attracted
some attention recently.
But the result of Lin and Li shows that the prism of multistable scalar equations does not

suffice to grasp the kind of terraces involved here. Indeed, although only the first stationary
state of a multistable scalar terrace is possibly unstable, Lin and Li show that the unstable state
(0, 0) is replaced by the unstable state (0, 1). One monostable wave follows another monostable
wave. Since monostable waves have typically a half-line of admissible speeds whereas bistable
waves have a unique admissible speed, the set of all terraces possibly generated by (0.0.1) is
considerably larger.
Actually, when studying the concurrent invasion of u and v, the propagation terrace viewpoint

is highly fruitful and leads to complete and new results, enlightening also compactly supported
initial data. Together with Adrian Lam, we proved the following results.
We define the auxiliary function

f :
[
2
√

1− a,+∞
)
→

(
2
√
a, 2

(√
1− a+

√
a
)]

c 7→ c−
√
c2 − 4 (1− a) + 2

√
a
.

It is decreasing and bijective and satisfies in particular

f (2) = 2,

f−1 : c̃ 7→ c̃

2 −
√
a+ 2 (1− a)

c̃− 2
√
a
.

In the following statement, the underlying space is one-dimensional and c? is indeed the minimal
speed of monotonic traveling waves describing the invasion of (0, 1) by (1, 0).

Theorem. [GL18] Let u0 ∈ C (R, [0, 1]) \ {0} with support included in a left half-line and v0 ∈
C (R, [0, 1]) \ {0} with compact support. Let (u, v) be the solution of (0.0.1) with initial data
(u0, v0).
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1. Assume 2
√
rd < 2. Then

lim
t→+∞

sup
x≥0
|v (t, x)| = 0,

lim
t→+∞

sup
0≤x<(2−ε)t

|u (t, x)− 1| = 0 for each ε ∈ (0, 2) ,

lim
t→+∞

sup
(2+ε)t<x

|u (t, x)| = 0 for each ε > 0.

2. Assume 2
√
rd ∈ (2, f (c?)) and define

cacc = f−1
(

2
√
rd
)

=
√
rd−

√
a+ 1− a√

rd−
√
a
∈ (c?, 2) .

Then
lim

t→+∞
sup

0≤x<(cacc−ε)t
(|u (t, x)− 1|+ |v (t, x)|) = 0 for each ε ∈ (0, cacc) ,

lim
t→+∞

sup
(cacc+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each ε ∈
(

0, 2
√
rd− cacc

2

)
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for each ε > 0.

3. Assume 2
√
rd ≥ f (c?). Then

lim
t→+∞

sup
0≤x<(c?−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for each ε ∈ (0, c?) ,

lim
t→+∞

sup
(c?+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each ε ∈
(

0, 2
√
rd− c?

2

)
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for each ε > 0.

This result is remarkable for at least three reasons.
— The second case shows that the invasion of u is accelerated (cacc > c?) if that of v is too

slow (2
√
rd < f (c?)).

— The accelerated speed cacc is given by an explicit algebraic formula.
— The statement does not depend on the linear determinacy of c?.

The function f , which associates with each c ≥ 2
√

1− a the largest root of the equation in c̃

c̃2 − 4λ (c) c̃+ 4 (λ (c) c− 1) = 0,

where
λ (c) = 1

2

(
c−

√
c2 − 4 (1− a)

)
,

appears naturally in the problem.
Assume that v invades the uninhabited territory at speed 2

√
rd and that u chases v at some

speed c2 ∈
[
c?, 2
√
rd
)
. In the area where v ' 1, u looks like the exponential tail of the monostable

traveling wave connecting (0, 1) to (1, 0) at speed c2, that is

u (t, x) ' e−λ(c2)(x−c2t).
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Accordingly, in a neighborhood of x = c̃t with c̃ ∈
(
c2, 2
√
rd
)
, we can observe non-negligible

quantities only if we consider the rescaled function

w : (t, x) 7→ u (t, x) eλ(c2)(x−c2t)

instead of u itself.
Yet, in a neighborhood of x = c̃t with c̃ > 2

√
rd, where (u, v) ' (0, 0), w satisfies at the first

order
∂tw − ∂xxw = (1 + λ (c2) (c̃− c2))w

whence the exponential ansatz w (t, x) = e−Λ(x−c̃t) leads to the equation

(Λ (c2, c̃))2 − c̃Λ (c2, c̃) + (1 + λ (c2) (c̃− c2)) = 0.

The minimal zero of this equation being

Λ (c2, c̃) = 1
2

(
c̃−

√
c̃2 − 4 (λ (c2) (c̃− c2) + 1)

)
,

we deduce then that c̃ has to satisfy

c̃2 − 4λ (c2) c̃+ 4 (λ (c2) c2 − 1) ≥ 0,

that is c̃ ≥ f (c2). Passing to the limit c̃→ 2
√
rd, we find indeed 2

√
rd ≥ f (c2).

The idea of the proof is to use delicately constructed super-solutions and sub-solutions to
change this heuristic argument into a rigorous one.
Two other theorems complete the preceding one and will be presented in detail in the adequate

chapter. They characterize the set of admissible pairs of speeds for the propagating terraces
generated by exponentially decaying initial data. A crucial role is played by the function f again
and, accordingly, the set is sometimes smaller than the maximal set{

(c1, c2) ∈
[
2
√
rd,+∞

)
× [c?,+∞) | c1 > c2

}
.

On non-monotone KPP systems
In this subsection, the vector inequalities ≥ 0, > 0 and � 0 are respectively understood as

nonnegativity of all components, nonnegativity of all components with at least one positive com-
ponent and positivity of all components. Moreover, the notation [N ] denotes the set {1, . . . , N}.
A KPP system is a reaction–diffusion system of the form

∂tu−D∆u = Lu− c (u) ◦ u, (0.0.4)

with u ∈ RN , L ∈ RN×N an irreducible and essentially nonnegative (that is with nonnegative
off-diagonal entries) square matrix and c a vector field in RN satisfying:

1. c (u) ≥ 0 if u ≥ 0, with equality if u = 0;
2. there exist α ≥ 1, δ ≥ 1 and c � 0 such that, for all α ≥ α, i ∈ [N ] and n > 0 satisfying
|n| = 1, we have

N∑
j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn) .
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The second assumption is satisfied for instance if c (v) grows at least linearly as |v| → +∞ and
is therefore satisfied if c (v) = Cv with C� 0.
Thus the prototypical example of KPP system is the competitive Lotka–Volterra system with

mutations:
∂tu−D∆u = diag (r) u + Mu−Cu ◦ u,

where r � 0, C � 0 and M is an irreducible essentially nonnegative square matrix satisfying
N∑
i=1

mi,j = 0 for all j ∈ [N ]. Important examples of such matrices M are matrices of the form

MLapdiag (w) with w� 0 and MLap the discrete Laplacian with Neumann conditions:

MLap =



−1 1 0 . . . 0

1 −2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −2 1

0 . . . 0 1 −1


.

Since most contemporary works focus on the above mutation–competition–diffusion system, it is
sufficient for an introductory presentation of the state of the art and of the results. Nevertheless,
the general framework of KPP systems contains problems coming from much more various ap-
plications: Fisher–KPP equation with age classes, Gross–Pitaevskii system for two-component
Bose–Einstein condensates with Rabi coupling, and so on. These systems and the underlying
modeling questions will be addressed in the adequate chapters.
The first works on propagation phenomena for KPP systems are due to Freidlin [74]. Thanks to

probabilistic methods, he studied a two-component KPP system admitting a globally attractive
nontrivial stationary state. Inspired by this work, Barles, Evans and Souganidis [10] studied in
1990 a much more general case with PDE methods. Thanks to the WKB change of variable
and to the vanishing viscosity limit, they were able to characterize the asymptotic speed of
propagation of solutions of the Cauchy problem with compactly supported initial data. Although
their method, nowadays commonly used in particular in mathematical adaptive dynamics, does
not use the framework of traveling waves highlighted in this thesis, it provides the same kind of
results and therefore motivates naturally the problem of traveling waves.
The biological relevance of KPP systems was made clear in 1998 by Dockery et al. [58] when

they introduced mutations of small amplitude in (0.0.2) in order to verify whether “Unity is
strength” would remain true in such a context. However, due to important theoretical obstacles
(no variational structure, no comparison principle), a more exhaustive treatment of these systems
was out of reach, and it lead them to the suggestion that the only mathematically tractable case
was that of the two-component system with vanishing mutations. Indeed, in such a case, the
limiting system is exactly (0.0.1) and is therefore much more understood thanks to the comparison
principle.
Consequently, up to rare exceptions, the subsequent research focused on this particular case.

In 2012, Elliott and Cornell [65] resurrected the interest for the traveling wave problem with a
heuristic and numerical study. In 2014, the linear determinacy question was raised formally by
Cosner [39]. In 2016, Griette and Raoul [82] showed for the very first time the existence of a
traveling wave and characterized the shape of its profile in a particular regime. In 2017, Morris,
Börger et Crooks [115] established with different techniques a more general existence result and
also obtained a result on the propagation of one-dimensional compactly supported initial data.
However, all these results are only concerned with the two-component system with small

mutations. The general case remained, before this thesis, completely open.
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The approach of this thesis to deal with this general case is different from the ones previously
used. It relies upon the following observation: the reaction term Lu− (Cu) ◦ u is analogous to
the reaction term ru− u2

K , that is to a KPP type reaction term. In particular, the solutions of the
linearized system ∂tu −D∆u = Lu can be used as super-solutions, even though the nonlinear
system does not satisfy a comparison principle.
Thanks to this observation, the following results can be proved.

Theorem. [Gir18b] Any positive solution u of (0.0.4) set in (0,+∞)×R such that x 7→ u (0, x)
is nonzero satisfies u (t, x)� 0 for all (t, x) ∈ (0,+∞)× R.

Theorem. [Gir18b] There exists a continuous function g : [0,+∞) → RN whose components
are all nondecreasing and satisfying g (0) � 0 such that any nonnegative solution u of (0.0.4)
set in (0,+∞)× R satisfies

u (t, x) ≤
(
gi

(
sup
x∈R

ui (0, x)
))

i∈[N ]
for all (t, x) ∈ [0,+∞)× R

and furthermore if x 7→ u (0, x) is bounded then(
lim sup
t→+∞

sup
x∈R

ui (t, x)
)
i∈[N ]

≤ g (0) .

In what follows, λPF (L) denotes the Perron–Frobenius eigenvalue of L and nPF (L) denotes
its eigenvector satisfying nPF (L)� 0 and |nPF (L)| = 1.

Theorem. [Gir18b] Assume λPF (L) ≤ 0. Then all bounded nonnegative solutions of (0.0.4) set
in (0,+∞)× R vanish asymptotically in time, uniformly in space, provided one of the following
conditions is satisfied:

1. λPF (L) < 0, and in such a case the convergence is exponential in time;
2. λPF (L) = 0 and c (αnPF (L)) > 0 for all α > 0.

This theorem corresponds to the so-called extinction case and its proof, relatively straightfor-
ward, relies upon the comparison with the super-solution obtained with the linearized system.
On the contrary, the so-called persistence case, corresponding to the following theorem, requires
a delicate proof using the instability of 0 and the Harnack inequality established in 2009 by
Földes and Poláčik [73].

Theorem. [Gir18b] Assume λPF (L) > 0. Then there exists ν > 0 such that any bounded
positive solution u of (0.0.4) set in (0,+∞)× R satisfies, for any bounded interval I ⊂ R,(

lim inf
t→+∞

inf
x∈I

ui (t, x)− ν
)
i∈[N ]

≥ 0.

Furthermore, there exists a constant positive stationary state, which is consequently valued in
N∏
i=1

[ν, gi (0)] .

Once these basic theorems are established, we can focus on the more interesting persistence
case and consider propagation phenomena. It is then quickly noticed that a more precise charac-
terization of the long-time behavior seems out of reach in full generality (in particular, multiple
locally stable stationary states can exist). Consequently we opt for a weaker definition of traveling
wave, stated now.
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Definition. A traveling wave solution for (0.0.4) is an entire solution which is positive, bounded
and of the form u : (t, x) 7→ p (x− ct), with a speed c ≥ 0 and a profile p ∈ C 2 (R,RN) satisfying(

lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

> 0 and lim
ξ→+∞

p (ξ) = 0.

pi

ξ0

ν

max
i∈[4]

gi(0)

Figure 0.0.7 – Example of traveling wave profile for a four-component KPP system. The behav-
ior at the back is voluntarily represented as non-convergent, in absence of more
convincing result.

The forthcoming theorem is then proved by adapting ideas of Berestycki, Nadin, Perthame
and Ryzhik [19] to overcome the default of comparison principle.

Theorem. Assume λPF (L) > 0. Let

c? = min
µ>0

(
λPF

(
µ2D + L

)
µ

)
.

The quantity c? is positive and is the minimal wave speed as well as the asymptotic speed of
propagation of one-dimensional initial data whose support is included in a left half-line, in the
following sense:

1. for all c ∈ [0, c?), there exists no traveling wave solution of (0.0.4) with speed c;
2. if Dc (v) ≥ 0 for all v ≥ 0, then for all c ≥ c?, there exists a traveling wave solution of

(0.0.4) with speed c;
3. for all x0 ∈ R and all bounded nonnegative nonzero functions v, the solution u of (0.0.4)

set in (0,+∞)× R with initial data v1(−∞,x0) satisfies(
lim

t→+∞
sup

x∈(y,+∞)
ui (t, x+ ct)

)
i∈[N ]

= 0 for all c ∈ (c?,+∞) and all y ∈ R,

(
lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)
)
i∈[N ]

∈ K++ for all c ∈ [0, c?) and all R > 0.
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Furthermore, all profiles p satisfy

p ≤ g (0) and
(

lim inf
ξ→−∞

pi (ξ)− ν
)
i∈[N ]

≥ 0.

From the explicit formula giving c?, various estimations can also be deduced. They will be
detailed in the adequate chapter.
Although the above results are proved by using exclusively classical super-solutions and sub-

solutions of the KPP literature, refined qualitative results on the profiles can be achieved by
resorting to more various methods.
We define, for all c ≥ c?, the quantities

µc = min
{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
,

kc =
{

0 if c > c?,
1 if c = c?.

The quantity µc is well-defined and positive (see the adequate chapters).

Theorem. [Gir18a] For any traveling wave solution of profile p and speed c, there exists A > 0
such that, as ξ → +∞, p (ξ) ∼ Aξkce−µcξnPF

(
µ2
cD + L

)
,

p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .

Consequently, all the components of p are, in a neighborhood of +∞, decreasing and strictly
convex.

Multiple proofs of this theorem exist. Since we chose to avoid ODE methods but since we also
cannot apply a pure PDE method because of the default of comparison principle, we suggest in
this thesis a proof using general results of real analysis (a Ikehara theorem as well as properties
of the bilateral Laplace transform). It is reasonable to hope that this proof can be generalized
to the context of pulsating fronts in spatially periodic media.
Under restrictive assumptions on the parameters, we can use the Jordan form of L and the

Perron–Frobenius projection to reduce the KPP system to a simple KPP equation. This is
indicated by the following two theorems.

Theorem. [Gir18a] Assume λPF (L) > 0, D = I and the existence of b : RN → R such that,
for all v ≥ 0 and all i ∈ [N ], ci (v) = b (v) and the function w 7→ b (wei + v) is increasing in
(0,+∞).
Let α? > 0 be the unique solution of b (αnPF (L)) = λPF (L) and define v? = α?nPF (L).
Then all positive classical solutions of (0.0.4) set in (0,+∞) converge asymptotically in time,

locally uniformly in space, to v?.
Consequently, the set of bounded nonnegative stationary solutions is exactly {0,v?}.

Theorem. [Gir18a] Assume the assumptions of the preceding theorem are still satisfied.
For all c ∈ [c?,+∞), let pc ∈ C 2 (R) such that (pc, c) is the unique traveling wave solution of

the KPP equation
∂tu− ∂xxu = λPF (L)u− b (unPF (L))u

connecting 0 to α? and satisfying pc (0) = α?

2 .
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Then any profile of traveling wave solution of (0.0.4) with speed c has the form

p : ξ 7→ pc (ξ − ξ0) nPF (L) with ξ0 ∈ R

and, consequently, the traveling wave with speed c is unique and connects 0 to v?.

Since D = I implies c? = 2
√
λPF (L), this quantity is indeed both the minimal wave speed of

(0.0.4) and of the KPP equation appearing in the statement.
Finally, for the two-component system, the idea according to which the vanishing mutation

limit satisfies a comparison principle can be rigorously applied by considering the limit η → 0 of
the following system:{

∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1 + ηm1 (u2 − u1)
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2 + ηm2 (u1 − u2) .

We denote (α1, α2) =
(
r1
c1,1

, r2
c2,2

)
the carrying capacities in absence of mutations and, if

c1,1c2,2 6= c1,2c2,1, we denote

vm = 1
c1,1c2,2 − c1,2c2,1

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
the coexistence state in absence of mutations. We assume further that the system without
mutations is monostable, that is there exists i ∈ {1, 2} such that

ri
r3−i

>
ci,3−i
c3−i,3−i

.

Thus the stable state is

vs =
{
αiei if ri

r3−i
≥ ci,i

c3−i,i
,

vm if ri
r3−i

<
ci,i
c3−i,i

.

Theorem. [Gir18a] Let (pη)η>0 and (cη)η≥0 such that:

1. for all η > 0, (t, x) 7→ pη (x− cηt) is a traveling wave solution of the problem with mutation
rate η;

2. cη → c0 as η → 0.
Then there exists (ζη)η>0 such that, as η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0 converges up to extraction
in C 2

loc

(
R,R2) × R to the profile – speed pair (p, c0) of a traveling wave solution of the system

without mutations {
∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2

achieving one of the following connections:
1. 0 to vs,
2. α3−ie3−i to vs,
3. 0 to αiei with p3−i = 0.

In the adequate chapter, we present some numerical simulations leading to a general conjecture
covering also the bistable case. This conjecture will help to guide efficiently the future research.
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Perspectives
Research opportunities opened by this thesis are numerous. Here we will only present the

more interesting leads, susceptible of being studied in the very near future.
First, regarding the strong competition limit and the theorems of “Unity is not strength” type,

it could be relevant to study how more complex movement strategies influence the outcome. For
instance, Potts and Petrovskii [127] recently illustrated numerically that a result of “Unity is
strength” type could arise for the system{

∂tu−∆u+ s1∇ · (u∇v) = u (1− u− av)
∂tv − d∆v + s2∇ · (v∇u) = rv (1− v − bu) ,

where the terms s1∇ · (u∇v) and s2∇ · (v∇u) model, if s1 > 0 and s2 > 0, an aggressive taxis
pushing one competitor toward the habitat of the other. It would be interesting to determine
a parameter regime in which an analytical confirmation is possible. The more obvious lead is
the regime s1 = s, s2 = σs, s → +∞, analogous in some sense to the strong competition limit.
However the existence of traveling waves for such a system, strongly coupled, is a very difficult
problem.
Results obtained with Adrian Lam on the propagation properties of the monostable competitive

Lotka–Volterra system might be enhanced by proving the locally uniform convergence of the
solutions to traveling waves. Positive or negative delays of Bramson type [30, 29] are obviously
expected and are remarkable obstacles. Another interesting lead is the classification of the entire
solutions of the system, in which the propagating terraces we exhibited will play a crucial role.
Next, regarding KPP systems, the vanishing mutation limit for the two-component system and

the aforementioned conjecture deserve a closer investigation. The main difficulty when trying
to pass to the limit is to find an appropriate normalization; where should the observation be
centered so that the limit is not a constant stationary state? The above theorem uses a known
normalization of the monostable case but the bistable case seems much more mysterious.
On KPP systems again, it seems important as well to study the possible generalization of the

theorems reducing the KPP system to a scalar equation: is it possible to remove the assumption
D = I? Is it possible to change ci (v) = b (v) into ci (v) = b (v) ai with a � 0? Naively, all
conclusions seem reasonable at this point. Thus numerical simulations will have to be performed.
Finally, another research direction on KPP systems would be the generalization of the results

of this thesis to one-dimensional periodic media and pulsating fronts. Such a generalization
would settle several questions left open by Alfaro and Griette [2].
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Systèmes de compétition – diffusion
fortement compétitifs à deux

espèces

« “Pas de compétition ! La
compétition est toujours nuisible à
l’espèce et il y a de nombreux
moyens de l’éviter”. Telle est la
tendance de la nature, non pas
toujours pleinement réalisée, mais
toujours présente. »

(P. Kropotkine)





Chapitre 1

Ondes progressives pour des systèmes
diffusifs et fortement compétitifs : mobilité

relative et vitesse d’invasion

Résumé

Le but de ce chapitre est de déterminer l’envahisseur dans un système de compétition –
diffusion de Lotka – Volterra à deux espèces, dans le cas particulier de solutions sous forme
d’onde progressive en milieu homogène. La question est très difficile en toute généralité
mais deux cas asymptotiques semblent dignes d’intérêt : faible compétition interspécifique
et forte compétition interspécifique. Ici, on étudie le second cas et on obtient une conclusion
sans équivoque : l’espèce qui chasse l’autre est, à une constante multiplicative près, la plus
diffusive.
Ce chapitre, co-écrit avec Grégoire Nadin, a fait l’objet d’une publication sous le titre

Traveling waves for diffusive and strongly competitive systems : relative motility and invasion
speed dans European Journal of Applied Mathematics [GN15].
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Chapitre 1 Ondes progressives pour des systèmes diffusifs et fortement compétitifs : mobilité
relative et vitesse d’invasion

1.1 Introduction
Competitive reaction–diffusion systems have been widely studied in the last few years. These

mathematical models are motivated by numerous applications: ecology, chemistry, genetics, etc.
In general, the mathematical formulations of this problem are, for some spatial domain Ω (not
necessarily bounded), some n ∈ N and some positive constants (di, ri, ai, ki,j)i,j∈{1,...,n}:

∀i ∈ {1, . . . , n} ∂tui = di∆xui + ui

ri − aiui −∑
j 6=i

ki,juj

 in Ω× (0,+∞) . (1.1.1)

One tough question is how their solutions and, when they exist, the long-time steady states,
depend on the diffusion rates (di)i∈{1,...,n}. Asymptotically, how do the species (if we see these as
continuous approximations of some population-dynamics problems) represented by the densities
(ui)i∈{1,...,n} share the domain Ω? Basically, in the neighborhood of any spatial point x, two cases
may occur: either only one species persists (exclusion case) or two or more persist (coexistence
case). In the exclusion case, the only persistent species is called invading species. A priori, all the
parameters participate in the determination of this invader: number of species n, heterogeneity
of Ω, boundedness of Ω, boundary conditions, intrinsic growth rates (ri)i∈{1,...,n}, interspecific
competition rates (ki,j)i,j∈{1,...,n}, intraspecific competition rates (ai)i∈{1,...,n} and of course
diffusion rates (di)i∈{1,...,n}.
The dependency on diffusion rates is a very open general problem. Previous works show clearly

that a very general result is for the moment unachievable and that we have to consider in each
study a specific case for the other parameters of the problem. A key work in this area is the paper
by Dockery et al. [58]. They proved that, when Ω is bounded, heterogeneous, with Neumann
boundary conditions and when ki,j = 1 for all i, j ∈ {1, . . . , n}, the less motile species – that is
the one with the lower diffusion rate – is the invading species. Their result relies fundamentally
on the heterogeneity, the basic idea being that each species loses the individuals trying to invade
unfavorable areas while, in favorable areas, the competition helps the more concentrated one,
that is the less diffusive one.
We leave the extension of Dockery’s result for different (ki,j)i,j∈{1,...,n} to others and wonder

if a similar result can be obtained in homogeneous domains (bounded or not).
Actually, it is quite tough to guess heuristically what could happen in homogeneous domains.

Indeed, on one hand, the more diffusive species might be able to ignore its competitors long
enough and invade the whole territory while eliminating the competitors slowly. On the other
hand, the more concentrated species – that is the less diffusive one – might benefit from the
maxim “unity is strength” and eliminate slowly the dispersed competitors and, asymptotically,
invade the domain. It is well-known that diffusion tends to bring unexpected results. In any
case, if something can revert the invasion, we expect it to be the competition. With this in
mind, we decide to focus first on the infinite competition limit which should amplify the effects
of competition.
Many papers limit their study to the case n = 2 (and so will we) because then the system

becomes monotonic and is therefore much simpler to study than the general case. We will not
use the monotonicity explicitly but it will be the underlying mechanism behind many results.
When n = 2, the PDE system can be rewritten:{

∂tu = d1∆xu+ u (r1 − a1u− k1v) in Ω× (0,+∞)
∂tv = d2∆xv + v (r2 − a2v − k2u) in Ω× (0,+∞) .
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1.2 Formulation of the problem and main theorem

When there is no diffusion at all, this system becomes an ODE system. Then, the steady state
(u, v) = (0, 1) (resp. (u, v) = (1, 0)) is stable when k1r2

r1a2
> 1 (resp. k2r1

r2a1
> 1), unstable when

k1r2
r1a2

< 1 (resp. k2r1
r2a1

> 1). Our interest lies in the bistable case and more precisely in the so-called
“strong competition case” where k1r2

r1a2
and k2r1

r2a1
are much larger than 1. In the monostable case,

only one species is a “strong” competitor.
The infinite competition limit (k1 → +∞ and k1

k2
constant) has been studied by Dancer et

al. in 1999 in the case of bounded domains with Neumann boundary conditions [47] (they also
investigated Dirichlet conditions five years later [42]). They obtained a free boundary Stefan
problem and, under regularity assumptions, a spatial segregation with an explicit condition on
the interface. In 2007, Nakashima and Wakasa [120] studied the generation of interfaces for such
systems and obtained a similar free boundary condition.
It is worth mentioning that the spatial segregation in multi-dimensional domains for elliptic

PDE yields highly non-trivial issues. It can be either approached as a free boundary problem
(Caffarelli [31], Dancer [47] and references therein) or as an optimal partition problem (Conti
[38] and references therein), but in both cases it is really a problem in itself, which requires
additional assumptions on the initial conditions and a lot of work.
Therefore, our interest goes to unbounded homogeneous domains. Reaction–diffusion studies

in such domains usually conjecture the existence of propagation fronts and, when their existence
can be rigorously proved, derive from them some information on the dynamics of the system and
the long-time steady state. Here, it is important to recall that the main underlying assumption
with propagation fronts is that, when the initial conditions are well-chosen, the solutions of the
PDE asymptotically behave like the traveling wave solution. We refer to Gardner [77] for such
results for finite k. We will not treat this aspect of the problem in this paper but will indeed
investigate traveling wave solutions.
A straightforward consequence of the traveling wave approach is that it reduces the multi-

dimensional Ω× (0,+∞) to R. The problem becomes one-dimensional, that is an ODE problem,
and thus all the free boundary issues vanish. Our hope is to find a similar spatial segregation
limit, with an explicit condition on the interface connecting the invasion speed of the traveling
wave to the diffusion rates. We know from Gardner [77] and Kan-On [100] that the invasion
speed is constant and bounded by the Fisher–KPP speeds [104] of the species. Can we use the
infinite competition limit to derive its sign and therefore know which species invades the other?
Will unity be strength?
It is important to remark that the invasion speed is not linearly determined here. Actually,

a linearization near (0, 1) or (1, 0) yields no condition on the invasion speed and the linearized
speed cannot be defined as usual. As far as we know, the linear determinacy for competition–
diffusion systems is useful only with a specific class of monostable problems (Huang [94], Lewis
[108]).
In the next section, we fully pose the problem, enunciate our final result and recall that the

problem is well-posed. The third and main section is dedicated to a compactness result and the
convergence to a limit problem which is similar in many ways to the one Dancer et al. obtained.
Eventually, the last section exhibits the relation between the speed and the diffusion rates.

1.2 Formulation of the problem and main theorem

In this first section, we present the PDE problem studied in this article, give its ecological
interpretation and enunciate our main result. We also check quickly that the problem is well-
posed.
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Chapitre 1 Ondes progressives pour des systèmes diffusifs et fortement compétitifs : mobilité
relative et vitesse d’invasion

1.2.1 Model
1.2.1.1 Reaction–diffusion system

We first consider the following one-dimensional Lotka–Volterra competition–diffusion problem:{
∂tµ = d1∂xxµ+ µ (r1 − a1µ− k1ρ) in R× (0,+∞)
∂tρ = d2∂xxρ+ ρ (r2 − a2ρ− k2µ) in R× (0,+∞) .

where d1, d2, r1, r2, a1, a2, k1, k2 are positive constants with ecological meaning (diffusion rates,
intrinsic growth rates, intraspecific competition rates, interspecific competition rates). We as-
sume, without loss of generality, that k2a2

r2
2
≥ k1a1

r2
1
.

Let k = k1r2
a2r1

> 0, α = k2a2r1
k1a1r2

> 0, d = d2
d1
> 0, r = r2

r1
> 0 and

(uk, vk) : (x, t) 7→
(
a1

r1
µ

(√
d1

r1
x,

1
r1
t

)
,
a2

r2
ρ

(√
d1

r1
x,

1
r1
t

))
.

We get: {
∂tuk = ∂xxuk + uk (1− uk)− kukvk in R× (0,+∞)
∂tvk = d∂xxvk + rvk (1− vk)− αkukvk in R× (0,+∞) .

As soon as k > 1 (which will always be assumed thereafter), αk
r > 1, that is the system is

bistable. Indeed, the free assumption k2a2
r2

2
≥ k1a1

r2
1

we made earlier ensures that α
r ≥ 1.

A priori, the parameters k, α, d and r can take any positive value. Let P (k, α, d, r) denote
this generic PDE problem. Our interest lies in the limit, as k → +∞, of the set of problems
{P (k, α, d, r)}k>1 (associated with a given (α, d, r)) (hence the notation uk and vk).
Moreover, going back to the initial parameters, this means that we actually consider a larger

class of ecological problems than just k1 → +∞ and k1
k2

constant. Indeed, the only restrictions
are that d2

d1
, r2
r1

and
k2a2
k1a1

are fixed along the whole class. For example, the limit k → +∞ may correspond to:
— k2 proportional (with a fixed constant along the whole class) to k1 and k1 → +∞ with a1

and a2 fixed (along the whole class);
— k1 → +∞ and a1 proportional to 1

k1
with a2 and k2 fixed;

— a2 proportional to a1 and a1 → 0 with k1 and k2 fixed.

1.2.1.2 Traveling wave system

Searching for a traveling wave of the variable ξ = x − ckt, where ck ∈ R is the unknown
invasion speed, the problem is eventually rewritten as:

−u′′k − cku′k = uk (1− uk)− kukvk in R
−dv′′k − ckv′k = rvk (1− vk)− αkukvk in R

uk (−∞) = 1, uk (+∞) = 0
vk (−∞) = 0, vk (+∞) = 1

u′k < 0 in R
v′k > 0 in R.

(1.2.1)

It is well-known that natural selection tends to differentiate the niches of competing species.
The traveling wave solution corresponds to the case where uk lives essentially in the left half-
space while vk lives essentially in the right half-space. In such a situation, it seems obvious that
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1.2 Formulation of the problem and main theorem

one species might chase the other and invade the abandoned territory. The whole point of this
article is to determine this species, or equivalently, the sign of the invasion speed. Indeed,

1. ck > 0 if and only if uk chases vk;
2. ck < 0 if and only if vk chases uk.

Of course, we aim to find a result depending on the value of d. Thus in the following pages,
when we focus on the dependency of ck on d, we write ck,d; otherwise, when d is fixed, we simply
write ck.

1.2.2 “Unity is not strength” theorem
Our main result follows.

Theorem 1.1. (d 7→ ck,d)k>1 converges locally uniformly in (0,+∞) to a continuous function
d 7→ c∞,d valued in

(
−2
√
rd, 2

)
and which has exactly the sign of α2 − rd, that is:

1. c∞,d = 0 if d = α2

r ;

2. c∞,d ∈ (0, 2) if d ∈
(

0, α
2

r

)
;

3. c∞,d ∈
(
−2
√
rd, 0

)
if d > α2

r .

Remark. This result is profoundly unexpected! It does not suffice to compare d to 1 or α to 1.
v can lose even if r is large and u can lose even if α is large, for example. This should yield
interesting insight into ecological applications.

1.2.3 Well-posedness and regularity of the problem
Theorem 1.2. For any k > 1, there exists a unique ck such that there exist solutions uk and vk
of the problem (1.2.1). It is needed that ck ∈

(
−2
√
rd, 2

)
, uk ∈ C∞ (R) and vk ∈ C∞ (R). We

can moreover assume exactly one of the following normalization hypotheses:
1. uk (0) = vk (0),
2. uk (0) = 1

2 ,
3. vk (0) = 1

2 ,
and if we do so, uk and vk are unique.

Proof. The well-posedness and the bounds for c_{k} are proven by Gardner in [77] and also by
Kan-On in [100] (actually, Gardner only showed ck ∈

[
−2
√
rd, 2

]
but Kan-On showed indeed

ck ∈
(
−2
√
rd, 2

)
which will be important in the end). It is worth mentioning that their papers

actually proved that the problem is well-posed without any monotonicity condition and that the
monotonicity is indeed needed.
Since uk, vk ∈ L∞ (R) and u′k, v′k ∈ L1 (R), the regularity just follows fromW k,p-estimates and

Sobolev injections.

Remark. The minimal and maximal speeds −2
√
rd and 2 are the invasion speeds of respectively

vk when uk = 0 and uk when vk = 0. This is a well-known result from Fisher and Kolmogorov,
Petrovsky and Piskunov [72, 104].
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Chapitre 1 Ondes progressives pour des systèmes diffusifs et fortement compétitifs : mobilité
relative et vitesse d’invasion

1.3 Limit problem
Here we show that (uk), (vk) and (ck) converge when k → +∞ and formulate the limit problem.

1.3.1 Existence of limit points
First, (ck) is relatively compact and therefore, by the Bolzano–Weierstrass theorem, has a

limit point c ∈
[
−2
√
rd, 2

]
.

If c ≤ 0, we fix for any k > 1 the normalization uk (0) = 1
2 . On the contrary, if c > 0, we fix

for any k > 1 vk (0) = 1
2 . This choice will be explained later on. In either case, this implies that

the functions k 7→ uk and k 7→ vk are well-defined.

Proposition 1.3. For any i ≥ 1, let Ki = [−i, i]. (uk) and (vk) are relatively compact in C (Ki).

Proof. Our aim here is to use the Ascoli–Arzela theorem. To that end, let us show that each uk
is Hölder-continuous with a constant independent of k.
There exists a positive function χ ∈ D (R) such that χ (x) = 0 if x /∈ [−i− 1, i+ 1] and

χ (x) = 1 if x ∈ [−i, i].
For any k > 1, if we multiply the equation defining uk by ukχ and then integrate, we get:∫

(−u′′kukχ− cku′kukχ) =
∫
u2
kχ−

∫
u2
k (uk + kvk)χ.

The third term is obviously negative. An integration by parts yields:∫
u′2k χ−

∫
u2
k

2 χ′′ + ck

∫
u2
k

2 χ′ ≤
∫
u2
kχ.

Finally, since
∫
u′2k χ ≥

∫ i
−i u

′2
k and ‖uk‖L∞ ≤ 1, we have:

‖u′k‖2L2(Ki) ≤
∫ (

χ+ |ck|2 |χ
′|+ 1

2 |χ
′′|
)
.

Then we use the Ascoli–Arzela theorem: the family (uk) is bounded in L∞ (Ki) and uniformly
equicontinuous in Ki therefore it is relatively compact in C (Ki).
The exact same proof works for (vk).

It is now clear, by a standard diagonal extraction argument, that there exists a subsequence
of (uk) (resp. (vk)) which converges locally uniformly to a limit point u (resp. v).

1.3.2 Properties of the limit points
c, u and v are actually unique and true limits as will be proven later on. For the moment, let

us just consider extracted convergent subsequences, still denoted by (ck), (uk) and (vk).

Lemma 1.4. uv = 0.

Proof. Multiplying by a test function ϕ ∈ D (R) and integrating the equation for uk yields:

k

∣∣∣∣∫ ukvkϕ

∣∣∣∣ ≤ ∫ uk (1− uk) |ϕ|+ |ck|
∫
uk |ϕ′|+

∫
uk |ϕ′′|

≤ C‖ϕ‖W 2,1(R).
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1.3 Limit problem

Hence ukvk → 0 in D′ (R).
Since ukvk → uv locally uniformly, we get indeed uv = 0.

Remark. This kind of result is usually referred to as a segregation property. There is a lot of
similar results in the literature.

Lemma 1.5. We have

−αu′′ + dv′′ − αcu′ + cv′ = αu (1− u)− rv (1− v)

in D′ (R).

Proof. Multiply the equation for uk by α and subtract from it the one for vk. The left-hand side
converges trivially in D′ (R). The right-hand side converges by dominated convergence.

Lemma 1.6. u, v ∈ C (R) and αu− dv ∈ C1 (R).

Proof. The continuity of u and v is immediate thanks to the continuity of each uk and vk and
the locally uniform convergence.
Let a, b ∈ R such that a < b and Ia : C ([a, b]) → C ([a, b]) defined by Ia (f) : x 7→

∫ x
a
f . By

continuity of u and v, it is quite obvious that the function

αcu− cv + Ia (αu (1− u)− rv (1− v))− (αcu (a)− cv (a))

is continuous. But, thanks to the previous lemma, it is also equal in D′ ((a, b)) to −αu′ + dv′ up
to an additive constant. Therefore −αu′ + dv′ is a well-defined function of C ([a, b]).

Lemma 1.7. u and v have finite limits at ±∞. Also,

0 ≤ lim
+∞

u ≤ lim
−∞

u ≤ 1

and

0 ≤ lim
−∞

v ≤ lim
+∞

v ≤ 1.

Proof. By locally uniform convergence, u and v are monotone, respectively non-increasing and
non-decreasing, and satisfy 0 ≤ u, v ≤ 1.

Lemma 1.8. u and v cannot vanish simultaneously on a non-empty compact set.

Proof. Once again, we consider a non-empty compact set [a, b]. By monotonicity, if u|[a,b] = 0,
then u|[a,+∞) = 0. Similarly, v|(−∞,b] = 0. Thus, in D′ ((−∞, a)), −u′′ − cu′ = u (1− u) and
αu′−dv′ = αu′. Therefore u′ is continuous and, using −u′′−cu′ = u (1− u), u′′ is also continuous
and the previous differential equation is satisfied pointwise.
Now, we get by induction that u is C∞ in (−∞, a). Since it does not explode on the left of a,

it is the restriction of a solution on a strictly larger interval. Since u is regular, u′ (a) = 0 and by
the Cauchy–Lipschitz theorem, u is identically null. By the same reasoning, v is also identically
null.
To prevent u and v from being both null on the whole real line, either one of the two normaliza-

tion sequences (uk (0))k>1 =
( 1

2
)
and (vk (0)) =

( 1
2
)
combined with locally uniform convergence

suffices.
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Chapitre 1 Ondes progressives pour des systèmes diffusifs et fortement compétitifs : mobilité
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Remark. We already knew that uv = 0 everywhere. Thus the previous lemma ensures that, for
any a < b, u|[a,b] = v|[a,b] = 0 is not possible; one of the two densities has to be positive whereas
the other has to be null.

Lemma 1.9. Neither u nor v can be positive everywhere.

Proof. If c ≤ 0, the normalization sequence is (uk (0)) =
( 1

2
)
. It ensures that u is not null. We

define ξu = sup {ξ ∈ R | u (ξ) > 0} ∈ (−∞,+∞].
If ξu = +∞ (that is, u positive everywhere), v is null.
In such a case, we have u decreasing, bounded between 0 and 1, with limits at infinity, non-

constant by normalization, and −u′′ − cu′ = u (1− u) everywhere with u ∈ C∞ (R).
Standard elliptic estimates [80] yield then that lim−∞ u = 1 and lim+∞ u = 0.
Thus u is a traveling wave for the Fisher–KPP equation with speed c ≤ 0 <

√
2, hence the

contradiction [104].
If c > 0, we just apply this reasoning to v with normalization (vk (0)) =

( 1
2
)
.

Corollary 1.10. The two quantities sup {ξ ∈ R | u (ξ) > 0} and inf {ξ ∈ R | v (ξ) > 0} are real
and equal. Up to translation, we can assume it to be 0. By continuity of u and v, u (0) = v (0) = 0.

Lemma 1.11. We have:
1. u ∈ C∞ ((−∞, 0) ∪ (0,+∞)),
2. v ∈ C∞ ((−∞, 0) ∪ (0,+∞)).

Moreover, we can extend u′ and v′ by continuity on the left and on the right respectively and obtain
u′ (0) = limξ→0,ξ<0 u

′ (ξ) and v′ (ξv) = limξ→0,ξ>0 v
′ (ξ) which are finite and satisfy −αu′ (0) =

dv′ (0) > 0.

Proof. u is identically zero on (0,∞) so u|(0,+∞) is trivially C∞. In (−∞, 0), it is a weak, and
then regular (same routine), solution of u′′ + cu′ + u (1− u) = 0.

Eventually, just recall that αu− dv ∈ C1 (R). If its derivative at 0 is zero, by the same kind of
Cauchy–Lipschitz reasoning, u = v = 0 everywhere.

Remark. The relation αu′ (0) + dv′ (0) = 0 is essentially the free boundary condition obtained
by Nakashima and Wakasa in [120].

Lemma 1.12. lim−∞ u = 1 and lim+∞ v = 1.

Proof. Same as before.

Lemma 1.13. c ∈
(
−2
√
rd, 2

)
, that is c /∈

{
−2
√
rd, 2

}
.

Proof. Let us assume, for example, c = −2
√
rd. Let ξ? > 0 such that v (ξ?) = 1

2 .
We know from Fisher and KPP [104] that c = −2

√
rd is the maximal speed for which there

exists a traveling wave vKPP positive, going from 0 at −∞ to 1 at +∞, which satisfies

−dv′′KPP − cv′KPP = rvKPP (1− vKPP ) .

We normalize by fixing vKPP (ξ?) = 1
2 . Let f = vKPP − v.

First, we can easily check that f is in C (R) ∩ C∞ ((−∞, 0) ∪ (0,+∞)) and satisfies

−df ′′ − cf ′ = rf (1− f)− 2rvf

in (0,+∞).
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For any ξ > ξ?, 1−f (ξ)−2v (ξ) = 1−vKPP (ξ)−v (ξ) < 0, with f (ξ?) = 0. We can therefore
apply the maximum principle to the elliptic operator

d
d2

dξ2 + c
d
dξ + r (1− f − 2v)

in any interval (ξ?, b), b > ξ?. Since lim+∞ f = 0, it gives us that f (ξ) ≤ 0 for any ξ ∈ (ξ?,+∞).
But we can also apply the minimum principle to the same operator, and we eventually get that
f is identically zero in (ξ?,+∞). This way, f ′ (ξ?) = 0, hence f is identically zero in (0,+∞),
which is impossible since f (0) > 0 and f is continuous in R.

1.3.3 Limit problem
Let us sum up all these results in the following theorem.

Theorem 1.14. There exist locally uniform limits u and v of (uk) and (vk) respectively. They
satisfy:

1. u, v ∈ C (R) ∩ C∞ ((−∞, 0) ∪ (0,+∞));
2. limξ→−∞ u (ξ) = 1;
3. limξ→+∞ v (ξ) = 1;
4. u|R+ = 0;
5. v|R− = 0;
6. u′ ≤ 0 in R− with u′ (0) defined by left-continuity;
7. v′ ≥ 0 in R+ with v′ (0) defined by right-continuity;
8. −u′′ − cu′ = u (1− u) in (−∞, 0);
9. −dv′′ − cv′ = rv (1− v) in (0,+∞);

10. αu′ (0) = −dv′ (0).

The behavior of these limits is illustrated with the following figure.

v′(0)
u′(0) = − d

αv
′(0)

0

1

0

u v

1.3.4 Uniqueness of the limit points
The following theorem is due to Du and Lin [59, 60].
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Theorem 1.15. For any c > −2, the problem{
−y′′c − cy′c = yc (1− yc) in (0,+∞)

yc (0) = 0

admits a unique positive solution.
It satisfies y′c > 0 in R+ and limξ→+∞ y (ξ) = 1.
Furthermore, the function γ : c 7→ y′c (0) is increasing and continuous.

Remark. We need to change u and v before pursuing this direction. Let us consider ũ : ξ 7→ u (−ξ)

and ṽ : ξ 7→ v

(√
d
r ξ

)
. Then ũ is a solution of the problem{

−ũ′′ + cũ′ = ũ (1− ũ) in (0,+∞)
ũ (0) = 0

and ṽ is a solution of the problem{
−ṽ′′ − c√

rd
ṽ′ = ṽ (1− ṽ) in (0,+∞)

ṽ (0) = 0.

Also, c ∈
(
−2
√
rd, 2

)
so that −c > −2 and c√

rd
> −2. Therefore we can apply the theorem.

Corollary 1.16. For any d > 0, there exists a unique (u, v, c) satisfying the limit problem.

Proof. The equality −αu′ (0) = dv′ (0) can be written as αγ (−c) =
√
rdγ

(
c√
rd

)
. Now we

consider the two functions x 7→ αγ (−x) and x 7→
√
rdγ

(
x√
rd

)
. They necessarily have an

intersection point since c exists. But as they are respectively decreasing and increasing, this
intersection point is unique.
The uniqueness of c implies by the previous theorem the uniqueness of u and v.

The triplet (u, v, c) of the above corollary is hereafter denoted (u∞,d, v∞,d, c∞,d).

Corollary 1.17. The sequences (ck), (uk) and (vk) each have a unique limit point. Hence the
pointwise convergence of (ck) and locally uniform convergence of (uk) and (vk) are fully proved
and there is no need to consider extracted subsequences anymore.

Proof. Recall that, in any metric space, a sequence whose image is relatively compact and which
has a unique limit point converges to this limit point.

Remark. It is now clear that the sum up theorem of the previous section gives sufficient but far
from necessary conditions for uniqueness. For any c, u and v are unique if and only if they are
positive and satisfy points 4, 5, 8 and 9 and then the uniqueness of c is just a consequence of
point 10.

Proposition 1.18. The convergence of (d 7→ ck,d)k>1 to d 7→ c∞,d is locally uniform.

Proof. Actually, one can see easily that the whole proof of pointwise convergence of (d 7→ ck,d)k>1
holds if we do not fix a priori d. It suffices to have d ∈ [D1, D2], with D2 > D1 > 0 fixed, so that
we can replace bounds like −2

√
rd by −2

√
rD2.
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1.4 Dependency of the invasion speed on the diffusion rates

1.4 Dependency of the invasion speed on the diffusion rates
This last section is where we derive from the limit problem the result: how does the invasion

speed c depend on the diffusion rate d? Thanks to the convergence of (ck) to c, we will then be
able to extend it to ck (for k large enough).

Theorem 1.19. The function d 7→ c∞,d has exactly the sign of α2 − rd.

Proof. The sign of c∞,d is actually a simple consequence of the relation αγ (−c) =
√
rdγ

(
c√
rd

)
.

Indeed, let us prove that rd < α2 implies c∞,d > 0. Indeed, if rd < α2, then
√
rd
α < 1 and as

γ
(

c√
rd

)
> 0, we get

√
rd
α γ

(
c√
rd

)
< γ

(
c√
rd

)
. Since γ is increasing, c√

rd
> −c, which clearly

implies that c > 0. The case rd > α2 is similar.
If rd = α2, the relation becomes γ (−c) = γ

(
c√
rd

)
. An obvious zero of s 7→ γ (−s)− γ

(
s√
rd

)
is 0, and by monotonicity it is unique, hence c = 0.

Proposition 1.20. The function d 7→ c∞,d is continuous in (0,+∞).

Proof. This could follow from the continuity of each d 7→ ck,d and the locally uniform convergence,
but the continuity of d 7→ ck,d is actually a more difficult problem (and is not solved by Kan-On
[100]). Therefore, we prove the continuity of d 7→ c∞,d directly. Our proof being basically a
repetition of the whole previous section of this article, we give only a sketch of it.
First, let 0 < D1 < D2. We have:

{c∞,d | d ∈ [D1, D2]} ⊂
{
c∞,d | d ∈ [D1, D2] ∩

(
α2

r
,+∞

)}
∪ {0} ∪

{
c∞,d | d ∈ ∩

(
0, α

2

r

)}

⊂

 ⋃
d∈[D1,D2]∩

(
α2
r ,+∞

)
[
−2
√
rd, 0

] ∪ [0, 2]

⊂
[
−2
√
rD2, 2

]
.

Thus, {c∞,d | d ∈ [D1, D2]} is a relatively compact subset of R.
Now, let δ ∈ [D1, D2] and (δn)n∈N ∈ [D1, D2]N a positive sequence which converges to δ. Up

to extraction, (c∞,δn) converges to a limit point C.
If C ≤ 0, we translate each couple (u∞,δn , v∞,δn) so that (u∞,δn (0)) =

( 1
2
)
. If C > 0, we trans-

late each couple (u∞,δn , v∞,δn) so that (v∞,δn (0)) =
( 1

2
)
. In either case, {u∞,d | d ∈ [D1, D2]}

and {v∞,d | d ∈ [D1, D2]} are relatively compact in each C (Ki) by the Ascoli–Arzela theorem,
and, up to extraction, (u∞,δn) and (v∞,δn) converge locally uniformly. Let U and V be their
limits.

1. We have −αU ′′ + δV ′′ − αCU ′ + CV ′ = αU (1− U)− rV (1− V ) in D′ (R).
2. U and V are continuous, αU − δV is C1.
3. U and V are positive and have finite limits at infinity.
4. UV = 0.
5. If C ≤ 0, U is not identically null by normalization and V cannot be identically null since if

it was, U would be a traveling wave for the Fisher–KPP equation with a speed smaller than
2. The same reasoning applies for C > 0 and finally, neither U nor V can be identically
null.

67



Chapitre 1 Ondes progressives pour des systèmes diffusifs et fortement compétitifs : mobilité
relative et vitesse d’invasion

6. U and V cannot be both null on a compact subset by continuity of (αU − δV )′ and a
Cauchy–Lipschitz argument.

Now we translate back so that

sup {ξ ∈ R | U (ξ) > 0} = inf {ξ ∈ R | V (ξ) > 0} = 0.

This yields U|R+ = 0, V|R− = 0, −U ′′−CU ′ = U (1− U) in (−∞, 0), −δV ′′−CV ′ = rV (1− V )
in (0,+∞) and αU ′ (0) = −δV ′ (0). Basically, C, U and V satisfy the exact same problem as
c∞,δ, u∞,δ and v∞,δ. By uniqueness, C = c∞,δ, that is c∞,δ is the unique limit point of (c∞,δn)
and eventually c∞,δn → c∞,δ. Therefore d 7→ c∞,d is indeed continuous.

1.5 Conclusion
We have proved our “Unity is not strength” theorem. Some remaining questions concern the

shape of the asymptotic speed: What are the limits when d→ 0 or d→ +∞? Are there optimal
diffusion rates so that the invasion of one species or the other is the fastest? And eventually,
how fast is the convergence to this asymptotic limit and, for example, is it monotone?
These could be addressed with the knowledge of the derivatives of the speed as a function of

k or d. These might be determined analytically thanks to Kan-On formulas [100]. However, we
did not manage to compute the sign of these derivatives, that is, the monotonicity of the speed
with respect to k or d. We leave it as an open problem.
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Chapitre 2

Compétition en milieu périodique : I –
Existence d’ondes pulsatoires

Résumé

Ce chapitre étudie l’existence d’ondes pulsatoires en milieu spatialement périodique pour
un système de compétition – diffusion de Lotka – Volterra à deux espèces bistable. En se
restreignant aux systèmes fortement compétitifs, une simple condition suffisante de type
« haute fréquence ou faibles amplitudes » est mise en avant. Cette condition est de fait
suffisante pour garantir que tout état de coexistence périodique converge vers l’état de co-
extinction, et ainsi se déstabilise et devienne envahissable par les états de semi-extinction,
quand la compétition devient suffisamment forte.
Ce chapitre a fait l’objet d’une publication sous le titre Competition in periodic media :

I – Existence of pulsating fronts dans Discrete and Continuous Dynamical Systems – Series
B [Gir17].
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2.1 Introduction
This is the first part of a sequel to our previous article with Grégoire Nadin [GN15]. In this

prequel, we studied the sign of the speed of bistable traveling wave solutions of the following
competition–diffusion problem:{

∂tu1 − ∂xxu1 = u1 (1− u1)− ku1u2 in (0,+∞)× R
∂tu2 − d∂xxu2 = ru2 (1− u2)− αku1u2 in (0,+∞)× R.

We proved that, as k → +∞, the speed of the traveling wave connecting (1, 0) to (0, 1)
converges to a limit which has exactly the sign of α2 − rd. In particular, if α = r = 1 and if k
is large enough, the more motile species is the invader: this is what we called the “unity is not
strength” result.
In view of this result, it would seem natural to try to generalize it in heterogeneous spaces,

that is to systems with non-constant coefficients. Is the more motile species still the invading
one?
The first obstacle toward this generalization is that of the existence of traveling fronts –or of

some suitable generalization of these– for such a problem. Indeed, while past work had already
established the existence of competitive bistable traveling waves in the case of homogeneous
spaces (recall for instance Gardner [77] and Kan-On [100]), to the best of our knowledge, there
is at this time no such pre-established result in the case of fully heterogeneous spaces (see the
recent review of Guo and Wu [84]).
One of the main difficulties regarding this existence problem is of course the combination

of unboundedness and heterogeneity. This yields additional difficulties (for instance, there are
multiple non-equivalent definitions of the principal eigenvalue [22] and convenient integration-
wise boundary conditions are lacking). Therefore, it is likely easier to first treat a simple case.
With this in mind, we focus in this article on a simple, yet relevant application-wise heterogeneity:
the periodic one. We hope to pave the way for a possible future generalization.
Periodic spaces are likely the type of unbounded heterogeneous spaces we know best how to

handle mathematically and thus a literature about scalar equations in periodic spaces has been
developed during the past few years. Concerning scalar reaction–diffusion in periodic spaces and
with “KPP”-type non-linearities, important results have been established recently by Berestycki
and his collaborators [14, 16, 17] (see also Nadin [117, 118] in space-time periodic media). We
will rely a lot on these scalar results. Regarding bistable non-linearities, we refer to the work of
Ding, Hamel and Zhao [57] and Zlatos [148].
For the sake of simplicity, we will assume that diffusion and interspecific competition rates

are constant. We expect our main ideas to be generalizable to systems with periodic diffusion
and interspecific competition rates, but we also expect a lot of technical details to get messy
and there might very well be some major issues. As a counterpart to this loss in generality, we
will be able to treat a much larger class of growth–saturation terms since the explicit form of
these will not be prescribed a priori. We will only require some reasonable “KPP non-linearities”
assumptions.
Since our final goal is to study the limits of these pulsating fronts as the competition becomes

infinite, we will only consider systems in which competition is the main underlying mechanism,
that is for large values of the interspecific competition rate. A first consequence of this approach
is that our system will always be bistable. A second consequence is that segregation phenomena
will be involved quite frequently. Competition-induced segregation in homogeneous spaces have
been a main center of interest of Dancer, Terracini and others since the nineties ([38, 41, 42, 45,
46, 47, 49, 52] among others). They basically confirmed the intuitive idea that competitors tend
to live in different ecological niches.
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2.2 Preliminaries and main results

To investigate the existence of bistable pulsating fronts connecting two extinction states, we
have at our disposal recent abstract results about monotone semiflows stated by Weinberger
[141] (monostable case) and Fang and Zhao [69] (bistable case). Even though both articles were
mostly concerned by scalar equations, they were careful enough to include monotone systems,
such as two-species competitive ones, in their framework. Notice that Yu and Zhao [146] used a
similar framework to prove, in the weak competition case, the existence of monostable pulsating
fronts connecting two extinction states despite the presence of an intermediate coextinction state
(Weinberger’s framework requires no intermediate stationary state) (see also Fang–Yu–Zhao [68]
for a similar work in space-time periodic media).
The core idea of Fang and Zhao’s theorem is as follows: provided a bistable monotone problem,

if all intermediate stationary states are unstable and if they are invaded by the stable states,
then bistable traveling waves do exist. While these hypotheses might be easily verified for
some problems (say, scalar or space-homogeneous), in the case exposed here, real issues arise
from the segregation phenomenon. Indeed, stable intermediate segregated periodic coexistence
states might a priori exist. Therefore it is natural to wonder whether periodicity might induce
some simple, yet relevant, sufficient condition to enforce the non-existence of segregated periodic
coexistence states. We will indeed state one such condition and will show that this condition is
moreover sufficient to guarantee that all remaining periodic stationary states are unstable and
invaded by the stable ones.
The following pages will be organized as follows: in the first section, the core hypotheses and

framework will be precisely formulated and the main results stated. The second section will be
dedicated to the proof of the existence of pulsating front solutions; in particular, we will perform
a quite thorough study of the stability of periodic coexistence states.
The study of the limit as k → +∞ of these pulsating fronts will be the object of the second

part [GN18].

2.2 Preliminaries and main results
Let d, k, α, L > 0, C = (0, L) ⊂ R and (f1, f2) : [0,+∞)× R→ R2 L-periodic with respect to

its second variable. For any u : R2 → [0,+∞) and i ∈ {1, 2}, we refer to (t, x) 7→ fi (u (t, x) , x)
as fi [u]. Our interest lies in the following competition–diffusion problem:{

∂tu1 = ∂xxu1 + u1f1 [u1]− ku1u2
∂tu2 = d∂xxu2 + u2f2 [u2]− αku1u2

(Pk)

2.2.1 Preliminaries
2.2.1.1 Redaction conventions.

— Mirroring the definition of f1 [u] and f2 [u], for any function of two real variables f and any
real-valued function u of two real variables, f [u] will refer to (t, x) 7→ f (u (t, x) , x). For
any real-valued function u of one real variable, f [u] will refer to x 7→ f (u (x) , x). For any
function f of one real variable and any real-valued function u of one or two real variables,
f [u] will simply refer to f ◦ u.

— For the sake of brevity, although we could index everything ((P), u1, u2. . . ) on k and d,
the dependencies on k or d will mostly be implicit and will only be made explicit when it
definitely facilitates the reading.

— Since we consider the limit of this system when k → +∞, many (but finitely many) results
will only be true when “k is large enough”. Hence, we define by induction the positive
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number k?, whose value is initially 1 and is updated each time a statement is only true
when “k is large enough” in the following way: if the statement is true for any k ≥ k?,
the value of k? is unchanged; if, conversely, there exists K > k? such that the statement
is true for any k ≥ K but false for any k ∈ [k?,K), the value of k? becomes that of K. In
the text, we will indifferently write “for k large enough” or “provided k? is large enough”.
Moreover, when k indexes appear, they a priori indicate that we are considering families
indexed on (equivalently, functions defined on) [k?,+∞), but for the sake of brevity, when
sequential arguments imply extractions of sequences and subsequences indexed themselves
on increasing elements of [k?,+∞)N, we will not explicitly define these sequences of indexes
and will simply stick with the indexes k, reindexing along the course of the proof the
considered objects. In such a situation, the statement “as k → +∞” should be understood
unambiguously.

— Periodicity will always implicitly mean L-periodicity (unless explicitly stated otherwise).
For any functional space X on R, Xper denotes the subset of L-periodic elements of X.

— We will use the classical partial order on the space of functions from any Ω ⊂ RN to R:
g ≤ h if and only if, for any x ∈ Ω, g (x) ≤ h (x), and g < h if and only if g ≤ h and
g 6= h. We recall that when g < h, there might still exists x ∈ Ω such that g (x) = h (x).
If, for any x ∈ Ω, g (x) < h (x), we use the notation g � h. In particular, if g ≥ 0, we
say that g is non-negative, if g > 0, we say that g is non-negative non-zero, and if g � 0,
we say that g is positive (and we define similarly non-positive, non-positive non-zero and
negative functions). Eventually, if g1 ≤ h ≤ g2, we write h ∈ [g1, g2], if g1 < h < g2, we
write h ∈ (g1, g2), and if g1 � h� g2, we write h ∈ 〈g1, g2〉.

— We will also use the partial order on the space of vector functions Ω → RN ′ naturally
derived from the preceding partial order. It will involve similar notations.

— The periodic principal eigenvalue of a second order elliptic operator L with periodic coeffi-
cients will be generically referred to as λ1,per (−L). Recall (from Berestycki–Hamel–Roques
[16] for instance) that the periodic principal eigenvalue of L is the unique real number λ
such that there exists a periodic function ϕ� 0 satisfying:{

−Lϕ = λϕ in R
‖ϕ‖L∞(C) = 1

The Dirichlet principal eigenvalue of an elliptic operator L in a sufficiently smooth domain
Ω will be referred to as λ1,Dir (−L,Ω). Since our framework is spatially one-dimensional,
such elliptic operators will involve first and second derivatives with respect to the spatial
variable x.

2.2.1.2 Hypotheses on the reaction.

For any i ∈ {1, 2}, we have in mind functions fi such that the reaction term ufi [u] is of
logistic type (also known as KPP type). At least, we want to cover the largest possible class of
(u, x) 7→ µ (x)− ν (x)u. This is made precise by the following assumptions.

(H1) fi is C1 with respect to its first variable up to 0 and Hölder-continuous with respect to its
second variable with a Hölder exponent larger than or equal to 1

2 .
(H2) There exists a constant mi > 0 such that fi [0] ≥ mi.
(H3) fi is decreasing with respect to its first variable and there exists ai > 0 such that, if u > ai,

then for any x ∈ R fi (u, x) < 0.
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Remark. If fi is in the class of all (u, x) 7→ µ (x)− ν (x)u, then µ, ν ∈ C0,1/2
per (R), µ� 0, ν � 0.

More generally, from (H1), (H2) and the periodicity of fi [0], it follows immediately that there
exists a constant Mi > mi such that fi [0] ≤Mi. Without loss of generality, we assume that mi

and Mi are optimal, that is mi = min
C

fi [0] and Mi = max
C

fi [0].

We refer to max (M1,M2) (resp. min (m1,m2)) as M (resp. m).
Furthermore, we need a coupled hypothesis on the pair (f1, f2).

(Hfreq) The constants d, M1 and M2 satisfy L < π
(

1√
M1

+
√

d
M2

)
.

Remark. Even if this might not be clear right now, this is the key hypothesis. (Hfreq) means that,
given a fixed amplitude, we consider high frequencies, or equivalently, given a fixed frequency, we
consider low amplitudes. This sufficient condition for existence might be a bit relaxed but the
best condition we can give is very verbose and only slightly better. See the proof of Proposition
2.13, which is where (Hfreq) plays its role.

2.2.2 Two main results and a conjecture
Using known results about scalar equations and periodic principal eigenvalues [16], the follow-

ing lemma is quite straightforward (as will show Subsection 2.2.3.3).

Lemma 2.1. Assume that f1 and f2 satisfy (H1), (H2) and (H3).
The set of all periodic stationary states of the problem (P) contains (0, 0), which is unstable,

and a pair {(ũ1, 0) , (0, ũ2)} with (ũ1, ũ2) ∈ C2
per

(
R, (0,+∞)2

)
.

As usual in the literature concerning competitive systems, hereafter, the stationary states with
exactly one null component are referred to as extinction states whereas the stationary states with
no null component are referred to as coexistence states. The extinction states of (P) are periodic
and some of its coexistence states may be periodic as well.
Our contribution to the study of the stationary states is the following theorem.

Theorem 2.2. Assume that f1 and f2 satisfy (H1), (H2) and (H3) and that (f1, f2) satisfies
(Hfreq).
Then there exists k? > 0 such that, for any k > k?, each extinction state is locally asymptoti-

cally stable and any periodic coexistence state is unstable.
Furthermore, let (u1,k, u2,k)k>k? be a family of C2

per

(
R,R2) such that, for any k > k?, (u1,k, u2,k)

is an unstable periodic stationary state of (Pk). Then (u1,k, u2,k) converges in Cper
(
R,R2) to

(0, 0) as k → +∞.

Remark. We stress that we did not investigate the existence nor the countability of the subset
of periodic coexistence states. We stress as well that we did not investigate at all aperiodic
coexistence states. We believe that a sharper description of the set of stationary states of (P)
could follow from bifurcation arguments (see Hutson–Lou–Mischaikow [96] or Furter–López-
Gómez [76]). Since it was not our point at all (instability of periodic coexistence states was only
a required step toward existence of pulsating fronts), we chose to leave this subject as an open
question.
Thanks to the previous theorem, it is then possible to prove the following existence theorem.

Theorem 2.3. Assume that f1 and f2 satisfy (H1), (H2) and (H3) and that (f1, f2) satisfies
(Hfreq).
Then there exists k? > 0 such that, for any k > k?, the problem (P) admits a bistable pulsating

front solution connecting the two extinction states.
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To end this subsection, let us present an important conjecture about the existence problem
and about the sharpness of (Hfreq). We did not address this question but hopefully others will.

Conjecture. Neither (Hfreq) nor the nonexistence of a stable periodic coexistence state are
necessary conditions for the existence of a bistable pulsating front solution connecting the two
extinction states.
Furthermore, there exists a non-empty set of parameters (L, d, α, k, f1, f2) such that no such

pulsating front exists.

We point out that, according to the present work, any of the following two conditions enforces
that either (Hfreq) is not satisfied or k ≤ k?:

— the existence of a stable periodic coexistence state;

— the nonexistence of a bistable pulsating front solution.

Moreover, our work will show that, if k > k?, any stable periodic coexistence state has the
“close to segregation” form (which will be rigorously defined later on; roughly speaking, “close to
segregation” periodic coexistence states converge as k → +∞ to a non-trivial periodic coexistence
state satisfying u1u2 = 0). This important property might be the starting point of a future work
on the preceding conjecture.

2.2.3 A few more preliminaries

2.2.3.1 Compact embeddings of Hölder spaces

We recall a well-known result of functional analysis.

Proposition 2.4. Let (a, a′) ∈ (0,+∞)2 and n, n′, β, β′ such that (a, a′) = (n+ β, n′ + β′), n
and n′ are non-negative integers and β and β′ are in (0, 1].
If a ≤ a′, then the canonical embedding i : Cn′,β′ (C) ↪→ Cn,β (C) is continuous and compact.

It will be clear later on that this problem naturally involves uniform bounds in C0,1/2 and in
C2,1/2. Therefore, we fix once and for all β ∈

(
0, 1

2
)
and we will use systematically the compact

embeddings Cn,1/2 ↪→ Cn,β , meaning that uniform bounds in Cn,1/2 yield relative compactness in
Cn,β .

2.2.3.2 Existence and uniqueness for the evolution system

Proposition 2.5. Let k > 0. Equipped with an initial non-negative condition (u1,0, u2,0) ∈
C0,1/2

(
R,R2), the problem (P) is well-posed: there exists a unique non-negative entire solution

(u1, u2) ∈ C1,1/4
(
[0,+∞), C2,1/2

(
R,R2)).

Furthermore, if (u1,0, u2,0) > 0, then (u1, u2) � 0, and if (u1,0, u2,0) ∈ Cper
(
R,R2), then

(u1, u2) ∈ C1 ([0,+∞), C2
per

(
R,R2)).

Remark. We do not give a fully detailed proof of this statement. Ideas similar to those given in
Berestycki–Hamel–Roques [16, Remark 2.7] suffice. The existence of solutions for the truncated
system in (−n, n) with Dirichlet boundary conditions can be proved with Pao’s super- and sub-
solutions theorem for competitive systems [124].
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2.2 Preliminaries and main results

2.2.3.3 Extinction states

Lemma 2.6. The periodic principal eigenvalues of − d2

dx2 −f1 [0] and −d d2

dx2 −f2 [0] are negative.

Proof. This follows from (H2) and the monotonicity of the periodic principal eigenvalue with
respect to the zeroth order term of the elliptic operator. Indeed, for instance:

λ1,per

(
− d2

dx2 − f1 [0]
)
≤ λ1,per

(
− d2

dx2 −m1

)
= −m1 < 0.

From this lemma and hypotheses (H1) and (H3), a fundamental result from Berestycki–Hamel–
Roques [16] can be applied.

Theorem 2.7. For any δ > 0 and any i ∈ {1, 2}, the equation:

−δz′′ = zfi [z]

admits a unique positive solution in C2
per (R).

Hereafter, ũ1 and ũ2 are the respective unique positive periodic solutions of:

−z′′ = zf1 [z] ,

−dz′′ = zf2 [z] .

(ũ1, 0) and (0, ũ2) are indeed the extinction states of any (Pk).

2.2.3.4 Monotone evolution system

One of the most important specificities of two-species competitive systems is that, up to a
slight transformation, they are monotone systems. It is the key behind the results of Fang–Zhao
[69] and Weinberger [141]. Let us recall this transformation.

Lemma 2.8. Let J : z 7→ ũ2 − z, for any z ∈ C2
per (R) or z ∈ C1 ([0,+∞), C2

per (R)
)
(with a

slight abuse of notation). Let k > k? and let (u1, u2) be a solution of (P) and v2 = J (u2).
Then (u1, v2) satisfies the following cooperative problem with periodicity conditions:{

∂tu1 − ∂xxu1 = u1f1 [u1] + ku1 (−ũ2 + v2)
∂tv2 − d∂xxv2 = ũ2f2 [ũ2]− (ũ2 − v2) f2 [ũ2 − v2] + αku1 (ũ2 − v2) . (Mk)

Corollary 2.9. Any solution (u1, u2) of (P) with initial condition (0, 0) < (u1,0, u2,0) < (ũ1, ũ2)
satisfies (0, 0)� (u1, u2)� (ũ1, ũ2).

2.2.3.5 Segregated reaction terms

As k → +∞, the following functions will naturally appear:

η : (z, x) 7→ f1

( z
α
, x
)
z+ − 1

d
f2

(
−z
d
, x
)
z−,

γ : (z, x) 7→ f1 (0, x) z+ − 1
d
f2 (0, x) z−,

where z+ = max (z, 0) and z− = −min (z, 0) so that z = z+ − z−.
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2.2.3.6 Derivatives of the reaction terms

We will denote gi the partial derivative of (u, x) 7→ ufi (u, x) with respect to u:

gi : (u, x) 7→ fi (u, x) + u∂1fi (u, x) for all i ∈ {1, 2} .

2.3 Existence of pulsating fronts

2.3.1 Aim: Fang–Zhao’s theorem
We recall that, for any k > k? and any t > 0, the Poincaré’s map Qt associated with (M) is

defined as the operator:

Qt : C
(
R,R2) ∩ [(0, 0) , (ũ1, ũ2)]→ C

(
R,R2) ∩ [(0, 0) , (ũ1, ũ2)]

which associates with some initial condition (u1,0, v2,0) the solution (u1, v2) of (M)evaluated at
time t > 0.
From Fang and Zhao [69], we know that (M) admits a pulsating front solution connecting

(ũ1, ũ2) to (0, 0) if:
1. (0, 0) and (ũ1, ũ2) � (0, 0) are locally asymptotically stable periodic stationary states of

(M) and all intermediate periodic stationary states of (M) are unstable;
2. for any intermediate periodic stationary state (u1, v2), the sum of the spreading speeds

associated with front-like initial data connecting respectively (ũ1, ũ2) to (u1, v2) and (u1, v2)
to (0, 0) is positive (notice that these sub-problems are of monostable type);

3. and if, for any t > 0, Qt satisfies the following hypotheses:
a) Qt is spatially periodic;
b) Qt is continuous with respect to the topology of the locally uniform convergence;
c) Qt is strongly monotone, in the sense that if (u1, v2) >

(
u1, v2), then:

Qt ((u1, v2))� Qt
((
u1, v2)) ;

d) Qt is compact with respect to the topology of the locally uniform convergence;
It is quite standard to check that the last four hypotheses are indeed satisfied. The verification
of the first two, on the contrary, is the object of the remaining of this paper.

2.3.2 Stability of all extinction states
Proposition 2.10. Provided k? is large enough, (ũ1, 0) and (0, ũ2) are locally asymptotically
stable.

Remark. For the case k = 1, the proof of the local asymptotic stability of the extinction states
was done by Dockery and his coauthors [58] with the help of Mora’s theorem [113]. It works here
too with a very slight adaptation; we give the proof for the sake of completeness.

Proof. Thanks to Mora’s theorem [113], we know that (ũ1, 0) is asymptotically stable if the peri-
odic principal eigenvalue of the elliptic part of the monotone problem (M) linearized at (ũ1, ũ2) =
(u, J (0)) is positive. Therefore we consider the differential operator A(ũ1,0) : C2

per (R)→ Cper (R)
defined as:

A(ũ1,0) =
( d2

dx2 + g1 [ũ1] kũ1

0 d d2

dx2 + f2 [0]− αkũ1

)
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2.3 Existence of pulsating fronts

From the special “triangular” form of A(ũ1,0), it is clear that:

min
(
sp
(
−A(ũ1,0)

))
= min

(
λ1,per

(
− d2

dx2 − g1 [ũ1]
)
, λ1,per

(
−d d2

dx2 − (f2 [0]− αkũ1)
))

.

By monotonicity of the periodic principal eigenvalue and (H3), we obtain:

λ1,per

(
− d2

dx2 − g1 [ũ1]
)
> λ1,per

(
− d2

dx2 − f1 [ũ1]
)
.

For any k large enough, f2 [0]− αkũ1 < f2 [ũ2] holds, so that:

λ1,per

(
−d d2

dx2 − (f2 [0]− αkũ1)
)
> λ1,per

(
−d d2

dx2 − f2 [ũ2]
)
.

Moreover, from the equation solved by ũ1, ũ1 is actually an eigenfunction for the following
eigenvalue:

λ1,per

(
− d2

dx2 − f1 [ũ1]
)

= 0.

Similarly,

λ1,per

(
−d d2

dx2 − f2 [ũ2]
)

= 0.

Thus:
λ1,per

(
−A(ũ1,0)

)
> 0.

The same proof holds for (0, ũ2).

2.3.3 Instability of all periodic coexistence states
In this subsection, we prove that (M) admits no stable periodic stationary states in 〈(0, 0) , (ũ1, ũ2)〉.
For any k > k?, let:

Sk ⊂ C2
per

(
R,R2)

be the set of periodic solutions of the following problem:
−u′′1 = u1f1 [u1]− ku1u2
−du′′2 = u2f2 [u2]− αku1u2

u1 ∈ 〈0, ũ1〉
u2 ∈ 〈0, ũ2〉 .

Any (u1, u2) ∈ S is a periodic coexistence state.

2.3.3.1 Basic properties of periodic coexistence states

Lemma 2.11. Let k > k?. Any (u1, u2) ∈ S satisfies:
kmin u2 ≤ max f1 [max u1]
αkmin u1 ≤ max f2 [max u2]
min f1 [min u1] ≤ kmax u2

min f2 [min u2] ≤ αkmax u1,

each extrema being implicitly over C.
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Proof. We only prove the first inequality, the three others being proved similarly.
Let x ∈ C such that u1 (x) = max u1. Since u1 ∈ C2 (R), u′′1 (x) ≤ 0, that is:

max u1f1 [max u1] ≥ max u1ku2 (x) .

Since u1 > 0, we can divide by max u1. The claimed result easily follows.

Remark. This lemma will be used together with m > 0 to prove that ku1 and ku2 stay non-
zero as k → +∞. Thus, for the forthcoming study, it is not sufficient to merely assume that
λ1,per

(
− d2

dx2 − f1 [0]
)

and λ1,per

(
−d d2

dx2 − f2 [0]
)

are negative (as was done for instance by
Dockery and his collaborators [58]).

Proposition 2.12. As k → +∞, the family (Sk)k>k? is relatively compact in C0,β
per

(
R,R2). (0, 0)

is one of its limit points. Any other limit point (u1,seg, u2,seg) ∈ C0,β
per

(
R,R2) is called a periodic

segregated state and is such that αu1,seg−du2,seg is a non-zero sign-changing solution in C2,β
per (R)

of the following elliptic equation:
−z′′ = η [z] .

Proof. Let k > k?.
Multiplying by u1,k the first equation of the stationary system and integrating over C yields

easily:

‖u′1,k‖L2(C) ≤ M1‖u1,k‖L2(C)

≤ M1‖ũ1‖L2(C),

whence, for all (x, y) ∈ C2:

|u1,k (x)− u1,k (y)| ≤M1‖ũ1‖L2(C) |x− y|
1/2
.

Moreover, ‖u1,k‖L∞(C) ≤ ‖ũ1‖L∞(C), and therefore (u1,k)k>k? is uniformly bounded in C0,1/2 (C)
and relatively compact in C0,β (C). The same proof holds for (u2)k>k? .
Let (u1,∞, u2,∞) ∈ C0,β

per

(
R,R2) be a limit point of (Sk)k>k? . There exists a sequence of

periodic coexistence states ((u1,k, u2,k))k>k? whose limit in C0,β
per

(
R,R2) is (u1,∞, u2,∞). By

elliptic regularity and thanks to the following equation:

−αu′′1,k + dv′′2,k = αu1,kf1 [u1,k]− u2,kf2 [u2,k] ,

which holds for any k > k? and is obtained by linear combination of the equations of the
stationary system, (αu1,k − du2,k) converge in C2,β

per (R) to v = αu1,∞ − du2,∞ ∈ C2,β
per (R).

Multiplying by a test function ϕ ∈ D (R) the equation defining u1,k, integrating and dividing
by k, we obtain easily that (u1,ku2,k) converges as k → +∞ in D′ (R) to 0. Hence u1,∞u2,∞ = 0
and then αu1,∞ = v+ and du2,∞ = v−. In particular, v satisfies as claimed:

−v′′ = η [v]

Let:
C1 = {x ∈ C | v (x) > 0} ,
C2 = {x ∈ C | v (x) < 0} ,
Γ = {x ∈ C | v (x) = 0} ,

so that:
C ⊂ C1 ∪ C2 ∪ Γ ⊂ C.

Exactly four cases are a priori possible:
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1. C1 = C: then by continuity v = αu1,∞ in C whereas u2,∞ = 0 in C, hence u1,∞ ∈ C2,β
per (R)

is a non-negative non-zero solution of

−u′′1,∞ = u1,∞f1 [u1,∞]

in R, and eventually by the elliptic strong minimum principle u1,∞ � 0, meaning that
u1,∞ = ũ1, and C2 = Γ = ∅;

2. C2 = C: then similarly C1 = Γ = ∅, u1,∞ = 0 and u2,∞ = ũ2;
3. C1 6= ∅ and C2 6= ∅.
4. C1 = ∅ and C2 = ∅: Γ = C, u1,∞ and v2,∞ are uniformly 0;

It is easily seen that Lemma 2.11 excludes the cases 1 (use the second inequality) and 2 (use the
first inequality).

Proposition 2.13. The following set equalities hold:{
z ∈ C2

per (R) | − z′′ = γ [z]
}

= {0} ,{
z ∈ C2

per (R) | − z′′ = η [z]
}

= {−dũ2, 0, αũ1} .

Proof. In the γ case, solutions of constant sign are excluded by:

λ1,per

(
− d2

dx2 − f1 [0]
)
< 0,

λ1,per

(
−d d2

dx2 − f2 [0]
)
< 0.

In the η case, solutions of constant sign are unique (see Berestycki–Hamel–Roques [16]) and
are exactly αũ1 and −dũ2. It only remains to prove that non-zero sign-changing solutions are
excluded, and up to a shift of C it suffices to prove that non-zero sign-changing solutions which
are equal to 0 at 0 and L are excluded.
For any x ∈ R, any f ∈ C0

per (R, [m,M ]) and any δ ∈ {1, d}, let R (x, f, δ) > 0 such that:

λ1,Dir

(
−δ d2

dx2 − f,B (x,R (x, f, δ))
)

= 0.

Since the following function:

R 7→ λ1,Dir

(
−δ d2

dx2 − f,B (x,R)
)

is continuous, decreasing and has positive and negative values (its limits as R→ 0 or R→ +∞
are respectively +∞ and λ1,per

(
−δ d2

dx2 − f
)
< 0, as proved in [16]), R (x, f, δ) is uniquely

defined. Since λ1,Dir

(
−δ d2

dx2 − f,B (x,R)
)
is non-increasing with respect to f and decreasing

with respect to R, it is easy to check that f 7→ R (x, f, δ) is non-increasing.
Remark that R (x, f, δ) and λ1,Dir

(
−δ d2

dx2 − f,B (x,R (x, f, δ))
)
do not depend on x if f does

not depend on x. Remark that, in such a case, R (0, f, δ) can be easily determined analytically
and is equal to π

2

√
δ
f .
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With these notations, (Hfreq) means:

L < 2 (R (0,M1, 1) +R (0,M2, d)) .

Let z be a solution of −z′′ = γ [z] or a solution of −z′′ = η [z]. Let:

C+ = z−1 ((0,+∞)) ∩ C,

C− = z−1 ((−∞, 0)) ∩ C.
Assume by contradiction that both are non-empty. Let n be the number of zeros of z in C.
Then:
— in virtue of the Hopf lemma, of:

min
(

min
x∈C

R (x, f1 [0] , 1) ,min
x∈C

R (x, f2 [0] , d)
)
> 0

and of the continuity of z, n is finite and odd, say n = 2p+1 with p a non-negative integer,
and C+ and C− both have precisely p + 1 connected components, each of them being a
one-dimensional ball (that is an interval); let

(
x+
i

)
1≤i≤p+1 (resp.

(
x−i
)

1≤i≤p+1) be the
ordered centers of the connected components of C+ (resp. C−);

— in the γ case:

|C+| = 2
p+1∑
i=1

R
(
x+
i , f1 [0] , 1

)
≥ 2

p+1∑
i=1

R
(
x+
i ,M1, 1

)
≥ 2 (p+ 1)R (0,M1, 1)
≥ 2R (0,M1, 1) ,

and similarly:

|C−| = 2
p+1∑
i=1

R
(
x−i , f2 [0] , d

)
≥ 2R (0,M2, d) ,

whence we get the contradiction;
— in the η case:

|C+| = 2
p+1∑
i=1

R
(
x+
i , f1

[ z
α

]
, 1
)

≥ 2
p+1∑
i=1

R
(
x+
i , f1 [0] , 1

)
,

|C−| = 2
p+1∑
i=1

R
(
x−i , f2

[
−z
d

]
, d
)

≥ 2
p+1∑
i=1

R
(
x−i , f2 [0] , d

)
yield a similar contradiction.
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Corollary 2.14. Any family (u1,k, u2,k)k>k? of periodic coexistence states converges in C
0,β
per

(
R,R2)

as k → +∞ to (0, 0).

Remark. This result has a very natural interpretation from an ecological point of view: if the
wavelength of the distribution of resources is small enough, or if the resources are rare enough even
in the most favorable areas, the species are not able to settle periodically in a favorable habitat
smaller than the wavelength. Either one of them is strong enough to overcome unfavorable areas
while eliminating the competitor and then it settles in the whole habitat, either both go extinct.
Basically, at a given average intrinsic growth rate, the more fragmented the habitat is, the higher
the chances of extinction are.

Lemma 2.15. There exists R1 ∈ (0,+∞) and R2 ∈ (R1,+∞) such that, provided k? is large
enough, for any k > k? and any (u1,k, u2,k) ∈ Sk:

R1 ≤
‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)
≤ R2.

Remark. Proof inspired by Dancer–Du [45, Lemma 2.1].

Proof. By contradiction, assume that there exists a sequence of periodic coexistence states
((u1,k, u2,k))k>k? such that

(
‖u2,k‖L∞(C)
α‖u1,k‖L∞(C)

)
k>k?

is neither bounded from above nor from be-
low by a positive constant. By symmetry, we can assume without loss of generality that it is not
bounded from below by a positive constant. Up to extraction, ‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)
→ 0 as k → +∞.

Suppose first that
(
αk‖u1,k‖L∞(C)

)
k>k?

is bounded. Necessarily, k‖u2,k‖L∞(C) → 0 as k →
+∞.
For any non-negative f ∈ C (R,R), the following problem:

−z′′ = zf1 [z]− zf

with periodicity conditions has a unique positive periodic solution zf if and only if:

λ1,per

(
− d2

dx2 − (f1 − f)
)
< 0

(see Berestycki–Hamel–Roques [16]). Moreover, zf depends continuously on f as a map from
Cper (C) into itself (see Berestycki–Rossi [22]). Hence u1,k = zku2,k → z0 as k → +∞, where z0
solves:

−z′′0 = z0f1 [z0]

with periodicity conditions (that is u [0] = ũ1). Since k‖ũ1‖L∞(C) → +∞, we get a contradiction.
Hence

(
αk‖u1,k‖L∞(C)

)
k>k?

is unbounded. Up to extraction, we can assume that k‖u1,k‖L∞(C) →
+∞.
For any k > k?, let û1,k = u1,k

‖u1,k‖L∞(C)
, û2,k = u2,k

‖u2,k‖L∞(C)
. Clearly, (û1,k, û2,k) satisfies:{

−û′′1,k = û1,kf1
[
‖u1,k‖L∞(C)û1,k

]
− k‖u2,k‖L∞(C)û1,kû2,k

−dû′′2,k = û2,kf2
[
‖u2,k‖L∞(C)û2,k

]
− αk‖u1,k‖L∞(C)û1,kû2,k.

From there, it follows with the same estimates as in the proof of Proposition 2.12 that û1,k and
û2,k converge up to extraction in C0,β

per (R). Let û1,∞ and û2,∞ be their limits; for any i ∈ {1, 2}
‖ûi,∞‖L∞(C) = 1, hence ui,∞ 6= 0.
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Then, we consider the system above in D′ (C). Let ϕ ∈ D (C) and use it as a test function.
On the second line, we see that, since:∫ (

dû′′2,k + û2,kf2
[
‖u2,k‖L∞(C)û2,k

])
ϕ

is k-uniformly bounded, the same is true of:∫
αk‖u1,k‖L∞(C)û1,kû2,kϕ.

Thus: ∫
k‖u2,k‖L∞(C)û1,kû2,kϕ =

‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)

∫ (
αk‖u1,k‖L∞(C)û1,kû2,kϕ

)
→ 0

Therefore, considering the first line, we see that, by dominated convergence, the limit satisfies
in the distributional sense:

−û′′1,∞ = û1,∞f1
[
‖u1,∞‖L∞(C)û1,∞

]
.

Since û1,∞ is in C0,β
per (R), it is actually a solution in C2,β

per (R) by classical elliptic regularity. In
virtue of the elliptic strong minimum principle, û1,∞ � 0. But it is also true, using the same
arguments as before, that û1,∞û2,∞ = 0, hence û2,∞ = 0, which is indeed a contradiction.

Lemma 2.16. Let ((u1,k, u2,k))k>k? be a sequence of periodic coexistence states. Then ((ku1,k, ku2,k))k>k?
is k-uniformly bounded in L∞ (C).

Proof. From Lemma 2.15, it suffices to assume that there exists a sequence ((u1, u2))k>k? such
that k‖u1,k‖L∞(C) → +∞ as k → +∞ and to get a contradiction.
With the same notations as in the proof of Lemma 2.15, up to extraction we can assume

that û1,k → û1,∞ and û2,k → û2,∞ in C0,β
per (R). We have for any i ∈ {1, 2} ‖ûi,∞‖L∞(C) = 1,

hence ui,∞ 6= 0. Considering the limit of the equation satisfied by û2,k in D′ (C) shows that
û1,∞û2,∞ = 0. Thanks to Lemma 2.15, up to extraction, we can assume that there exists l > 0
such that α‖u1,k‖L∞(C)

‖u2,k‖L∞(C)
→ l. Moreover, considering the equation satisfied by û1,k in D′ (C) shows

that, for any ϕ ∈ D (C): ∫
k‖u2,k‖L∞(C)û1,kû2,kϕ

is k-uniformly bounded.
Multiplying the equation defining û1,k by l and subtracting from it the equation defining û2,k

yields:

−lû′′1,k + dû′′2,k = lû1,kf1
[
‖u1,k‖L∞(C)û1,k

]
− û2,kf2

[
‖u2,k‖L∞(C)û2,k

]
+
(
α‖u1,k‖L∞(C)

‖u2,k‖L∞(C)
− l
)
k‖u2,k‖L∞(C)û1,kû2,k.

Considering it in D′ (C), passing to the limit (with, in virtue of Corollary 2.14, ‖ui,k‖L∞(C) →
0) and defining v = lû1,∞ − dû2,∞, it becomes:

−v′′ = γ [v] .

By classical elliptic regularity, v is actually a solution in C2,β
per (R). Then Proposition 2.13

implies lû1,∞ = dû2,∞, but together with û1,∞û2,∞ = 0 and the fact that the pair (u1,∞, u2,∞)
is non-zero, this is a contradiction.
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Lemma 2.17. Provided k? is large enough, the following lower bound holds:

inf
k>k?

inf
(u1,u2)∈Sk

min
{

min
C

(ku1) ,min
C

(ku2)
}
> 0

Proof. Let ((u1,k, u2,k))k>k? . For any i ∈ {1, 2} and any k > k?, let Ui,k = kui,k. (U1,k, U2,k)
satisfies the following system: −U ′′1,k = U1,kf1

[
U1,k
k

]
− U1,kU2,k

−dU ′′2,k = U2,kf2

[
U2,k
k

]
− αU1,kU2,k.

Since U1,k and U2,k are k-uniformly bounded in L∞ (C) in virtue of Lemma 2.16, we can prove
with the same arguments as before that, for any i ∈ {1, 2} and up to extraction, Ui,k converges
in C0,β

per (R) to some Ui,∞ ≥ 0, and by Lemma 2.11 (third and fourth inequalities), Ui,∞ 6= 0. The
limits satisfy the remarkable following system:{

−U ′′1,∞ = U1,∞f1 [0]− U1,∞U2,∞
−dU ′′2,∞ = U2,∞f2 [0]− αU1,∞U2,∞.

At first this system is to be understood in the distributional sense, but once more thanks to
classical elliptic regularity U1,∞ and U2,∞ are actually in C2,β

per (R). Thanks to the elliptic strong
minimum principle, for any i ∈ {1, 2}, Ui,∞ � 0.
In C, −U

′′
1,∞

U1,∞
= f1 [0]− U2,∞ ≤M1. Integration over C yields:∫

C

f1 [0] = −
∫
C

∣∣∣∣U ′1,∞U1,∞

∣∣∣∣2 +
∫
C

U2,∞ ≤
∫
C

U2,∞.

Similarly, ∫
C

f2 [0] ≤
∫
C

U1,∞.

Then (H2) shows that (U1,∞, U2,∞) is at positive distance of the origin in L1 (C), and then in

L∞ (C) by classical embeddings. Harnack’s inequality yields eventually that min
(

min
C

(U1,∞) ,min
C

(U2,∞)
)

is bounded from below by a real number ε > 0. By uniform convergence and provided k? is large

enough, the infimum of the sequence
(

min
{

min
C

(ku1,k) ,min
C

(ku2,k)
})

k>k?
is greater than, say,

3ε
4 . This ε depends on m, C, but neither on the limit point (U1,∞, U2,∞) nor on the choice of
a convergent subsequence of ((u1, u2))k>k? , whence the bound holds for any convergent subse-
quence of ((u1, u2))k>k? . Furthermore, the bound does not depend on the choice of the sequence
((u1, u2))k>k? itself, whence it holds for any convergent subsequence of any sequence.
The conclusion on the whole set is a standard compactness argument.

2.3.3.2 Instability of periodic coexistence states close to (0, 0)

Lemma 2.18. Provided k? is large enough, for any (u1, u2) ∈ S, the differential operator
A(u1,u2) : C2

per (R)→ Cper (R) defined as:

A(u1,u2) =
( d2

dx2 + g1 [u1]− ku2 ku1

αku2 d d2

dx2 + g2 [u2]− αku1

)
is strongly positive.
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Proof. It is well-known that A(u1,u2) is strongly positive (i.e. satisfies the strong minimum
principle) if there exists a pair of positive functions whose image by −A(u1,u2) is itself non-
negative (see for instance Figueiredo–Mitidieri [54]). From (H1), if k is large enough, there
exists a constant R > 0 which depends only on x 7→ ∂1f1 (0, x) and x 7→ ∂1f2 (0, x) such that:{

∂1f1 [u1] ∈ [−R, 0]
∂1f2 [u2] ∈ [−R, 0] .

From here, it is easy to check that, up to extraction and using the notations of the proof of
Lemma 2.17,

−A(u1,k,u2,k)

(
U1,∞
U2,∞

)
→
(
U1,∞U2,∞
αU1,∞U2,∞

)
uniformly in C as k → +∞.
This limit being positive, thanks to standard compactness arguments, we get indeed the

claimed statement.

Proposition 2.19. For any k > k?, any (u1, u2) ∈ S is unstable.

Proof. Thanks to Mora’s theorem [113], we know that (u1, u2) is unstable if the principal eigen-
value of the elliptic part of the monotone problem (M) linearized at (u1, J (u2)) is negative. It
is easy to verify that the linearized operator is in fact:

A(u1,u2) =
( d2

dx2 + g1 [u1]− ku2 ku1

αku2 d d2

dx2 + g2 [u2]− αku1

)

A(u1,u2) being strongly positive (see Lemma 2.18), it is injective and, up to a restriction of
its codomain, it is invertible. Krein–Rutman’s theorem and a well-known routine involving the
compact canonical embedding C2,β (C) ↪→ C0,β

loc (C) prove the existence of the periodic principal
eigenvalue λ1,per

(
−A(u1,u2)

)
.

Now, we have to prove that λ1,per
(
−A(u1,u2)

)
< 0. Recall the following characterization from

Krein–Rutman’s theorem:

λ1,per
(
−A(u1,u2)

)
= inf

{
λ ∈ R | ∃ϕ ∈ C2

per

(
R, (0,+∞)2

) (
−A(u1,u2) − λ

)
ϕ ≤ 0 in R

}
.

Therefore, we only need to find some λ < 0 and some ϕ ∈ C2
per

(
R, (0,+∞)2

)
satisfying:(

−A(u1,u2) − λ
)
ϕ ≤ 0.

Using (H1), it is easy to check that there exists a constant R > 0 which depends only on
x 7→ ∂1f1 (0, x) and x 7→ ∂1f2 (0, x) such that:

(
−A(u1,u2)

)(u1
u2

)
=

(
−u2

1∂1f1 [u1]− ku1u2
−u2

2∂1f2 [u2]− αku1u2

)
≤

(
(Ru1 − ku2)u1

(Ru2 − αku1)u2

)
≤ −min

{
min
C

(ku2 −Ru1) ,min
C

(αku1 −Ru2)
}(

u1
u2

)
.
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In virtue of Lemma 2.17, provided k? is large enough, for any K > k? and any (u1,K , u2,K) ∈
SK :

min
{

min
C

(Ku2,K −Ru1,K) ,min
C

(αKu1,K −Ru2,K)
}
> 0.

Consequently it holds for k and (u1, u2).

Now, if we define λ as −min
{

min
C

(ku2 −Ru1) ,min
C

(αku1 −Ru2)
}

and ϕ as (u1, u2), it is

obvious that
(
−A(u1,u2) − λ

)
ϕ ≤ 0. Therefore, (u1, u2) is unstable.

2.3.4 Counter-propagation
In this subsection, we prove the so-called counter-propagation hypothesis. Let us recall from

Fang–Zhao [69] that, since every intermediate periodic stationary state is unstable (Proposition
2.19), their set is totally unordered.

Proposition 2.20. Let k > k? and (u1, u2) ∈ S.
Let c?+ ((u1, ũ2 − u2) , (ũ1, ũ2)) ∈ R and c?− ((u1, ũ2 − u2) , (0, 0)) ∈ R be the spreading speeds as-

sociated with front-like initial data connecting respectively (ũ1, ũ2) to (u1, ũ2 − u2) and (u1, ũ2 − u2)
to (0, 0).
Then:

c?+ ((u1, ũ2 − u2) , (ũ1, ũ2)) + c?− ((u1, ũ2 − u2) , (0, 0)) > 0.

Remark. At least formally, since (u1, u2) vanishes as k → +∞, we have:

c?+ ((u1, ũ2 − u2) , (ũ1, ũ2))→ c?+ ((0, ũ2) , (ũ1, ũ2)) ,

c?− ((u1, ũ2 − u2) , (0, 0))→ c?− ((0, ũ2) , (0, 0)) .
It is easily seen that the first limit is in fact the spreading speed of the scalar KPP pulsating

front connecting ũ1 to 0 for the equation ∂tu1 − ∂xxu1 = u1f1 [u1] whereas the second one is in
fact the spreading speed of the scalar KPP pulsating front connecting ũ2 to 0 for the equation
∂tu2 − d∂xxu2 = u2f2 [u2]. These limiting speeds are both positive. Hence, heuristically, we
expect that both c?+ ((u1, ũ2 − u2) , (ũ1, ũ2)) and c?− ((u1, ũ2 − u2) , (0, 0)) are positive whenever
k is large enough, and this is indeed what we will prove.

Proof. Let k > k?, (u1, u2) ∈ S, A(u1,u2) be the associated linear elliptic operator defined as in
Lemma 2.18, t > 0, Qt be the semiflow associated with (M) and Qu,lint be the linear semiflow
associated with ∂t −A(u1,u2). We intend to use Weinberger’s theory [141, Theorem 2.4] in order
to establish that:

c?+ ((u1, ũ2 − u2) , (ũ1, ũ2)) ≥ inf
µ>0

−λ1,per
(
−µ2diag (1, d)−A(u1,u2)

)
µ

.

(The exponential relation between the periodic principal eigenvalue of the elliptic operator
A(u1,u2) and that of the semiflow Qu,lint is classical and not detailed here.)
On one hand, to apply [141, Theorem 2.4], we have to find δ ∈ (0, 1) and η+ > 0 such that,

for all (v1, v2) ∈ [(0, 0) , (η+, η+)]:

Qt [(v1, v2) + (u1, ũ2 − u2)]− (u1, ũ2 − u2) ≥ (1− δ)Qu,lint [(v1, v2)] ,

that is such that:

δQu,lint [(v1, v2)] ≥ Qu,lint [(v1, v2)] + (u1, ũ2 − u2)−Qt [(v1, v2) + (u1, ũ2 − u2)] .
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On the other hand, by definition of Qu,lin, for all ε > 0, we have the existence of ηε > 0 such
that, if (v1, v2) ∈ [(0, 0) , (ηε, ηε)]:∣∣∣Qu,lint [(v1, v2)] + (u1, ũ2 − u2)−Qt [(v1, v2) + (u1, ũ2 − u2)]

∣∣∣ ≤ εmax
(

max
C

v1,max
C

v2

)
.

Hence it would be sufficient to show, for all (v1, v2) ∈ [(0, 0) , (ηε, ηε)], the following inequality:

εmax
(

max
C

v1,max
C

v2

)
≤ δmin

(
min
C

Qu,lint [(v1, v2)]1 ,min
C

Qu,lint [(v1, v2)]2
)
,

which is a straightforward consequence of the positivity of A(u1,u2) and of the instability of
(u1, u2) (fixing for instance δ = 1

2 and then choosing ε small enough). Finally we define η+ = ηε.
Applying the same sketch of proof and being careful with the signs, we prove the existence of

η− > 0 such that, for all (v1, v2) ∈ [(0, 0) , (η−, η−)]:

−Qt [− (v1, v2) + (u1, ũ2 − u2)] + (u1, ũ2 − u2) ≥ 1
2Q

u,lin
t [(v1, v2)] ,

whence a second inequality is established:

c?− ((u1, ũ2 − u2) , (0, 0)) ≥ inf
µ>0

−λ1,per
(
−µ2diag (1, d)−A(u1,u2)

)
µ

.

It is worthy to point out that both spreading speeds are estimated from below by the same
quantity.
To conclude, we just have to notice the following inequality, true for all µ > 0:

λ1,per
(
−µ2diag (1, d)−A(u1,u2)

)
≤ −µ2 min (1, d) + λ1,per

(
−A(u1,u2)

)
< 0.

In particular, from:

−λ1,per
(
−µ2diag (1, d)−A(u1,u2)

)
µ

≥ inf
µ>0

(
µmin (1, d)−

λ1,per
(
−A(u1,u2)

)
µ

)
,

we deduce the following estimate:

inf
µ>0

−λ1,per
(
−µ2diag (1, d)−A(u1,u2)

)
µ

≥ 2
√

min (1, d)
∣∣λ1,per

(
−A(u1,u2)

)∣∣ > 0.

2.3.5 Existence of pulsating fronts connecting both extinction states
We are now able to state rigorously the existence of pulsating fronts thanks to Fang–Zhao [69].

Theorem 2.21. For any k > k?, there exists c ∈ R and (ϕ1, ϕ2) ∈ C
(
R2,R2) such that the

following properties hold.
1. ϕ1 and ϕ2 are respectively non-increasing and non-decreasing with respect to their first

variable, generically noted ξ.
2. ϕ1 and ϕ2 are periodic with respect to their second variable, generically noted x.
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3. As ξ → +∞,

max
x∈[0,L]

|(ϕ1, ϕ2) (−ξ, x)− (ũ1, 0) (x)|+ max
x∈[0,L]

|(ϕ1, ϕ2) (ξ, x)− (0, ũ2) (x)| → 0.

4. (u1, u2) : (t, x) 7→ (ϕ1, ϕ2) (x− ct, x) is a classical solution of (P).

Remark. For any ξ0 ∈ R, (ξ, x) 7→ (ϕ1, ϕ2) (ξ + ξ0, x) is a pulsating front solution of (P) as well.
Regarding the regularity of (ϕ1, ϕ2), we recall that, even if Fang–Zhao [69] (as well as Wein-

berger [141]) worked in the framework of continuous functions, by classical parabolic regu-
larity, a continuous solution of (P) is in C1

loc

(
R, C2

loc

(
R,R2)). Hence (ϕ1, ϕ2) is a fortiori in

C1
loc

(
R2,R2). This can be improved provided f1 and f2 are C1 with respect to x. Indeed, differ-

entiating (P) with respect to t and x shows similarly that ∂t (u1, u2) ∈ C1
loc

(
R, C2

loc

(
R,R2)) and

∂x (u1, u2) ∈ C1
loc

(
R, C2

loc

(
R,R2)). In such a case, (ϕ1, ϕ2) is at least in C2 (R2,R2).
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Chapitre 3

Compétition en milieu périodique : II –
Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la

force »

Résumé

Ce chapitre s’intéresse à la limite, quand le taux de compétition interspécifique tend vers
l’infini, d’ondes pulsatoires solutions d’un système de compétition – diffusion de Lotka – Vol-
terra bistable en milieu spatialement périodique. On distingue deux cas importants : vitesse
limite nulle et non-nulle. Dans le premier cas, on montre l’existence d’équilibres stationnaires
ségrégés. Dans le second cas, on est capable d’établir l’unicité de l’onde pulsatoire ségrégée,
et ainsi de prouver la convergence. L’onde pulsatoire ségrégée est solution d’un problème de
frontière libre intéressant. On étudie également le signe de la vitesse limite, vue comme une
fonction des paramètres du système. On est en mesure de déterminer complètement ce signe,
avec des conditions explicites dépendant uniquement de ces paramètres. En particulier, si
l’une des deux espèces est suffisamment plus mobile ou compétitive que l’autre, alors il s’agit
de l’envahisseur. Ce résultat est donc de type « L’union ne fait pas la force ».
Ce chapitre, co-écrit avec Grégoire Nadin, a fait l’objet d’une publication sous le titre

Competition in periodic media : II – Segregative limit of pulsating fronts and “Unity is not
strength”-type result dans Journal of Differential Equations [GN18].

89



Chapitre 3 Compétition en milieu périodique : II – Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la force »

3.1 Introduction
This is the second part of a sequel to our previous article [GN15]. In the prequel, we studied

the sign of the speed of bistable traveling wave solutions of the following competition–diffusion
problem: {

∂tu1 − ∂xxu1 = u1 (1− u1)− ku1u2 in (0,+∞)× R
∂tu2 − d∂xxu2 = ru2 (1− u2)− αku1u2 in (0,+∞)× R.

We proved that, as k → +∞, the speed of the traveling wave connecting (1, 0) to (0, 1)
converges to a limit which has exactly the sign of α2 − rd. In particular, if α = r = 1 and if k
is large enough, the more motile species is the invader: this is what we called the “Unity is not
strength” result.
In view of this result, it would seem natural to try to generalize it in heterogeneous spaces,

that is to systems with non-constant coefficients. Is the more motile species still the invading
one?
Competition–diffusion problems in bounded heterogeneous spaces with various boundary con-

ditions have been widely studied during the past decades. Dockery, Hutson, Mischaikow and
Pernarowski [58] showed (in particular) that for the heterogeneous system:{

∂tu1 − d1∆xu1 = a1 (x)u1 − u2
1 − u1u2 in (0,+∞)× Ω

∂tu2 − d2∆xu2 = a2 (x)u2 − u2
2 − u1u2 in (0,+∞)× Ω

with a1 and a2 non-constant functions, d1 and d2 constant, Ω a bounded open subset of some
Euclidean space and homogeneous Neumann boundary conditions, the persistent species is ac-
tually the less motile one. The interspecific competition rate of this system is equal to 1 and
the system is therefore monostable. On the contrary, as soon as the competition rate is large
enough, the system is bistable. We wonder whether this qualitative change might be sufficient to
reverse their conclusion. If we are able to extend in some satisfying way our space-homogeneous
result, then the conclusion will be reversed indeed.
In the first part [Gir17] of this sequel, the first author studied the existence of bistable pulsating

front solutions for the following problem:{
∂tu1 = ∂xxu1 + u1f1 (u1, x)− ku1u2 in (0,+∞)× R
∂tu2 = d∂xxu2 + u2f2 (u2, x)− αku1u2 in (0,+∞)× R.

Here, the non-linearities (u, x) 7→ ufi (u, x), i ∈ {1, 2}, are of “KPP”-type and, most impor-
tantly, are spatially periodic. Thanks to Fang–Zhao’s theorem [69], it was showed that, provided
k is large enough and (f1, f2) satisfies a high-frequency algebraic hypothesis (we highlight that
the condition was algebraic and not asymptotic), there exists indeed such a pulsating front.
While the forthcoming main ideas might be generalizable to systems with periodic diffusion

and interspecific competition rates, an existence result is lacking. Therefore we naturally stick
with the aforementioned system. Let us recall moreover that the fully heterogeneous problem
(non-periodic non-constant coefficients) is, as far as we know, still completely open at this time.
Let us recall as well that several important results about scalar reaction–diffusion equations

in periodic media have been established recently (about “KPP”-type, see [16, 17, 117, 118, 121];
about “ignition”-type and monostable non-linearities, see [14]; about bistable non-linearities,
see [57, 56, 144]). The first author used extensively the results about “KPP”-type equations in
[Gir17]. In the forthcoming work, we will use the whole collection of results. Especially, we will
use several times, in slightly different contexts, the sliding method of Berestycki–Hamel [14].
Integration over a bounded domain with Neumann boundary conditions and over a periodicity

cell are somehow similar operations and thus Neumann and periodic boundary conditions yield
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in general analogous results. The periodic extension of the persistence result by Dockery and his
collaborators seems in fact quite straightforward and, conversely, it should be possible to adapt
the forthcoming ideas to determine the persistent species in a bistable space-heterogeneous Neu-
mann problem with large competition rate. The comparison is therefore even more meaningful.
The competition-induced segregation phenomenon highlighted by Dancer, Terracini and others

(see for instance [38, 45, 47, 49, 52]) has been one of our main tools in the preceding pair of
articles [Gir17, GN15] and will still be a cornerstone here. In particular, segregation in two or
more dimensions generically yields free boundary problems and this will be a major difference
between the space-homogeneous case and this study: here, we will need to dedicate a few pages
to the natural free boundary problem induced by the segregation of pulsating fronts. Thanks to
the specific setting of pulsating fronts (monotonicity in time, spatial periodicity of the profile,
limiting conditions, etc.), we will be able to prove that the free boundary is the graph of a
strictly monotonic, bijective and continuous function without resorting to blow-up arguments or
monotonicity formulas. We believe that our approach of the free boundary has interest of its
own and that the ideas presented here might fond applications in other frameworks.
The following pages will be organized as follows: in the first section, the core hypotheses and

framework will be precisely formulated and the main results stated. The second section will
focus on the so-called “segregative limit” and will finally lead us to the third section and the
statement of the periodic extension of the “Unity is not strength” theorem.

3.2 Preliminaries and main results
Remark. Subsections 3.2.1 and 3.2.3 are mostly a repetition of the preliminaries of the first
author’s article [Gir17] where the existence of competitive pulsating fronts was investigated. A
reader well aware of this article may safely skip these. On the contrary, Subsections 3.2.2 and
3.2.4 respectively state the main results of this article and highlight the differences between the
present set of technical hypotheses and that of the first author’s article [Gir17].
Let d, k, α, L > 0, C = (0, L) ⊂ R and (f1, f2) : [0,+∞)× R→ R2 L-periodic with respect to

its second variable. For any u : R2 → [0,+∞) and i ∈ {1, 2}, we refer to (t, x) 7→ fi (u (t, x) , x)
as fi [u]. Our interest lies in the following competition–diffusion problem:{

∂tu1 = ∂xxu1 + u1f1 [u1]− ku1u2,
∂tu2 = d∂xxu2 + u2f2 [u2]− αku1u2.

(Pk)

3.2.1 Preliminaries
3.2.1.1 Redaction conventions.

— Mirroring the definition of f1 [u] and f2 [u], for any function of two real variables f and any
real-valued function u of two real variables, f [u] will refer to (t, x) 7→ f (u (t, x) , x). For
any real-valued function u of one real variable, f [u] will refer to x 7→ f (u (x) , x). For any
function f of one real variable and any real-valued function u of one or two real variables,
f [u] will simply refer to f ◦ u.

— For the sake of brevity, although we could index everything ((P), u1, u2. . . ) on k and d,
the dependencies on k or d will mostly be implicit and will only be made explicit when it
definitely facilitates the reading.

— Since we consider the limit of this system when k → +∞, many (but finitely many) results
will only be true when “k is large enough”. Hence, we define by induction the positive
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number k?, whose value is initially 1 and is updated each time a statement is only true
when “k is large enough” in the following way: if the statement is true for any k ≥ k?, the
value of k? is unchanged; if, conversely, there exists K > k? such that the statement is true
for any k ≥ K but false for any k ∈ [k?,K), the value of k? becomes that of K. In the text,
we will indifferently write “for k large enough” or “provided k? is large enough”. Moreover,
when k indexes appear, they a priori indicate that we are considering families indexed
on [k?,+∞), but for the sake of brevity, when sequential arguments involve sequences
indexed themselves on increasing elements of [k?,+∞)N, we will not explicitly define these
sequences of indexes and will simply stick with the indexes k, reindexing along the course
of the proof the considered objects. In such a situation, the statement “as k → +∞” should
be understood unambiguously.

— Periodicity will always implicitly mean L-periodicity (unless explicitly stated otherwise).
For any functional space X on R, Xper denotes the subset of L-periodic elements of X.

— We will use the classical partial order on the space of functions from any Ω ⊂ RN to R:
g ≤ h if for any x ∈ Ω g (x) ≤ h (x) and g < h if g ≤ h and g 6= h. We recall that when
g < h, there might still exists x ∈ Ω such that g (x) = h (x). If, for any x ∈ Ω, g (x) < h (x),
we use the notation g � h. In particular, if g ≥ 0, we say that g is non-negative, if g > 0,
we say that g is non-negative non-zero, and if g � 0, we say that g is positive. Finally, if
g1 ≤ h ≤ g2, we write h ∈ [g1, g2], if g1 < h < g2, we write h ∈ (g1, g2), and if g1 � h� g2,
we write h ∈ 〈g1, g2〉.

— We will also use the partial order on the space of vector functions Ω → RN ′ naturally
derived from the preceding partial order. It will involve similar notations.

— Functions f of two or more real variables will sometimes be identified with the maps
t 7→ (x 7→ f (t, x)). This is quite standard in parabolic theory but we stress that the
variable of the map will always be the first variable of f , even if this variable is not called
t: we will use indeed functions of the pair of variables (ξ, x) ∈ R2 and then the maps will
be ξ 7→ (x 7→ f (ξ, x)). So for instance if we say that a function f of (ξ, x) is an element of
a functional space X (R, Y ), the latter should be understood unambiguously.

3.2.1.2 Hypotheses on the reaction.

For any i ∈ {1, 2}, we have in mind functions fi such that the reaction term ufi [u] is of
logistic type (also known as “KPP”-type). At least, we want to cover the largest possible class
of (u, x) 7→ µ (x) (a− u). This is made precise by the following assumptions.
(H1) fi is in C1 ([0,+∞)× R).
(H2) There exists a constant mi > 0 such that fi [0] ≥ mi.
(H3) fi is decreasing with respect to its first variable and there exists ai > 0 such that, for any

x ∈ R, fi (ai, x) = 0.
Remark. If fi is in the class of all (u, x) 7→ µ (x) (a− u), then µ ∈ C1

per (R), µ � 0 and a > 0.
More generally, from (H1), (H2) and the periodicity of fi [0], it follows immediately that there
exists a constant Mi > mi such that fi [0] ≤Mi. Without loss of generality, we assume that mi

and Mi are optimal, that is mi = min
C

fi [0] and Mi = max
C

fi [0].

3.2.1.3 Extinction states

The periodic principal eigenvalues of d2

dx2 + f1 [0] and d d2

dx2 + f2 [0] are negative (as proved by
the first author in [Gir17]). Recall (from Berestycki–Hamel–Roques [16] for instance) that the
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periodic principal eigenvalue of L is the unique real number λ such that there exists a periodic
function ϕ� 0 satisfying: {

−Lϕ = λϕ in R
‖ϕ‖L∞(C) = 1

From this observation, it follows from Berestycki–Hamel–Roques [16] that a1 (respectively a2)
is the unique periodic non-negative non-zero solution of −z′′ = zf1 [z] (resp. −dz′′ = zf2 [z]).
The states (a1, 0) and (0, a2) are clearly periodic stationary states of (Pk) (for any k > k?)

and are referred to as the extinction states of (Pk) (remark that they are the unique periodic
stationary states with one null component and the other one positive, so that it makes sense
to call them “the” extinction states). Provided k? is large enough, they are moreover locally
asymptotically stable (again, as proved in [Gir17]).
We recall also that, for any k > k?, by virtue of the scalar parabolic comparison principle, any

solution (u1, u2) of (Pk) with initial condition (0, 0) < (u1,0, u2,0) < (a1, a2) satisfies (0, 0) �
(u1, u2)� (a1, a2).

3.2.1.4 Pulsating front solutions of (P)

Let us add a necessary existence hypothesis.
(Hexis) There exists k? > 0 such that, for any k > k?, there exists ck ∈ R and (ϕ1,k, ϕ2,k) ∈

C2 (R2)2 such that the following properties hold.
— (u1,k, u2,k) : (t, x) 7→ (ϕ1,k, ϕ2,k) (x− ckt, x) is a classical solution of (Pk).
— ϕ1,k and ϕ2,k are respectively non-increasing and non-decreasing with respect to their

first variable, generically noted ξ.
— ϕ1,k and ϕ2,k are periodic with respect to their second variable, generically noted x.
— As ξ → −∞,

max
x∈[0,L]

|(ϕ1,k, ϕ2,k) (ξ, x)− (a1, 0)| → 0.

— As ξ → +∞,
max
x∈[0,L]

|(ϕ1,k, ϕ2,k) (ξ, x)− (0, a2)| → 0.

The pair (u1,k, u2,k) is referred to as a pulsating front solution of (Pk) with speed ck and profile
(ϕ1,k, ϕ2,k).
Before going any further, it is natural to wonder if such a solution is unique.

Conjecture. Let k > k?. Let (ϕ̂1, ϕ̂2) and ĉ be respectively the profile and the speed of a pulsating
front solution (û1, û2) of (P). Then ĉ = ck and there exists ξ̂ ∈ R such that (ϕ̂1, ϕ̂2) coincides
with:

(ξ, x) 7→ (ϕ1,k, ϕ2,k)
(
ξ − ξ̂, x

)
.

This conjecture is due to the following observation: in most (if not all) problems concerned
with bistable traveling or pulsating fronts, the front is unique (in the same sense as above: two
fronts have the same speed and have the same profile up to translation).
We refer to Gardner [77], Kan-On [100], Berestycki–Hamel [14] or Ding–Hamel–Zhao [57] for

proofs of this type of result in slightly different settings.
Because the proof of such a result:
— would involve precise estimates of the exponential decay of the profiles as ξ → ±∞ that

cannot be obtained briefly (in the scalar case, see Hamel [88]) and have no additional
interest in the forthcoming work,

93



Chapitre 3 Compétition en milieu périodique : II – Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la force »

— would be strongly analogous to the proofs of the preceding collection of references,
we choose to leave this as an open question here for the sake of brevity. We might address this
question in a future sequel.
Still, it is useful to have this uniqueness in mind because it clearly motivates our study of

lim
k→+∞

ck.

3.2.2 “Unity is not strength” theorem for periodic media
In the forthcoming theorem, the parameters d, α, f1 and f2 may vary (in some sense which is

made precise), but immediately after that they are fixed again (at least up to Section 3.4).

Theorem 3.1. [“Unity is not strength”, periodic case] Assume that there exists an open con-
nected set P of parameters:

(d, α, f1, f2) ∈ (0,+∞)2 ∩ C ([0,+∞), Cper (R))2

in which (H1), (H2), (H3) and (Hexis) are satisfied.
The sequence ((d, α, f1, f2) ∈ P 7→ ck)k>k? converges pointwise as k → +∞ to some continuous

function (d, α, f1, f2) ∈ P 7→ c∞. If the function (d, α, f1, f2) ∈ P 7→ k? is locally bounded, then
this convergence is in fact locally uniform in P.
Furthermore, for any (d, α, f1, f2) ∈ P, there exist r > 0, r ∈ (0, r] (both dependent on (f1, f2)

only) and a non-empty closed interval R0 ⊂ [r, r] (dependent on (d, f1, f2) only) such that the
sign of c∞ satisfies the following properties.

1. c∞ > 0 if and only if α
2

d > maxR0.

2. c∞ < 0 if and only if α
2

d < minR0.
3. If, for any i ∈ {1, 2}, fi has the particular form (u, x) 7→ µi (x) (1− u), then:

a) c∞ is null or has the sign of:

α2 − d
‖µ2‖L1(C)

‖µ1‖L1(C)
;

b) (r, r) satisfies:
min
C

(µ2)

max
C

(µ1) ≤ r ≤ r ≤
max
C

(µ2)

min
C

(µ1) .

The objects r, r and R0 are respectively defined by formulas (Fr),
(
Fr
)
and (FR0) (see page 130).

Remark. We emphasize the interest of r and r, which are upper and lower bounds for R0 which
are uniform with respect to d.
We will explain in Section 3.4 that if (Hexis) is derived from the existence result of the first

author [Gir17], then a set P exists: the main assumption of our theorem makes sense indeed.
The strategy of the proof is as follows.
We will begin with some compactness estimates uniform with respect to k so that a limiting

speed and an associated limiting solution, possibly non-unique at this point, can be extracted.
This will require a crucial distinction between two cases: limiting speed null or not.
Regarding the first case, we will give some regularity properties of the corresponding solution,

that will be called a segregated stationary equilibrium. It is unclear whether the segregated
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stationary equilibrium is unique but this is not surprising: the null speed case is known to be
quite degenerate (see for instance Ding–Hamel–Zhao [57]).
On the contrary, the second case will be fully characterized: the corresponding solution, the

segregated pulsating front, is actually unique (up to translation). Such a uniqueness result will
require several intermediary results and in particular a (possibly not complete but already quite
thorough) study of its intrinsic free boundary problem.
Subsequently, the uniqueness of the segregated pulsating front will follow from a sliding ar-

gument which will also provide us with an exclusion result: there exists a segregated stationary
equilibrium for a particular choice of parameters (d, α, f1, f2) if and only if there does not exist
a segregated pulsating front. Thanks to this result, the uniqueness of the limiting speed will be
deduced even though the null case is still degenerate.
We will then obtain a necessary and sufficient condition on (d, α, f1, f2) for the existence of

a segregated stationary equilibrium thanks to its regularity at the interface (which is, in some
sense, the counterpart to the free boundary problem leading to the uniqueness of the segregated
pulsating front) and finally, thanks to a classical integration by parts, obtain the sign of the
speed provided it is already known to be non-zero.

3.2.3 A few more preliminaries
3.2.3.1 Compact embeddings of Hölder spaces

Proposition 3.2. Let (a, a′) ∈ (0,+∞)2 and n, n′, β, β′ such that (a, a′) = (n+ β, n′ + β′), n
and n′ are non-negative integers and β and β′ are in (0, 1].
If a ≤ a′, then the canonical embedding i : Cn′,β′ (C) ↪→ Cn,β (C) is continuous and compact.

It will be clear later on that this problem naturally involves uniform bounds in C0,1/2. Therefore,
we fix once and for all β ∈

(
0, 1

2
)
and we will use systematically the compact embeddings

Cn,1/2 ↪→ Cn,β , meaning that uniform bounds in Cn,1/2 yield relative compactness in Cn,β .

3.2.3.2 Additional notations regarding the pulsating fronts

Let E =
(

1 1
1 1

)
. For any k > k?, (ck, ϕ1,k, ϕ2,k) satisfies the following system:

{
−div (E∇ϕ1,k)− ck∂ξϕ1,k = ϕ1,kf1 [ϕ1,k]− kϕ1,kϕ2,k
−ddiv (E∇ϕ2,k)− ck∂ξϕ2,k = ϕ2,kf2 [ϕ2,k]− αkϕ1,kϕ2,k.

(PFsys,k)

Remark. Be aware that, since spE = {0, 2}, the differential operator:

div (E∇) = ∂ξξ + ∂xx + 2∂ξx

is only degenerate elliptic. This will trigger difficulties unknown in the space-homogeneous case.
Most regularity results will come from the parabolic system (P) and we will need to go back
and forth a lot between the so-called “parabolic coordinates” (t, x) and the so-called “traveling
coordinates” (ξ, x). This will be possible if and only if the propagation speed is non-zero, whence
a necessary distinction of cases.
For any k > k?, let:

ψd,k = αϕ1,k − dϕ2,k,

ψ1,k = αϕ1,k − ϕ2,k,

vd,k = αu1,k − du2,k,
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v1,k = αu1,k − u2,k.

A linear combination of the equations of (PFsys,k) yields:

−div (E∇ψd,k)− ck∂ξψ1,k = αϕ1,kf1 [ϕ1,k]− ϕ2,kf2 [ϕ2,k] (PFk) .

(PFk) does not depend explicitly on k.
(u1,k, u2,k, vd,k, v1,k) is isomorphic to (ϕ1,k, ϕ2,k, ψd,k, ψ1,k) if and only if ck 6= 0. In parabolic

coordinates, (PFk) becomes:

∂tv1,k − ∂xxvd,k = αu1,kf1 [u1,k]− u2,kf2 [u2,k] .

As k → +∞, the following function will naturally appear:

η : (z, x) 7→ f1

( z
α
, x
)
z+ − 1

d
f2

(
−z
d
, x
)
z−,

where z+ = max (z, 0) and z− = −min (z, 0) so that z = z+ − z−.
We will also denote gi the partial derivative of (u, x) 7→ ufi (u, x) with respect to u:

gi : (u, x) 7→ fi (u, x) + u∂1fi (u, x) for all i ∈ {1, 2} .

3.2.4 Comparison between the first and the second part
In addition to the new notations introduced in the preceding subsection ( (PFsys), (PF),

“parabolic coordinates”, “traveling coordinates”, ψd, ψ1, vd, v1), the following differences are
pointed out.
— In the first part [Gir17], f1 and f2 were only assumed to be Hölder-continuous with respect

to x, whereas here we need them to be at least continuously differentiable. Thanks to
this technical hypothesis, it is then possible to differentiate with respect to x the various
equations and systems involved. In particular, continuous pulsating front solutions of
(P) are in fact in C2

loc

(
R2). This will similarly yield a stronger regularity at the limit.

Nevertheless, we think that Hölder-continuity might actually suffice to obtain most of the
forthcoming results.

— The positive zero of u 7→ fi (u, x) cannot depend on x anymore. Consequently, while, in the
first part [Gir17], the unique positive solution of −z′′ = zf1 [z], ũ1, and the unique positive
solution of −dz′′ = zf2 [z], ũ2, were periodic functions of x, here they are the constants a1
and a2. This restriction is standard in bistable pulsating front problems (see for instance
[57, 56, ?]) and is especially related to the method generically used to determine the sign of
the speed of the pulsating fronts. Still, most of the forthcoming pages is easily generalized
(actually, many results need no adaptation at all). We will highlight where this hypothesis
is truly needed and will give some indications regarding the non-constant case. In the end,
it should be clear why we conjecture that “Unity is not strength” holds true even in the
non-constant case.

— A trade-off to these more restrictive assumptions is that here we do not assume a priori
the high-frequency hypothesis:

L < π

(
1√
M1

+
√

d

M2

)
. (Hfreq)

We merely assume existence of pulsating fronts, this hypothesis being referred to as (Hexis).
It was proved in the first part that if (Hfreq) is satisfied, then so is (Hexis).
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3.3 Asymptotic behavior: the infinite competition limit

3.3.1 Existence of a limiting speed
In order to prove that (ck)k>k? has at least one limit point, we recall an important result from

the Fisher–KPP scalar case (see Berestycki–Hamel–Roques [17]).

Theorem 3.3. For any δ ∈ {1, d} and i ∈ {1, 2}, there exists c? [δ, i] > 0 such that, for any
s ∈ R, there exists in C2 (R2) a pulsating front solution of:

∂tz − δ∂xxz = zfi [z]

connecting ai to 0 at speed s if and only if s ≥ c? [δ, i].

Lemma 3.4. Provided k? is large enough, for any k > k? and any pulsating front solution of
(Pk), its speed c satisfies:

−c? [d, 2] < c < c? [1, 1] .

In particular, the family (ck)k>k? is uniformly bounded with respect to k.

Remark. Here, the assumption that k is large enough might in fact be redundant with the
underlying assumption of bistability. Indeed, this proof does not use any limiting behavior but
only requires that:

k > max
{

1
a2

max
C

(f1 [0]) , 1
αa1

max
C

(f2 [0])
}
.

In the space-homogeneous logistic case, this condition reduces to k > max
{

1, α−1}, that is
precisely the necessary and sufficient condition for the system to be bistable. In the space-periodic
case, according to the proof of [Gir17, Proposition 2.1], both ai are stable if the condition above
is satisfied. Yet an optimal threshold should involve periodic principal eigenvalues instead of
these maxima. Furthermore, the instability of any other periodic steady state has only been
established for (really) large k (see [Gir17, Theorem 1.2]) and when (Hfreq) holds true. Even
for arbitrarily large k, it is unclear whether stable coexistence periodic steady states might exist
when (Hfreq) does not hold.
We point out that the following proof provides us with an instance of a detailed proof using

the sliding method [14] that will be referred to later on.

Proof. Assume by contradiction that there exists k > 0 such that there exists a pulsating front
solution (z1, z2) of (Pk) with a speed c /∈ (−c? [d, 2] , c? [1, 1]) and a profile (ϕ1, ϕ2). For instance,
assume c ≥ c? [1, 1] (the other case being obviously symmetric), and let c = c? [1, 1] ≤ c. By
virtue of Theorem 3.3, c > 0 and there exists a pulsating front solution z of :

∂tz − ∂xxz = zf1 [z]

with speed c and profile ϕ.
Now we are in position to use the sliding method to compare z and z1. This will finally lead

to a contradiction.
Step 1: existence of a translation of the profile associated with the higher speed

such that it is locally below the other profile.
Fix ζ ∈ R. Then let ζ1 ∈ R such that:

max
x∈C

ϕ1 (ζ1, x) < min
x∈C

ϕ (ζ, x) .
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Let:
τ = ζ − ζ1,

ϕτ1 : (ξ, x) 7→ ϕ1 (ξ − τ, x) ,

Φτ = ϕ− ϕτ1 ,

so that:
min
x∈C

Φτ (ζ, x) = min
x∈C

(ϕ (ζ, x)− ϕ1 (ζ1, x)) > 0.

Step 2: up to some extra term, this ordering is global on the left.
Let U = (−∞, ζ)× C. Since ϕ� 0 in U and ϕτ1 ∈ L∞ (U), there exists κ > 0 such that:

κϕ− ϕτ1 ≥ 0 in U .

Notice that, since Φτ (ξ, x)→ 0 as ξ → ±∞ (uniformly with respect to x), any such κ is larger
than or equal to 1.
Step 3: this extra term is actually unnecessary, thanks to the maximum principle.
Let:

κ? = inf
{
κ > 1 | inf

U
(κϕ− ϕτ1) > 0

}
and let us prove that κ? = 1. We assume by contradiction that κ? > 1 and we take a sequence
(κn)n∈N ∈ (1, κ?)N which converges to κ? from below.
There exists a sequence ((ξn, xn)) ∈ UN such that for any n ∈ N,

κnϕ (ξn, xn) < ϕτ1 (ξn, xn) .

Since κn > 1, the limits when ξ → −∞ prove that (ξn) is bounded from below, and since it is
also bounded from above by ζ, we can extract a convergent subsequence with limit ξ? ∈ (−∞, ζ].
Similarly, we can extract a convergent subsequence of (xn) ∈ CN with limit x? ∈ C. By continuity,
(κ?ϕ− ϕτ1) (ξ?, x?) = 0 and, necessarily, ξ? < ζ.
Back to parabolic variables, recall that c > 0 and let:

t? = x? − ξ?

c
,

ẑτi : (t, x) 7→ ϕi (x− ct− τ, x) for any i ∈ {1, 2} ,

v? = κ?z − ẑτ1 ,

f : (t, x) 7→ − (c− c) (∂ξϕτ1) (x− ct, x)

E =
{

(t, x) ∈ R2 | x− ct < ζ
}
.

By virtue of (H3) and κ? > 1:

κ?zf1 [z] > κ?zf1 [κ?z] in E,

and moreover:
∂tv

? − ∂xxv? = κ?zf1 [z]− ẑτ1f1 [ẑτ1 ] + kẑτ1 ẑ
τ
2 + f in E,

f ≥ 0 in E.

Now, from the Lipschitz-continuity of f1 with respect to its first variable, it follows that of
(u, x) 7→ uf1 (u, x), whence there exists q ∈ L∞ (E) such that:

∂tv
? − ∂xxv? ≥ qv? in E.
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In the end, v? is a non-negative super-solution which vanishes at some interior point: by virtue
of the parabolic strong minimum principle, it is identically null in ((−∞, t?]× R) ∩ E.
But in such an unbounded set, it is always possible to construct an element of {ζ}×C, which

contradicts:
min
x∈C

(κ?ϕ− ϕτ1) (ζ, x) > 0.

Therefore κ? = 1,
κ?ϕ− ϕτ1 = Φτ ≥ 0 in U

and then by periodicity and, once more, by virtue of the parabolic strong minimum principle:

Φτ � 0 in (−∞, ζ)× R.

Step 4: up to some (possibly different) extra term, this ordering is global on the
right.
Near +∞ (in (ζ,+∞) × R), on the contrary, multiplying ϕ by some κ � 1 is not going to

yield a clear ordering anymore since we are interested in the behavior as ϕ ∼ 0 and ϕ1 ∼ 0 (and
replacing ϕ and ϕτ1 by respectively a1 − ϕ and a1 − ϕτ1 will not suffice since the monostability
has no underlying symmetry).
But it is natural, for instance, to replace this multiplication by the addition of some ε ≥ 0 and

to prove in the next step that ε? = 0. This is actually what was done originally by Berestycki–
Hamel [14].
Step 5: this (possibly different) extra term is also unnecessary.
We define ε? as the following quantity:

ε? = inf
{
ε > 0 | inf

(ζ,+∞)×C
(ϕ− ϕτ1 + ε) > 0

}
.

We assume by contradiction that ε? > 0 and this yields as before a contact point (ξ?, x?) ∈
(ζ,+∞)× C.
Now the main difficulty is that u 7→ uf1 [u] is increasing near 0, so that we really cannot hope

to have:
zf1 [z] ≥ (z + ε) f1 [z + ε] .

Still, it is possible to assume without loss of generality that, during the construction of τ , ζ1
has also been chosen so that:

a2

2 ≤ ϕ2 (ξ, x) ≤ a2 for any (ξ, x) ∈ [ζ1,+∞)× C.

It follows that:

ϕτ1 (f1 [ϕτ1 ]− kϕτ2) ≤ ϕτ1
(
f1 [ϕτ1 ]− ka2

2

)
in [ζ,+∞)× C.

By virtue of the hypotheses (H1), (H2) and (H3), provided k? is large enough, for any K > k?,
the following non-linearity:

u 7→ u
(
f1 [u]−Ka2

2

)
is decreasing in a neighborhood of 0 (in fact, it is decreasing in [0,+∞)). Then, in addition to
this monotonicity, it suffices to use:

ϕf1 [ϕ] ≥ ϕf1 [ϕ]− ka2

2 ϕ
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and the Lipschitz-continuity of f1 to conclude this step.
Step 6: thanks to the maximum principle again, the speeds are equal and the

profiles are equal up to some translation.
Thus in fact:

Φτ � 0 in R2.

Now, let:
τ? = sup

{
τ ∈ R | Φτ ≥ 0 in R2} .

The limits as ξ → ±∞ of ϕ and ϕ1 ensure that τ? < +∞. By continuity,

Φτ
?

≥ 0.

Let us verify quickly that, by virtue of the maximum principle, either Φτ? = 0 and c = c,
either Φτ? � 0. For instance, assume that

(
Φτ?

)−1 ({0}) is non-empty, so that Φτ? � 0 does
not hold. Then there exists (ξ?, x?) ∈ R2 such that Φτ? (ξ?, x?) = 0. Once more, we introduce:

t? = x? − ξ?

c
,

vτ
?

(t, x) = Φτ
?

(x− ct, x) ,

and using the parabolic linear inequality satisfied by vτ? , we verify that vτ? is a non-negative
super-solution which vanishes at (t?, x?). Then, by the strong parabolic maximum principle and
periodicity with respect to x of Φτ? , it is actually deduced that Φτ? = 0, which in turn implies
(reinserting vτ? = 0 into the original non-linear equation satisfied by vτ? and considering the
function f which has been defined earlier) that c = c.
Finally, assume by contradiction that Φτ? � (0, 0), i.e. assume that for any B > 0,

min
[−B,B]×C

Φτ
?

> (0, 0) .

Fix B > 0. By continuity, there exists ε > 0 such that:

min
[−B,B]×C

Φτ > (0, 0) for any τ ∈ [τ?, τ? + ε).

We can now repeat Steps 2, 3, 4, 5 to show that, for any such τ :

Φτ � 0 in (R\ (−B,B))× R.

The maximality of τ? being contradicted, this ends this step.
Step 7: the contradiction.
If c = c and z = z1, then thanks to the equations satisfied by z and z1, z2 = 0 in R2. This

contradicts the limit of ϕ2 as ξ → +∞.

Corollary 3.5. (ck)k>k? has a limit point c∞ ∈ [−c? [d, 2] , c? [1, 1]].

Remark. Similarly, we do expect that c∞ /∈ {−c? [d, 2] , c? [1, 1]} but will not address this question
for the sake of brevity.
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3.3.2 Existence of a limiting density provided the speed converges
In this subsection, we fix a sequence (ck)k>k? such that it converges to c∞.
Then we prove the relative compactness of the associated sequence of pulsating front solutions

((u1,k, u2,k))k>k? , which will follow from classical parabolic estimates similar to those used by
Dancer and his collaborators (see for instance [47]) supplemented by some estimates specific to
the pulsating front setting. This supplement will lead indeed to a stronger compactness result
than the one presented in the aforementioned work.
If c∞ 6= 0, we will see that ((u1,k, u2,k))k>k? is relatively compact if and only if ((ϕ1,k, ϕ2,k))k>k?

is relatively compact. Moreover, we will show that the compactness result can be improved fur-
ther thanks to additional pulsating front estimates.

3.3.2.1 Normalization

Before going any further, we point out that, at this point, for any k > k?, (ϕ1, ϕ2) is fixed
completely arbitrarily among the one-dimensional family of translated profiles. By monotonicity
of the profiles with respect to ξ, this choice can in fact be normalized. In the space-homogeneous
problem [GN15], the normalization was used to guarantee that the extracted limit point had
no null component. It should be clear that this part of the proof will be strongly analogous.
Therefore we choose now normalizations reminiscent to the space-homogeneous ones.
— On one hand, if c∞ ≤ 0, we fix without loss of generality for any k > k? the normalization:

0 = inf
{
ξ ∈ R | ∃x ∈ C ϕ1,k (ξ, x) < a1

2

}
.

— On the other hand, if c∞ > 0, we fix without loss of generality for any k > k? the
normalization:

0 = sup
{
ξ ∈ R | ∃x ∈ C ϕ2,k (ξ, x) < a2

2

}
.

Remark also that ((u1,k, u2,k))k>k? is normalized (in the sense that its value at some arbitrary
initial time is entirely prescribed) if and only if ((ϕ1,k, ϕ2,k))k>k? is normalized.

3.3.2.2 Compactness results

Proposition 3.6. The following collection of properties holds independently of the sign of c∞.
1. [Segregation] (ϕ1,kϕ2,k)k>k? converges to 0 in L1

loc (R× C).
2. [Persistence] (0, 0) is not a limit point of ((ϕ1,k, ϕ2,k))k>k? in L1

loc

(
R2,R2).

3. [Uniform bound in the diagonal direction] For any n ∈ N, ((∂x + ∂ξ) (ϕ1,k, ϕ2,k))k>k? is
uniformly bounded with respect to k in L2 ((−n, n)× C,R2).

4. [Uniform bound in the ξ direction] For any k > k? and any x ∈ C,∫
R
∂ξϕ1,k (ζ, x) dζ = −

∫
R
|∂ξϕ1,k (ζ, x)| dζ = −a1

and ∫
R
∂ξϕ2,k (ζ, x) dζ =

∫
R
|∂ξϕ2,k (ζ, x)| dζ = a2.

5. [Uniform bound in the x direction] For any T > 0, ((u1,k, u2,k))k>k? is uniformly bounded
with respect to k in L2 ((−T, T ) , H1 (C,R2)).
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6. [Uniform bound in the t direction] For any T > 0, (∂tv1,k)k>k? is uniformly bounded with
respect to k in L2

(
(−T, T ) ,

(
H1 (C)

)′).
7. [Compactness in traveling coordinates] ((ϕ1,k, ϕ2,k))k>k? is relatively compact in the topol-

ogy of L1
loc

(
R2,R2).

8. [Compactness in parabolic coordinates] There exists:

(u1,∞, u2,∞) ∈
(
L∞

(
R2) ∩ L2 ((−T, T ) , H1 ((0, L))

))2
such that:
a) ∂tv1,∞ ∈ L2

(
(−T, T ) ,

(
H1 ((0, L))

)′);
b) (u1,∞, u2,∞) is a limit point of ((u1,k, u2,k))k>k? in the topology of L1

loc

(
R2,R2);

c) u1,∞ and u2,∞ are in C0,β
loc

(
R2);

d) u1,∞ = α−1v+
d,∞ = α−1v+

1,∞ and u2,∞ = d−1v−d,∞ = v−1,∞.

Proof. The segregation property comes directly from an integration of, say, the first equation of
(PFsys,k) over some (−n, n)×C. The persistence of at least one component is a consequence of
the choice of normalization: for instance, if c∞ ≤ 0, necessarily (ϕ1,k)k>k? does not vanish.

To get the uniform bound in the diagonal direction, we introduce a cut-off function. For any
n ∈ N, there exists a non-negative non-zero function χ ∈ D

(
R2) such that, for any x ∈ C,

χ (ξ, x) = 0 if ξ /∈ [−n− 1, n+ 1] and χ (ξ, x) = 1 if ξ ∈ [−n, n].
Let k > k?. Multiplying the first equation of (PFsys) by ϕ1,kχ and integrating by parts in

R× C, we obtain:∫
(∂ξϕ1,k)2

χ− 1
2

∫
ϕ2

1,k∂ξξχ+
∫
χ (∂xϕ1,k)2 +2

∫
χ∂ξϕ1,k∂xϕ1,k ≤

∫
M1ϕ

2
1,kχ−c

∫
ϕ2

1,k

2 ∂ξχ.

(The integrals being implicitly over R× C.)
Using χ ≥ 1[−n,n], the k-uniform L∞-bound for (ϕ1,k)k>k? and:

|c| ≤ max {c? [d, 2] , c? [1, 1]} ,

we deduce the existence of a constant Rn independent on k such that:∫
[−n,n]×C

|∂ξϕ1,k + ∂xϕ1,k|2 ≤ Rn.

The same proof holds for ϕ2,k. Finally, the same computation in parabolic coordinates gives
immediately the uniform bound in the x direction.
The uniform bound in the ξ direction is a straightforward result. Provided the uniform bound

in the x direction, the uniform bound in the t direction comes from an integration over (0, T )×C
of (PF) multiplied by some test function in L2 ((0, T ) , H1 (C)

)
.

The relative compactness in both systems of coordinates follows from the embedding:

L2
loc

(
R2) ↪→ L1

loc

(
R2)

and the compact embedding:
W 1,1
loc

(
R2,R2) ↪→ L1

loc

(
R2) .
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To obtain the continuity of u1,∞ and u2,∞, we consider a convergent subsequence. Since the
convergence occurs a.e. up to extraction, the limit point is actually in L∞

(
R2,R2), whence:

v1,∞ ∈ L∞ (R× (0, L)) ∩ L2 ((−T, T ) , H1 ((0, L))
)
,

∂tv1,∞ ∈ L2
(

(−T, T ) ,
(
H1 ((0, L))

)′)
.

It follows from a standard regularity result that v1,∞ ∈ C
(
[−T, T ] , L2 ((0, L))

)
(see for instance

Evans [67, 5.9.2]).
Then, we pass the parabolic version of (PF) to the limit inD′ (R) and we can apply DiBenedetto’s

theory [55]: v1,∞ is a locally bounded weak solution of the following parabolic equation:

∂tz − ∂x ((1z>0 + d1z<0) ∂xz) = f1

[ z
α

]
z+ − f2 [−z] z−.

In a large class of degenerate parabolic equations which contains in particular this equation,
locally bounded weak solutions are, for any δ ∈ (0, 1), spatially C0,δ

loc and temporally C0,δ/2
loc , whence

a fortiori v1,∞ ∈ C0,β
loc

(
R2) (with δ = 2β ∈ (0, 1)).

Finally, by virtue of the segregation property:

u1,∞ = α−1v+
1,∞ a.e.,

u2,∞ = v−1,∞ a.e..

From this, it follows that v1,∞ is in C0,β
loc

(
R2) if and only if u1,∞ and u2,∞ are themselves in

C0,β
loc

(
R2), whence

(u1,∞, u2,∞) ∈ C0,β
loc

(
R2,R2) .

Remark. At this point, we do not know if the limit points in parabolic coordinates and in traveling
coordinates are related. Yet, when c∞ 6= 0, we can improve the preceding results and relate the
limit points indeed.

Proposition 3.7. Assume c∞ 6= 0. The following additional collection of properties holds.
1. [Improved uniform bound in the ξ direction] Provided k? is large enough, (∂ξ (ϕ1,k, ϕ2,k))k>k?

is uniformly bounded with respect to k in L2 (R× C,R2).
2. [Improved compactness] There exists (ϕ1,seg, ϕ2,seg) ∈ L∞

(
R2,R2) ∩ H1

loc

(
R2,R2) such

that, up to extraction:
a) ((ϕ1,k, ϕ2,k))k>k? converges to (ϕ1,seg, ϕ2,seg) strongly in L2

loc

(
R2,R2) and a.e.;

b) ((∇ϕ1,k,∇ϕ2,k))k>k? converges to (∇ϕ1,seg,∇ϕ2,seg) weakly in L2
loc

(
R2,R4);

c) ((u1,k, u2,k))k>k? converges to:

(u1,seg, u2,seg) : (t, x) 7→ (ϕ1,seg, ϕ2,seg) (x− c∞t, x)

strongly in L2
loc

(
R2,R2), a.e., and ((∇u1,k,∇u2,k))k>k? converges weakly in L

2
loc

(
R2,R4).

Proof. Since c∞ 6= 0, we assume without loss of generality that k? is sufficiently large to ensure
that ck 6= 0 for any k > k?.
We start by showing that the uniform boundedness in L2 (R× C) of (∂ξϕ1,k)k>k? is equivalent

to that of (∂ξϕ2,k)k>k? and to that of (∂ξψd,k)k>k? .

103



Chapitre 3 Compétition en milieu périodique : II – Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la force »

— First step of the equivalence: assume that
(
‖∂ξϕ1,k‖L2(R×C)

)
k>k?

is uniformly bounded.
Let k > k?. Multiply (PFk) by ∂ξψd,k, remark that:

∂ξψ1,k = 1
d

(α (d− 1) ∂ξϕ1,k + ∂ξψd,k)

and integrate by parts over (−n, n)×C with some n ∈ N. By classical parabolic estimates,
the terms involving E vanish as n→ +∞. By change of variable, for any i ∈ {1, 2},∫

C

∫ n

−n
ϕi,kfi [ϕi,k] ∂ξϕi,k =

∫
C

∫ ϕi(+n,x)

ϕi(−n,x)
zfi (z, x) dzdx,

whence as n→ +∞:∫
C

∫ n

−n
ϕ1,kf1 [ϕ1,k] ∂ξϕ1,k → −

∫
C

∫ a1

0
zf1 (z, x) dzdx,

∫
C

∫ n

−n
ϕ2,kf2 [ϕ2,k] ∂ξϕ2,k →

∫
C

∫ a2

0
zf1 (z, x) dzdx.

It follows that:(
−ck
d

)∫
R×C

(α (d− 1) ∂ξϕ1,k + ∂ξψd,k) ∂ξψd,k = −α
∫
C

∫ a1

0
zf1 (z, x) dzdx

+α
∫
R×C

ϕ1,kf1 [ϕ1,k] (−d∂ξϕ2,k)

+
∫
R×C

(−ϕ2,k) f2 [ϕ2,k] (α∂ξϕ1,k)

+d
∫
C

∫ a2

0
zf1 (z, x) dzdx.

Dividing by − ckd which stays away from 0, the result reduces to:

α (d− 1)
∫
∂ξϕ1,k∂ξψd,k +

∫
|∂ξψd|2 = αd

ck

∫
dϕ1,kf1 [ϕ1,k] ∂ξϕ2,k

+αd

ck

∫
ϕ2,kf2 [ϕ2,k] ∂ξϕ1,k

+αd

ck

∫
C

∫ a1

0
zf1 (z, x) dzdx

−d
2

ck

∫
C

∫ a2

0
zf1 (z, x) dzdx.

Using the boundedness in L∞ of ϕi,kfi [ϕi,k] and the relations:∫
|∂ξϕ1,k| = La1,

∫
|∂ξϕ2,k| = La2,
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we obtain that the right-hand side is uniformly bounded. Since ∂ξϕ1,k and ∂ξψd,k are both
non-positive non-zero, if d ≥ 1, the uniform boundedness of

(∫
|∂ξψd,k|2

)
k>k?

follows.
Otherwise, there exists R > 0 such that:∫

|∂ξψd,k|2 ≤ R+ |α (d− 1)|
∫
∂ξϕ1,k∂ξψd,k

≤ R+ |α (d− 1)|
(∫
|∂ξϕ1,k|2

)1/2(∫
|∂ξψd,k|2

)1/2

.

This shows that
(∫
|∂ξψd,k|2

)1/2

, which is positive, is also smaller than or equal to the
largest zero of the following polynomial:

X2 − |α (d− 1)| ‖∂ξϕ1,k‖L2(R×C)X −R

(which is itself positive and uniformly bounded).
— Second step of the equivalence: assume that

(
‖∂ξϕ2,k‖L2(R×C)

)
k>k?

is uniformly
bounded. A slight adaptation of the first step (using ∂ξψ1 = ∂ξψd + (d− 1) ∂ξϕ2)
shows that the third statement is implied indeed.

— Third step of the equivalence: assume that
(
‖∂ξψd,k‖L2(R×C)

)
k>k?

is uniformly bounded.
Since, for any k > k?:

‖∂ξψd‖2L2 = α2‖∂ξϕ1‖2L2 + d2‖∂ξϕ2‖2L2 − 2αd 〈∂ξϕ1, ∂ξϕ2〉L2 ,

with a positive third term, the first and the second statements are immediately im-
plied.

Proof. Now that the equivalence is established, we simply show that if c∞ > 0,
(
‖∂ξϕ1,k‖L2(R×C)

)
k>k?

is uniformly bounded, and conversely if c∞ < 0,
(
‖∂ξϕ2,k‖L2(R×C)

)
k>k?

is uniformly bounded.
Multiplying the first equation of (PFsys) by ∂ξϕ1, integrating over R×C, and using the sign of
∂ξϕ1 and classical parabolic estimates at ±∞, the result reduces to:

c

∫
R×(0,L)

|∂ξϕ1|2 = k

∫
R×(0,L)

ϕ1ϕ2∂ξϕ1 +
∫ L

0

∫ a1

0
zf1 (z, x) dzdx

≤
∫ L

0

∫ a1

0
zf1 (z, x) dzdx.

Similarly, we obtain:

c

∫
R×(0,L)

|∂ξϕ2|2 = αk

∫
R×(0,L)

ϕ1ϕ2∂ξϕ2 −
∫ L

0

∫ a2

0
zf2 (z, x) dzdx

≥ −
∫ L

0

∫ a2

0
zf2 (z, x) dzdx.

The improved uniform bound in the ξ direction immediately follows.
The improved relative compactness of ((ϕ1,k, ϕ2,k))k>k? is a straightforward consequence of

the previous lemmas, of Sobolev’s embeddings and of Banach–Alaoglu’s theorem. For the relative
compactness of ((u1,k, u2,k))k>k? , let [s] : (t, x) 7→ (x− st, x), so that for any k > k? (u1, u2) =
(ϕ1, ϕ2) ◦ [c]. For any i ∈ {1, 2}:

‖ui − ui,seg‖L2
loc
≤ ‖ϕi ◦ [c]− ϕi ◦ [c∞] ‖L2

loc
+ ‖ϕi ◦ [c∞]− ϕi,seg ◦ [c∞] ‖L2

loc
.
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Then, by virtue of Fréchet–Kolmogorov’s theorem, the right-hand side vanishes as k → +∞.
The same argument holds for the weak convergence of the derivatives.

Remark. We point out that the preceding result is specific to the case of constant a1 and a2
(without this assumption, one term due to E does not vanish after the integration by parts). In
the general case, we do not know if the bounds of Proposition 3.6 can be improved.

Corollary 3.8. If c∞ 6= 0, the parabolic limit point (u1,seg, u2,seg) obtained with the improved
compactness result from Proposition 3.7 is also a limit point (u1,∞, u2,∞) in the sense of Propo-
sition 3.6. In particular, (u1,seg, u2,seg) ∈ C0,β

loc

(
R2,R2), whence (ϕ1,seg, ϕ2,seg) ∈ C0,β

loc

(
R2,R2)

as well.

Remark. The case c∞ = 0 is somehow degenerate and does not really correspond to what
intuition calls a “pulsating” front. Moreover, we will need quite different techniques to handle
the two cases and, even in the very end, there will be no clear common framework. Therefore,
hereafter, we call the case c∞ = 0 “segregated stationary equilibrium” whereas the case c∞ 6= 0
is referred to as “segregated pulsating front”. These terms will be precisely defined in a moment.

3.3.3 Characterization of the segregated stationary equilibrium
In this subsection, we assume c∞ = 0 and we use Proposition 3.6 to get an extracted convergent

subsequence of pulsating fronts, still denoted ((u1,k, u2,k))k>k? , with limit (u1,∞, u2,∞). Up to
an additional extraction, we assume a.e. convergence of (u1,k, u2,k, u1,ku2,k) to (u1,∞, u2,∞, 0).

Obviously, since c∞ = 0, we expect that (u1,∞, u2,∞) does not depend on t. This will be true in-
deed, so that it makes sense to refer to this case as “stationary equilibrium”. To stress this particu-
larity, we fix tcv such that

(
(u1, u2)|{tcv}×R

)
k>k?

converges a.e. and we define e = (vd,∞)|{tcv}×R,
so that if (u1,∞, u2,∞) is constant with respect to t, (αu1,∞, du2,∞) (t, x) = (e+, e−) (x) for any
(t, x) ∈ R2.

We start with an important particular case.

Lemma 3.9. Assume that, provided k? is large enough, (ck)k>k? = 0. Then:
— for any k > k?, (u1, u2) reduces to:

(t, x) 7→ (ϕ1, ϕ2) (x, x) ,

— for any (t, x) ∈ R2:
(αu1,∞, du2,∞) (t, x) =

(
e+, e−

)
(x) ,

— the convergence of
(

(αu1, du2)|{tcv}×R
)
k>k?

to (e+, e−) actually occurs in C0,β
loc (R),

— the convergence of
(

(vd)|{tcv}×R
)
k>k?

to e actually occurs in C2,β
loc (R),

— e satisfies:
−e′′ = η [e] .

Proof. The system (P) reduces to an elliptic system. It is then easy to deduce the locally uniform
convergence, the time-independence and the limiting equation. We refer, for instance, to [Gir17]
for details.

Some of the preceding results can be extended.

Lemma 3.10. The properties:
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— for any (t, x) ∈ R2, (αu1,∞, du2,∞) (t, x) = (e+, e−) (x) ;
— e ∈ C2 (R) and −e′′ = η [e];

hold true regardless of any sign assumption on the sequence (ck)k>k? .

Proof. The two statements are actually quite easy to verify. Let (t, t′, x) ∈ R3 such that, for any
i ∈ {1, 2} and any τ ∈ {t, t′}, ui,k (τ, x)→ ui,∞ (τ, x) as k → +∞. Recalling that:∫

R
∂tui,k = −ck

∫
R
∂ξϕi,k → 0

as k → +∞ is sufficient to show that in the following inequality:

|ui,∞ (t, x)− ui,∞ (t′, x)| ≤ |ui,∞ (t, x)− ui,k (t, x)|

+

∣∣∣∣∣
∫ t′

t

∂tui,k (τ, x) dτ

∣∣∣∣∣
+ |ui,k (t′, x)− ui,∞ (t′, x)|

the right-hand side converges to 0 as k → +∞. Therefore the left-hand side is 0, whence ui,∞
is constant with respect to the time variable in a dense subset of R2, and then by continuity, it
holds a fortiori everywhere in R2.
As for the regularity and limiting equation, the equation is satisfied a priori in the distribu-

tional sense, then in the classical sense by elliptic regularity.

Lemma 3.11. For any x ∈ R, the sequence (e (x+ nL))n∈N is non-increasing.

Proof. By monotonicity with respect to ξ and periodicity with respect to x, for any (t, x) ∈ R2

and any k > k?:

vd (t, x+ L)− vd (t, x) ≤ ψd (x− ct+ L, x+ L)− ψd (x− ct, x)
≤ ψd (x− ct+ L, x)− ψd (x− ct, x)
≤ 0.

In particular, for any (t, x) ∈ R2 and any k > k?, the sequence (vd,k (t, x+ nL))n∈N is non-
increasing, and then, passing to the limit as k → +∞, the sequence (e (x+ nL))n∈N is non-
increasing. This holds for any x in a dense subset of R and then for any x ∈ R by continuity of
e.

Lemma 3.12. e is non-zero and sign-changing. Moreover:

inf e−1 ((−∞, 0)) > −∞.

Proof. The normalization:

0 = inf
{
ξ ∈ R | ∃x ∈ C ϕ1,k (ξ, x) < a1

2

}
,

implies that u1,∞ 6= 0, whence e 6= 0. It shows also that the set:{
n ∈ Z | ∃x ∈ C ϕ1,k (x+ nL, x+ nL) < a1

2

}
is uniformly bounded with respect to k from below. In particular, it has a minimum nk ∈ Z.
Then let:

xk = inf
{
x ∈ C | ϕ1,k (x+ nkL, x+ nkL) < a1

2

}
,
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so that:
ϕ1,k (x, x) > a1

2 for any x < xk + nkL.

By monotonicity, we deduce:

ϕ1,k (ξ, x) > a1

2 for any ξ < x < nkL.

If (up to extraction) nk → +∞ as k → +∞, then the definition of the normalization is con-
tradicted by the preceding inequality evaluated at ξ = 0 and x ∈ [L, 2L], whence (nk)k>k? is
uniformly bounded from above as well. In particular, up to extraction, (nk)k>k? converges to a
finite limit. The finiteness of inf {x ∈ R | e (x) < 0} follows immediately.
By uniqueness, if e > 0, e = αa1. This is discarded by the finiteness of lim

k→+∞
nk, whence e is

sign-changing.

Remark. If, instead of the normalization sequence:

0 = inf
{
ξ ∈ R | ∃x ∈ C ϕ1 (ξ, x) < a1

2

}
for any k > k?,

we choose:

0 = sup
{
ξ ∈ R | ∃x ∈ C ϕ2 (ξ, x) < a2

2

}
for any k > k?,

and if we consider once again the case c∞ = 0, the preceding results hold apart from inf e−1 ((−∞, 0)) >
−∞, which is naturally replaced by:

sup e−1 ((0,+∞)) < +∞.

In view of these results, we state the following definition.

Definition 3.13. A function z ∈ C2 (R)∩L∞ (R) is called a segregated stationary equilibrium if:
1. −z′′ = η [z];
2. for any x ∈ C, (z (x+ nL))n∈N is non-increasing;
3. z is non-zero and sign-changing;
4. inf z−1 ((−∞, 0)) > −∞ or sup z−1 ((0,+∞)) < +∞.

Corollary 3.14. e is a segregated stationary equilibrium.

Let us derive some properties necessarily satisfied by any segregated stationary equilibrium.
The first one is obvious but will be useful.

Proposition 3.15. If z is a segregated stationary equilibrium, then for any n ∈ Z, x 7→
z (x+ nL) is a segregated stationary equilibrium as well.

The following one is easily derived from the second order necessary conditions satisfied at a
local extremum.

Proposition 3.16. Let z be a segregated stationary equilibrium. Then −da2 < z < αa1.

The following one highlights some difficulties which are intrinsic to the null speed limit.
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Proposition 3.17. Let z be a segregated stationary equilibrium and

Z (z) = z−1 ({0}) .

The set Z (z) is a discrete set. If it is a finite set, its cardinal is odd. Moreover, it has a minimum
or a maximum.

Proof. The fact that Z (z) is a discrete set follows easily from Hopf’s lemma and the regularity
of z. Provided finiteness of the set, the monotonicity of (z (x+ nL))n∈N for any x ∈ C yields
the parity of #Z (z). Finally, the existence of an extremum comes from the definition of the
segregated stationary equilibrium.

Remark. Under the more restrictive assumption (Hfreq) presented by the first author in [Gir17],
it is possible to prove that every segregated stationary equilibrium has a unique zero. It is
basically deduced from the fact that, when there are multiple zeros, the segregated stationary
equilibrium restricted to any interval delimited by two consecutive zeros is the unique solution of
a semi-linear Dirichlet problem. The monotonicity of (e (x+ nL))n∈N ensures that the distance
between these consecutive zeros is smaller than L and then, considering the next zero and using
(Hfreq), a contradiction arises. We do not detail this proof here.

Proposition 3.18. Let z be a stationary segregated equilibrium.
If z−1 ({0}) has a minimum, as n→ +∞,

‖z − αa1‖C2([−(n+1)L,−nL]) → 0.

If z−1 ({0}) has a maximum, as n→ +∞,

‖z − da2‖C2([nL,(n+1)L]) → 0.

Proof. We assume that z−1 ({0}) has a minimum, the other case being similar. Since, for any
x ∈ [0, L), (z (x− nL))n∈N is bounded and non-decreasing, it converges to a limit z−∞ (x).
Using Lipschitz-continuity of z, we are able to prove that z−∞ is Lipschitz-continuous in C.
Using elliptic regularity, the distributional equation:

−z′′−∞ = z−∞f1

[z−∞
α

]
and Arzela–Ascoli’s theorem, we are able to prove in fact that z−∞ ∈ C2,β (C) and that the
convergence occurs in C2,β (C). This proves that z−∞ also satisfies in the classical sense the
equation. Moreover,

|z (x− (n+ 1)L)− z (x− nL)| → 0
as n → +∞ and, this proves that z−∞ is periodic. Since it is also positive, by uniqueness,
z−∞ = αa1.

3.3.4 Characterization of the segregated pulsating fronts
In this subsection, we assume c∞ 6= 0 and we use Proposition 3.7 to get an extracted convergent

subsequence of profiles, still denoted ((ϕ1,k, ϕ2,k))k>k? , with limit (ϕ1,seg, ϕ2,seg). Up to an
additional extraction, we assume a.e. convergence of (ϕ1,k, ϕ2,k, ϕ1,kϕ2,k) to (ϕ1,seg, ϕ2,seg, 0).
We define φ = αϕ1,seg − dϕ2,seg and w = αu1,seg − du2,seg (that is, (φ,w) is the limit of
((ψd,k, vd,k))k>k?).
Here, parabolic limit points and traveling limit points are naturally related by the isomorphism

(t, x) 7→ (x− c∞t, x). Therefore we can freely use the more convenient system of variables.
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3.3.4.1 Definitions and asymptotics

Hereafter,
σ : z 7→ 1z>0 + 1

d
1z<0,

σ̂ : z 7→ 1z>0 + d1z<0.

Remark. Clearly, for any z ∈ C
(
R2):

— σ [z] and σ̂ [z] are in L∞
(
R2);

— σ [z] and σ̂ [z] vanish if and only if z vanish;
— σ [z] σ̂ [z] = 1 in R2 apart from the zero set of z;
— σ [z] z and σ̂ [z] z are in C

(
R2); furthermore, if z ∈ W 1,∞ (R2), then they are Lipschitz-

continuous.

Lemma 3.19. The equalities:

σ [w] (t, x) = σ [φ] (x− c∞t, x) ,

σ̂ [w] (t, x) = σ̂ [φ] (x− c∞t, x) ,

hold for all (t, x) ∈ R2.
Furthermore, the following equalities hold in L2

loc

(
R2):

∂t (σ [w]w) = σ [w] ∂tw,

∂xw = σ̂ [w] ∂x (σ [w]w) ,

∂ξ (σ [φ]φ) = σ [φ] ∂ξφ,

∂xφ = σ̂ [φ] ∂x (σ [φ]φ) .

Proof. The equalities between the weak derivatives are derived easily from the weak formulation
of (PF) (recall the proof of Proposition 3.6). When passing to the limit k → +∞, it is possible
to obtain equivalently all these equations (we restrict ourselves here to parabolic coordinates,
the equalities in traveling coordinates being obtained analogously):

σ [w] ∂tw − ∂xxw = η [w] ,

∂t (σ [w]w)− ∂xxw = η [w] ,

∂t (σ [w]w)− ∂x (σ̂ [w] ∂x (σ [w]w)) = η [w] .

Definition 3.20. Let s ∈ R\ {0} and C1
0
(
R2) be the subset of compactly supported elements of

C1 (R2).
We say that ϕ ∈ C

(
R2) ∩H1

loc

(
R2) is a weak solution of:

−div (E∇ϕ)− s∂ξ (σ [ϕ]ϕ) = η [ϕ] (SPF [s])

if, for any test function ζ ∈ C1
0
(
R2):∫

E∇ϕ.∇ζ + s

∫
σ [ϕ]ϕ∂ξζ =

∫
η [ϕ] ζ.
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Lemma 3.21. φ is a weak solution of (SPF [c∞]).

Proof. This is merely the traveling formulation of the limiting equation obtained a priori in
D′
(
R2) and a fortiori holding in the weak sense.

Remark. Since c∞σ [φ] ∂ξφ and η [φ] are in L2
loc

(
R2), −div (E∇φ) is actually in L2

loc

(
R2) as well

and we can also consider test functions in L2
loc

(
R2), but then we cannot integrate by parts as in

the equality above.

Proposition 3.22. Let s ∈ R\ {0}. If ϕ is a weak solution of (SPF [s]), then z : (t, x) 7→
ϕ (x− st, x) is a weak solution of:

∂t (σ [z] z)− ∂xxz = η [z] ,
in the sense that for any ζ ∈ C1

0
(
R2), the following holds:∫

(σ [z] z∂tζ − ∂xz∂xζ + η [z] ζ) = 0.

Remark. Similarly, we can restrict ourselves regarding this weak parabolic equation to test func-
tions ζ ∈ L2

loc

(
R2) but then we cannot integrate by parts.

Lemma 3.23. φ is periodic with respect to x and non-increasing with respect to ξ.

Proof. Thanks to the a.e. convergence, periodicity with respect to x and monotonicity with
respect to ξ are preserved a.e., that is at least in a dense subset of R2. Continuity extends these
behaviors everywhere.

Lemma 3.24. φ is non-zero and sign-changing.

Remark. This statement holds if and only if both ϕ1,seg and ϕ2,seg are non-zero (or equivalently
non-negative non-zero).

Proof. Assume for example c∞ < 0. The normalization gives immediately ϕ1,seg 6= 0. If ϕ2,seg =
0, u1,seg is a non-negative solution in R2 of:

∂tz − ∂xxz = zf1 [z] .

By the parabolic strong minimum principle, u1,seg � 0, and by parabolic regularity, u1,seg
is regular. By classical parabolic estimates, as ξ → −∞, ϕ1,seg converges uniformly in x to a
positive periodic solution of:

−∂xxz = zf1 [z] ,
that is to a1. Similarly, ϕ1,seg converges to 0 as ξ → +∞.
Thus ϕ1,seg is a pulsating front connecting a1 to 0 at speed c∞ < 0. This is a contradiction

(see Theorem 3.3).
A symmetric proof discards the case c∞ > 0.

In view of these results, we state the following definition.

Definition 3.25. Let:
s ∈ R\ {0} ,

z ∈ C0,β
loc

(
R2) ∩H1

loc

(
R2) ∩ L∞ (R2) ,

ϕ : (ξ, x) 7→ z

(
x− ξ
s

, x

)
.

z is called a segregated pulsating front with speed s and profile ϕ if:

111



Chapitre 3 Compétition en milieu périodique : II – Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la force »

1. ϕ is a weak solution of (SPF [s]);
2. ϕ is non-increasing with respect to ξ;
3. ϕ is periodic with respect to x;
4. ϕ is non-zero and sign-changing.

Corollary 3.26. w is a segregated pulsating front with speed c∞ and profile φ.

Proposition 3.27. Let z be a segregated pulsating front with profile ϕ. As ξ → +∞,

max
x∈C
|ϕ (−ξ, x)− αa1|+ max

x∈C
|ϕ (ξ, x) + da2| → 0.

Proof. It follows from classical parabolic estimates and the monotonicity of ϕ with respect to
ξ.

3.3.4.2 The intrinsic free boundary problem

We intend to conclude the characterization of the segregated pulsating front with a unique-
ness result. Our proof will use a sliding argument and the continuity of ∂xz. Obviously, in
R2\z−1 ({0}), classical parabolic regularity applies and the regularity of a segregated pulsating
front is only limited by that of η. On the contrary, the regularity of z at the free boundary
z−1 ({0}) is a tough problem and, as usual in free boundary problems, requires a detailed study
of the regularity of the free boundary itself. This study is the object of the following pages.
Let us stress here that our interest does not lie in the most general study of the free boundaries

of the solutions of (SPF [s]). To show that ∂xz is continuous, Lipschitz-continuity of the free
boundary is sufficient, and we are able to prove such a regularity only using the monotonicity
properties of the segregated pulsating fronts as well as the parabolic maximum principle. We
believe that this proof has interest of its own. Yet, at the end of this subsection, we will explain
why we expect the free boundary to actually be C1 and ∂tz to be continuous without any
additional assumption.
Up to the next subsection, let z be a segregated pulsating front with speed s 6= 0 and profile

ϕ and let:
Γ =

{
(t, x) ∈ R2 | z (t, x) = 0

}
,

Ω+ =
{

(t, x) ∈ R2 | z (t, x) > 0
}
,

Ω− =
{

(t, x) ∈ R2 | z (t, x) < 0
}
.

Before going any further, let us state precisely the results of this subsection in the following
proposition.

Theorem 3.28. There exists a continuous bijection Ξ : R → R such that Γ is the graph of Ξ
and such that: {

Ω+ =
{

(t, x) ∈ R2 | x < Ξ (t)
}

Ω− =
{

(t, x) ∈ R2 | x > Ξ (t)
}
.

Moreover, ∂xz ∈ C0,β (R2) and (∂xz)|Γ � 0.

Remark. Of course, this type of result is strongly reminiscent of the celebrated paper by Angenent
[4] about the number of zeros of a solution of a parabolic equation. We stress that this result
cannot be applied here because of the non-linearity due to σ [z]. It will be clearly established
during the proof that this lack of regularity is compensated here by the monotonicity of z.

The proof of Theorem 3.28 begins with a couple of lemmas leading to the existence of Ξ.
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Lemma 3.29. The quantities:

Ξ+ (t) = sup {x ∈ R | z (t, x) > 0} ,

Ξ− (t) = inf {x ∈ R | z (t, x) < 0} ,

are well-defined and finite.

Proof. By Proposition 3.27, for any (t, x) ∈ R2:

lim
n→+∞

max
x∈C
|ϕ (x+ nL− st, x) + da2| = 0,

lim
n→+∞

max
x∈C
|ϕ (x− nL− st, x)− αa1| = 0.

By periodicity with respect to x:

ϕ (x± nL− st, x) = ϕ (x± nL− st, x± nL)
= z (t, x± nL)

and thus x 7→ z (t, x) is negative at +∞, positive at −∞, whence Ξ+ (t) and Ξ− (t) are well-
defined and finite.

Lemma 3.30. Let (t, x) ∈ R2.
1. If s > 0 and z (t, x) ≤ 0, then for any y > x, z (t, y) < 0.
2. If s < 0 and z (t, x) ≥ 0, then for any y < x, z (t, y) > 0.

Proof. Let us show for instance the first statement, the other one being symmetric.
By Lemma 3.29, there exists X > x such that z (t,X) < 0. Since ϕ is non-increasing with

respect to ξ, z is non-decreasing with respect to t, whence for any t′ < t, z (t′, x) ≤ 0 and
z (t′, X) < 0. Moreover, by Proposition 3.27, there exists T > 0 such that:

z (t− T, y) < 0 for any y ∈ [x,X] .

By continuity of z, there exists τ > 0 such that:

z � 0 in [t− T, t− T + τ ]× [x,X] .

Let:
τ? = sup {τ ∈ (0, T ) | z � 0 in [t− T, t− T + τ ]× (x,X)}

and let us check that τ? = T .
If τ? < T , then there exists y ∈ (x,X) such that z (t− T + τ?, y) = 0. But in the parabolic

cylinder [t− T, t− T + τ?]× [x,X], z < 0 satisfies a regular parabolic equation and satisfies also
the strong parabolic maximum principle, which immediately contradicts the strict sign of z at
t− T .
Thus τ? = T and then, if there exists y ∈ (x,X) such that z (t, y) = 0, applying once more

the strong parabolic maximum principle gives the same contradiction.
The proof is ended by passing to the limit X → +∞.

Corollary 3.31. For any t ∈ R, the zero of x 7→ z (t, x) is unique, or equivalently, Ξ+ (t) =
Ξ− (t).
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Lemma 3.32. For any t ∈ R, let Ξ (t) be the unique zero of x 7→ z (t, x).
Then Ξ : R → R is unbounded, non-decreasing if s > 0 and non-increasing if s < 0, and

continuous.
Furthermore, Γ is exactly the graph of Ξ,

Ω− =
{

(t, x) ∈ R2 | x > Ξ (t)
}
,

Ω+ =
{

(t, x) ∈ R2 | x < Ξ (t)
}
.

Proof. Assume for instance and up to the end of the proof s > 0 (the case s < 0 is similar).
Since ϕ is non-increasing with respect to ξ, z is non-decreasing with respect to t. Assume by

contradiction that there exists t, t′ ∈ R such that t′ < t and Ξ (t) < Ξ (t′). By Lemma 3.30, for
any x > Ξ (t), z (t, x) < 0, whence in particular z (t,Ξ (t′)) < 0, whence by monotonicity of z,
z (t′,Ξ (t′)) < 0, which contradicts the definition of Ξ (t′). Thus Ξ is non-decreasing.

The unboundedness is straightforward: considering the limiting signs of t 7→ z (t, x) shows by
continuity that this function has at least one zero for any x ∈ R. But if Ξ was bounded, thanks
to Lemma 3.30 once again, it would be possible to build a counter-example.
Finally, continuity is also straightforward, since it is well-known that a monotonic function

admits left-sided and right-sided limits at every point and that every discontinuity it has is a
jump discontinuity. The existence of such a discontinuity, that is of a segment {t?}× [x?, x? +X]
included in the free boundary, would immediately contradict Lemma 3.30.

Corollary 3.33. Both Ω+ and Ω− have a Lipschitz boundary.

Proof. It suffices to recall that every point of the graph of a monotone function satisfies an
interior cone condition and that such a condition characterizes Lipschitz boundaries.

In view of this regularity of Ω± and by means of easy integration by parts, we are now able
to generalize to any segregated pulsating front a property that was immediately satisfied by w
(Lemma 3.19).

Corollary 3.34. The following equalities hold in L2
loc

(
R2):

∂t (σ [z] z) = σ [z] ∂tz,

∂xz = σ̂ [z] ∂x (σ [z] z) ,
∂ξ (σ [ϕ]ϕ) = σ [ϕ] ∂ξϕ,
∂xϕ = σ̂ [ϕ] ∂x (σ [ϕ]ϕ) .

Proof. Let us show for instance the first one. Let (ζn)n∈N ∈
(
D
(
R2))N such that (ζn) converges

in L2
loc to some test function ζ ∈ L2

loc. For any n ∈ N, we have:∫
∂t (σ [z] z) ζn = −

∫
σ [z] z∂tζn

= −
∫

Ω+

z∂tζn −
∫

Ω−

1
d
z∂tζn.

Since Ω± have a Lipschitz boundary, we can integrate by parts once again (recalling that, by
definition, z|Γ = 0): ∫

∂t (σ [z] z) ζn =
∫

Ω+

∂tzζn +
∫

Ω−

1
d
∂tzζn

=
∫
σ [z] ∂tzζn.
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Passing to the limit n→ +∞ ends the proof.

More interestingly, we are now closer to an explicit free boundary condition. The following
three lemmas are dedicated to this question.

Lemma 3.35. Let Ξ be defined as in Lemma 3.32.
Then the traces (∂xz+)|∂Ω+

and (∂xz−)|∂Ω− are well-defined in L2
loc (∂Ω+) and L2

loc (∂Ω−)
respectively.

Proof. Since ∂Ω+ (respectively ∂Ω−) is a Lipschitz boundary, let us prove that (∂x (z+))|Ω+

(resp.(∂x (z−))|Ω−) is in H1
loc (Ω+) (resp. H1

loc (Ω−)). It is already established that it is in
L2
loc

(
R2). Considering the equation satisfied by z then shows immediately that (∂xx (z+))|Ω+

(resp. (∂xx (z−))|Ω−) is in L
2
loc

(
R2) as well. To conclude, it remains to prove that (∂tx (z+))|Ω+

(resp. (∂tx (z−))|Ω−) is in L
2
loc (Ω+) (resp. L2

loc (Ω−)).
Let t1, t2, x1, x2 ∈ R such that t1 < t2, x1 < x2 and [t1, t2]× [x1, x2] ⊂ Ω+. Let χ ∈ D

(
R2) be

a non-negative non-zero function identically equal to 1 in [t1, t2] × [x1, x2]. From the following
equation, satisfied in the classical sense in Ω+:

∂t (∂tz)− ∂xx (∂tz) = g1

[ z
α

]
∂tz,

multiplied by ∂tzχ and integrated over R2, we deduce:

−
∫ 1

2 |∂tz|
2
∂tχ+

∫
|∂xtz|2 χ−

1
2

∫
|∂tz|2 ∂xxχ =

∫
g1

[ z
α

]
|∂tz|2 χ.

It follows that there exists a constant R > 0 such that :

‖∂xtz‖2L2([t1,t2]×[x1,x2]) ≤ R‖∂tz‖L2([t1,t2]×[x1,x2])‖χ‖H2(R2),

whence ∂txz+ ∈ L2
loc (Ω+) indeed.

Similarly, ∂tx (z−) ∈ L2
loc (Ω−).

In the end, Ω+ and Ω− are Lipschitz domains, (∂x (z+))|Ω+
∈ H1

loc (Ω+) and (∂x (z−))|Ω− ∈
H1
loc (Ω−), whence their traces can be rigorously defined in L2

loc (∂Ω+) and L2
loc (∂Ω−) respec-

tively.

Lemma 3.36. Let Ξ be defined as in Lemma 3.32.
For any non-negative test function with compact support ζ ∈ C1

0
(
R2), the following equalities

hold: ∫
Ω+

(σ [z] z∂tζ − ∂xz∂xζ + η [z] ζ) =
∫
∂Ω+

∂xzζ,∫
Ω−

(σ [z] z∂tζ − ∂xz∂xζ + η [z] ζ) =
∫
∂Ω−

∂xzζ.

Proof. We prove the equality concerning Ω+, the other one being similar.
First, it is straightforward that:

(σ [z])|Ω+
= 1.

Let ε > 0 and:
Ωε+ =

{
(t, x) ∈ R2 | Ξ (t)− ε ≤ x < Ξ (t)

}
.
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Then: ∫
Ω+

(σ [z] z∂tζ − ∂xz∂xζ) =
∫

Ωε+
(z∂tζ − ∂xz∂xζ) +

∫
Ω+\Ωε+

(z∂tζ − ∂xz∂xζ)

Let
τε : x 7→ inf {t ∈ R | Ξ (t) = x+ ε} .

This function is increasing, piecewise-continuous, measurable and satisfies the following equal-
ity:

1Ω+\Ωε+ = 1{(t,x)∈R2 | τε(x)≤t}.

By integration by parts and using the equation satisfied by z in Ω+\Ωε+:∫
Ω+\Ωε+

(z∂tζ − ∂xz∂xζ) = −
∫

Ω+\Ωε+
η [z] ζ

−
∫
R
∂xz (t,Ξ (t)− ε) ζ (t,Ξ (t)− ε) dt

−
∫
R
z (τε (x) , x) ζ (τε (x) , x) dx.

By the Cauchy–Schwarz inequality and dominated convergence, as ε→ 0:∫
Ωε+

(z∂tζ − ∂xz∂xζ)→ 0,

∫
Ω+\Ωε+

η [z] ζ →
∫

Ω+

η [z] ζ,∫
R
z (τε (x) , x) ζ (τε (x) , x) dx→ 0.

Therefore, the following convergence holds as ε→ 0:

−
∫
R
∂xz (t,Ξ (t)− ε) ζ (t,Ξ (t)− ε) dt→

∫
Ω+

(σ [z] z∂tζ − ∂xz∂xζ) +
∫

Ω−
η [z] ζ.

Lemma 3.35 indicates that the trace of ∂xzζ at ∂Ω+ is well-defined in L2. Therefore, it remains
to show that:

lim
ε→0

∫
R
∂xz (t,Ξ (t)− ε) ζ (t,Ξ (t)− ε) dt = −

∫
∂Ω+

∂xzζ

Define, for any ε > 0:
zε : (t, x) 7→ z (t, x− ε) ,
ζε : (t, x) 7→ ζ (t, x− ε) .

It is clear that the trace of ∂xzεζε is well-defined in L2 as well and satisfies:∫
R
∂xz (t,Ξ (t)− ε) ζ (t,Ξ (t)− ε) dt =

∫
∂Ω+

(−1) ∂xzεζε.

Now, by virtue of the trace’s theorem, there exists a constant R > 0 such that :

‖∂xzεζε − ∂xzζ‖L2(∂Ω+) ≤ R‖∂xzεζε − ∂xzζ‖H1(Ω+).

Integrating by parts and using the continuity of z and ∂xζ, it is easily deduced that the
right-hand side converges to 0 as ε→ 0. Hence the claimed result follows.
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We can now prove that Ξ is bijective and that a free boundary condition is satisfied in a weak
sense.

Lemma 3.37. Let Ξ be defined as in Lemma 3.32.
Then Ξ is bijective and the functions:

zx,− : t 7→ (∂xz)|∂Ω− (t,Ξ (t)) ,

zx,+ : t 7→ (∂xz)|∂Ω+
(t,Ξ (t)) ,

where (∂xz)|∂Ω± are the traces of ∂xz at each side of Γ, are in L2
loc (R) and are equal a.e..

Furthermore, if s > 0, zx,− � 0, and if s < 0, zx,+ � 0.

Proof. Assume for instance s > 0, the other case being similar.
First, we prove the a.e. equality of zx,+ and zx,−, as well as the sign of zx,−.
Let ζ ∈ C1

0
(
R2) be any non-negative test function and let ζΓ : t 7→ ζ (t,Ξ (t)). By Lemma 3.36:∫

∂Ω+

∂xzζ +
∫
∂Ω−

∂xzζ = 0

where the unit vector normal to ∂Ω+ is the opposite of the one normal to ∂Ω−, whence we
obtain: ∫

R
zx,+ζΓ =

∫
R
zx,−ζΓ.

That is, for a.e. t, zx,+ (t) = zx,− (t), or, in other words, for a.e. t ∈ R, x 7→ ∂xz (t, x)
is continuous. The sign of zx,− (t) follows directly from Hopf’s lemma applied at the vertex
(t,Ξ (t)) of the smooth parabolic cylinder (t− 1, t)× (Ξ (t) ,Ξ (t) + 1).

Then, it is clear that a continuous unbounded real-valued function is necessarily surjective,
whence Ξ is bijective if and only if it is injective (or equivalently if and only if it is strictly
monotonic). We are going to prove directly that Ξ is injective.

Differentiating (firstly in the distributional sense) the equation satisfied by z with respect to
t in R2\Γ yields the following regular and linear parabolic equations:{

∂t (∂tz)− ∂xx (∂tz)− αg1
[
z
α

]
∂tz = 0 in Ω+

∂t (∂tz)− d∂xx (∂tz) + dg2
[
− zd
]
∂tz = 0 in Ω−.

Let x ∈ R. Assume that Ξ−1 ({x}) is not a singleton. By (large) monotonicity, it is then
a segment, say [t1, t2]. Applying classical parabolic regularity on this system of equations in
(t1, t2)× (x, x+ 1) shows that ∂tz is C1 with respect to t and C2 with respect to x up to (t1, t2)×
{x}. Moreover, ∂tz = 0 along (t1, t2)×{x}. By classical parabolic regularity and Hopf’s lemma,
for any t ∈ (t1, t2), the right-sided and the left-sided limit of ∂x∂tz (t, y) as y → x exists and
have opposite sign.
Remark that, away from Γ, the equations satisfied by z, ∂tz and ∂xz suffice to show that

z ∈ C2 (Ω+) ∩ C2 (Ω−). Therefore Schwarz’ theorem can be applied away from Γ.
Thus, for any t, t′ ∈ (t1, t2) and some ε > 0 small enough, we get:

∂xz (t, x± ε)− ∂xz (t′, x± ε) =
∫ t

t′
∂t∂xz (τ, x± ε) dτ

=
∫ t

t′
∂x∂tz (τ, x± ε) dτ.
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These two integrals have an opposite strict sign: with respect to t, ∂xz is decreasing on one
side of (t1, t2)× {x} and increasing on the other. This contradicts the fact that, for a.e. t ∈ R,
x 7→ ∂xz (t, x) is continuous (see the first step of the proof). Therefore for any x ∈ R, R×{x}∩Γ
is a singleton, whence Ξ is bijective.

Corollary 3.38. The function x 7→ x− sΞ−1 (x) is continuous and periodic. Furthermore,{(
x− sΞ−1 (x) , x

)
∈ R2 | x ∈ R

}
= ϕ−1 ({0}) .

Proof. The periodicity comes from the periodicity with respect to x of ϕ.

Remark. This corollary confirms that, roughly speaking, the free boundary is located near the
straight line of equation x = st + Ξ (0). In other words, Ξ can be represented as the sum of
t 7→ st and a L

s -periodic function Ξper.

Corollary 3.39. The monotonicity of z with respect to t is strict. Equivalently, ϕ is decreasing
with respect to ξ.

Proof. Just apply the strong maximum principle to the equations satisfied by ∂tz in each com-
ponent of R2\Γ to get that, in R2\Γ, ∂tz � 0 if s > 0 and ∂tz � 0 if s < 0, which is sufficient
to obtain strict monotonicity since the measure of Γ (as a measurable subset of R2) is zero.

Now, thanks to a technique developed by Aronson for the porous media equation [7], we are
able to prove the continuity of ∂xz.

Lemma 3.40. Let Ξ be defined as in Lemma 3.32 and zx,+ and zx,− be defined as in Lemma
3.37.
If s > 0 (respectively s < 0), zx,+ (t) (resp. zx,− (t)) is actually defined for any t ∈ R.

Moreover, the function zx,+ (resp. zx,−) is non-positive and locally uniformly bounded from
below.

Proof. We only prove the result in the case s > 0, the other one being symmetric.
Let t ∈ R and x, x′ ∈ R such that x < x′ < Ξ (t). For any x̃ ∈ (x, x′),

∂xxz (t, x̃) = ∂tz (t, x̃)− z (t, x̃) f1 (z (t, x̃) , x̃) .

On one hand, the term z (t, x̃) f1 (z (t, x̃) , x̃) is bounded from below by 0 and from above by a
constant R independent on x̃. On the other hand, ∂tz (t, x̃) > 0. Thus:

∂xxz (t, x̃) ≥ −R.

Integrating this inequality, we obtain:

∂xz (t, x′) ≥ ∂xz (t, x)−R (x′ − x) .

It follows that:
lim inf
x′→Ξ(t)

∂xz (t, x′) ≥ ∂xz (t, x)−R (Ξ (t)− x) ,

and then:
lim inf
x′→Ξ(t)

∂xz (t, x′) ≥ lim sup
x→Ξ(t)

∂xz (t, x) .

Hence:
lim

x→0,x>0
∂xz (t,Ξ (t)− x)
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exists. From the sign of z in Ω+, it is clear that it is non-positive. Using once more the inequality:

lim inf
x′→Ξ(t)

∂xz (t, x′) ≥ ∂xz (t, x)−R (Ξ (t)− x)

together with the local boundedness of ∂xz in Ω+, it follows that the limit is locally uniformly
bounded from below. Finally, it necessarily coincides with zx,+ (t).

Corollary 3.41. ∂xz ∈ L∞
(
R2).

Lemma 3.42. We have ∂xz ∈ C0,β
loc

(
R2).

Proof. Let ζ ∈ C2
0
(
R2). Choosing as test functions in the weak formulation in L2

loc of:

σ [z] ∂tz − ∂xxz = η [z]

a sequence of smooth functions converging in L2
loc

(
R2) to σ̂ [z] ∂xζ, we obtain:∫

∂tz∂xζ −
∫
σ̂ [z] ∂xxz∂xζ =

∫
σ̂ [z] η [z] ∂xζ.

Remarking the following equalities:∫
∂tz∂xζ = −

∫
z∂t (∂xζ)

= −
∫
z∂x (∂tζ)

=
∫
∂xz∂tζ,

∫
σ̂ [z] η [z] ∂xζ = −

∫
∂x (σ̂ [z] η [z]) ∂xζ

= −
∫
σ̂ [z] ∂x (η [z]) ∂xζ,

(where, by virtue of (H1), ∂x (η [z]) is piecewise-continuous and a fortiori is in L∞
(
R2)), we

deduce:
−
∫
∂xz∂tζ +

∫
σ̂ [z] ∂xxz∂xζ =

∫
σ̂ [z] ∂x (η [z]) ζ.

Hence we can once more apply DiBenedetto’s theory [55]: ∂xz, which is both in L∞
(
R2) and

in Cloc
(
R, L2

loc (R)
)
(by classical parabolic estimates similar to those detailed previously in the

proof of Proposition 3.6), is a locally bounded weak solution of:

∂tZ − ∂x (σ̂ [z] ∂xZ) = σ̂ [z] ∂x (η [z])

and therefore is locally Hölder-continuous indeed.

Remark. Let us explain here why ∂tz is very likely to be continuous as well (equivalently, Ξ is
very likely to be continuously differentiable). There are in fact some articles related to this free
boundary problem and although none of them is exactly what we need here, they strongly lead
to this conjecture (let us cite for instance Evans [66], Cannon–Yin [33] and Jensen [99]).
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Roughly speaking, the idea would be to regularize (SPF [s]), to show the uniqueness of the
weak solution of the problem written in divergence form, to prove thanks to the maximum
principle that the regularization of ‖ (∂tz) (∂xz)−1 ‖L∞ is bounded uniformly with respect to the
regularization, to obtain consequently that Ξ is Lipschitz-continuous, and then to deduce from
Caffarelli’s classical results about one–phase Stefan problems [32] that Ξ ∈ C1 (R), whence finally
∂tz ∈ C

(
R2).

Since we do not need such results to conclude this study about pulsating fronts, we choose not
to investigate further in this direction. Nevertheless, the rigorous proof of the continuity of ∂tz
in the more general framework of weak solutions of (SPF [s]) might be the object of a future
follow-up to this article.
Let us conclude this subsection with the following corollary, which takes into account the

previous remark and gives an interesting formula.
Corollary 3.43. If d = 1, then ∂tz, ∂xxz ∈ C0,β

loc

(
R2) and Ξ ∈ C1 (R).

If d 6= 1 and if ∂tz ∈ L∞
(
R2), then Ξ ∈ C1 (R), ∂tz ∈ C

(
R2), σ̂ [z] ∂xxz ∈ C

(
R2) and the

following equality holds for any t ∈ R:

Ξ′ (t) = d

1− d

lim
ε→0,ε>0

(∂xxz (t,Ξ (t)− ε)− ∂xxz (t,Ξ (t) + ε))

∂xz (t,Ξ (t)) .

Proof. Regularity in the symmetrical case d = 1 follows from classical parabolic regularity.
Provided d 6= 1 and global boundedness of ∂tz, let ε > 0 small enough so that the implicit

function theorem can be applied at the level set z−1 ({±ε}). There exists Ξ±ε ∈ C1 (R) such that
Ξ+ε � Ξ� Ξ−ε and such that:

Ξ′±ε (t) = − ∂tz (t,Ξ±ε (t))
∂xz (t,Ξ±ε (t)) .

Passing to the limit ε→ 0, we deduce that Ξ is Lipschitz-continuous. Then, by Caffarelli [32],
∂tz, ∂xxz ∈ C

(
Ω+
)
∩ C

(
Ω−
)
and Ξ ∈ C1 (R). Thus Ξ±ε → Ξ in C1

loc (R) as ε→ 0, whence ∂tz is
moreover continuous at Γ. Then, since σ̂ [z] ∂xxz = ∂tz− σ̂ [z] η [z], σ̂ [z] ∂xxz is continuous in R2

as well. Finally, the formula relating Ξ′ to the jump discontinuity of ∂xxz is easily obtained:

lim
ε→0,ε>0

(∂xxz (t,Ξ (t)− ε)− ∂xxz (t,Ξ (t) + ε)) = lim
ε→0,ε>0

(
∂tz (t,Ξ (t)− ε)− 1

d
∂tz (t,Ξ (t) + ε)

)
+ lim
ε→0,ε>0

(η [z] (t,Ξ (t)− ε)− η [z] (t,Ξ (t) + ε))

=
(

1− 1
d

)
∂tz (t,Ξ (t))

= −
(

1− 1
d

)
Ξ′ (t) ∂xz (t,Ξ (t)) .

3.3.4.3 Uniqueness

We are now able to end our characterization.
Theorem 3.44. Let z1 and z2 be segregated pulsating fronts with respective speeds s1 6= 0 and
s2 6= 0 and respective profiles ϕ1 and ϕ2.
Then s1 = s2 and there exists τ ∈ R such that ϕτ1 = ϕ2, where ϕτ1 : (ξ, x) 7→ ϕ1 (ξ − τ, x).
In other words, the speed is unique and the profile is unique up to translation with respect to

ξ.
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Proof. We are going to use once more the sliding method. Remark that, up to the free boundary,
this is the most simple case: bistable scalar equation. Therefore we refer to the proof of Lemma
3.4 for the details and only point out here some technical differences due to the presence of the
free boundary.
Step 1: existence of a translation of the profile associated with the highest speed

such that it is locally below the other profile.
Here it is useful to additionally require that, at ζ, the upper profile is positive (uniformly

with respect to x) whereas the lower profile is negative (uniformly as well). This will simplify
some arguments in Steps 2, 3, 4 and 5 since it is now clear that the contact points (ξ?, x?)
are necessarily located away from the free boundary, whence the arguments of the usual sliding
method for regular pulsating fronts (Berestycki–Hamel [14]) apply straightforwardly.
Step 2: up to some extra term, this ordering is global on the left.
No new idea here: multiply the upper profile by some κ ≥ 1.
Step 3: this extra term is actually unnecessary, thanks to the maximum principle.
Similarly, there is no new idea here as well and it follows easily that κ? = 1.
Step 4: up to some (possibly different) extra term, this ordering is global on the

right.
Thanks to the underlying symmetry due to the bistable structure, the proof of this step is

much simpler here: just change every profile into its opposite and repeat straightforwardly Step
2.
Step 5: this (possibly different) extra term is also unnecessary.
Similarly, repeat Step 3 to prove that κ? = 1.
Step 6: thanks to the maximum principle again, the speeds are equal and the

profiles are equal up to some translation.
This is the step which requires additional care because of the free boundary. To this end, let

us introduce some notations.
We assume that s1 ≤ s2. Let:

v2 : (t, x) 7→ ϕ2 (x− s1t, x) ,

vτ
?

1 : (t, x) 7→ ϕ1 (x− s1t− τ?, x) ,

v = v2 − vτ
?

1 ,

where τ? is defined as in Lemma 3.4.
At this step of the proof, it is established that v ≥ 0. Let Z = v−1 ({0}). With the same

argument as in Lemma 3.4, we can discard the possibility Z = ∅. Now there are basically three
cases.

1. There exists (t?, x?) ∈ Z such that v2 (t?, x?) > 0. Then by virtue of the usual parabolic
strong maximum principle,

(
vτ

?

1
)+ = (v2)+ in some parabolic cylinder whose final time is

t? and whose spatial center is x?. Thus v is identically null in this cylinder, whence by
strict monotonicity (see Corollary 3.39) of ϕ2 with respect to ξ, s1 = s2, v2 = z2 in this
cylinder, and then by periodicity of ϕ1−ϕ2 with respect to x,

(
vτ

?

1
)+ = v+

2 in R2 and their
free boundaries (i.e. zero sets) coincide. Thus there exists a unique bijection Ξ such that
this free boundary is the graph of Ξ. By continuity of ∂xvτ

?

1 and ∂xv2 (see Proposition
3.28), ∂xv = 0 on the other side of the free boundary, whence by virtue of Hopf’s lemma
the equality vτ?1 = v2 extends everywhere.

2. There exists (t?, x?) ∈ Z such that v2 (t?, x?) < 0. Then, by the exact same argument (this
is once more due to the underlying symmetry), vτ?1 = v2 in R2.
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3. Every (t?, x?) ∈ Z is such that vτ?1 (t?, x?) = v2 (t?, x?) = 0. Thanks to Hopf’s lemma
again, this case is actually contradictory. On one hand, since ∂xv ∈ C

(
R2) and v is non-

negative non-zero in R2, for any (t?, x?) ∈ Z, ∂xv (t?, x?) = 0. On the other hand, although
the free boundaries of vτ?1 and v2 are here a priori distinct, we can still apply Hopf’s lemma
at (t?, x?) in a suitable parabolic cylinder and get a strict sign for ∂xv (t?, x?).

Remark. At this point, it would be tempting to notice that this kind of proof can be easily
generalized if one of the two speeds is zero (in this case, the argument is usually referred to as
a “quenching” or “blocking” argument) and then to use it to show that a segregated stationary
equilibrium cannot coexist with a segregated pulsating front. Unfortunately, this is not possible.
A segregated stationary equilibrium is a priori a much more general notion than what could
be defined as a “segregated pulsating front with null speed” (the basic reason being that, when
c∞ = 0, the change of variables (t, x) 7→ (x− c∞t, x) is not an isomorphism anymore).
Nevertheless, it is still possible to use some kind of more elaborated quenching argument, as

shows the following theorem.

Theorem 3.45. If there exists a segregated pulsating front, there does not exist a segregated
stationary equilibrium.

Proof. Assume that there exist both a segregated pulsating front z with speed s 6= 0 and profile
ϕ and a segregated stationary equilibrium e.
Assume for instance that s > 0 and that e has a smallest zero:

x1 = min e−1 ({0}) ∈ R.

As in the usual sliding method, we construct (and do not detail these constructions) τ ∈ R
and κ > 1 such that:

(ξ, x) 7→ κe (ξ)− ϕ (ξ − τ, x)

is positive everywhere in (−∞, x1)× R, with a fixed gap at {x1} × R (constructing for instance
τ such that max

x∈C
ϕ (x1 − τ, x) = −da2

2 ). Then we define κ? as the infimum of these κ, we assume

by contradiction that κ? > 1 and we construct consequently the first contact point (ξ?, x?) with
ξ? < x1. By virtue of Proposition 3.16, ξ? > −∞. Let t? = x?−ξ?

s .
Notice that there exists a neighborhood of (ξ?, x?) such that ϕ � 0 in this neighborhood.

Consequently, there exists ε > 0 such that both functions:

x 7→ ϕ (x− st? − τ, x) ,

vτ,κ? : x 7→ κ?e (x+ ξ? − x?)− ϕ (x− st? − τ, x) ,

are non-negative non-zero everywhere in [x? − ε, x? + ε]. Moreover, vτ,κ? (x?) = 0. Thanks to
the inequality:

κη [e] ≥ κη [κe] in (x? − ε, x? + ε) ,

we get:

−κe′′ (x+ ξ? − x?) ≥ κη (κe (x+ ξ? − x?) , x+ ξ? − x?) for any x ∈ (x? − ε, x? + ε) ,

whence, since ∂tz > 0, vτ,κ? satisfies:

−v′′τ,κ? (x) > qκ? (x) vτ,κ? (x) for any x ∈ (x? − ε, x? + ε) ,

122



3.3 Asymptotic behavior: the infinite competition limit

where qκ? ∈ L∞ (R) is defined as:

qκ? : x 7→
{
η(κ?e(x+ξ?−x?),x+ξ?−x?)−η(ϕ(x−st?−τ,x),x)

vτ,κ?
if vτ,κ? (x) 6= 0

1 if vτ,κ? (x) = 0.

The function vτ,κ? is a non-negative non-zero super-solution of some elliptic problem. Since
the elliptic strong maximum principle contradicts the existence of ξ?, κ? = 1 indeed.
Repeating the argument near ξ = +∞ with some κ ≤ 1 then proves that (up to some increase

of τ) e (ξ) − ϕ (ξ − τ, x) � 0 actually holds in R2. Note that in this case, the proof is simpler,
since the negativity of ϕ in (ξ?,+∞) × R follows from its normalization and monotonicity. We
point out that, a priori, there are two cases, depending on the existence of max e−1 ({0}). But
in fact these two cases do not require different arguments.
Now, just as usual, we can define:

τ? = sup
{
τ ∈ R | e (ξ)− ϕ (ξ − τ, x) ≥ 0 for any (ξ, x) ∈ R2} .

Assume by contradiction that:

min
[−B,B]×R

(e (ξ)− ϕ (ξ − τ?, x)) > 0

for any B > 0 such that:
e (B) < 0,

min
x∈R

ϕ (−B − τ?, x) > 0.

By continuity, we then obtain for τ > τ∗ close enough,

min
[−B,B]×R

(e (ξ)− ϕ (ξ − τ, x)) > 0,

min
x∈R

ϕ (−B − τ, x) > 0.

It follows from the same type of arguments as those presented at the beginning of this proof
that:

e (ξ)− ϕ (ξ − τ, x)� 0 in (R\ (−B,B))× R,

thus contradicting the maximality of τ∗.
Hence, there exists B > 0 such that:

min
[−B,B]×R

(e (ξ)− ϕ (ξ − τ?, x)) = 0,

i.e. there exists (ξ?, x?) ∈ [−B,B]× R such that:

e (ξ?)− ϕ (ξ? − τ?, x?) = 0.

Let:
t? = x? − ξ?

s
,

v : (t, x) 7→ e (x+ ξ? − x?)− ϕ (x− st− τ?, x)
and notice that:

v (t, x) > 0 for any (t, x) ∈ [t? − 1, t?)× R,

v (t?, x?) = 0.
Now, we need to distinguish two cases, as in the proof of Theorem 3.44:
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— if ξ? /∈ e−1 ({0}), using the continuity of v and the strong parabolic maximum principle
in some parabolic cylinder [t? − ε, t?]× [x? − ε, x? + ε] (with a small enough ε so that the
signs of e (x+ ξ? − x?) and of ϕ (x− st− τ?, x) do not change in this cylinder), we get a
contradiction;

— if x? ∈ e−1 ({0}), using the continuity of e′ and ∂xz and Hopf’s lemma at the vertex (t?, x?)
of the parabolic cylinder [t? − 1, t?]× [x?, x? + 1], we get a contradiction as well.

The pair (z, e) cannot exist.
If s < 0, we change vτ,κ? into −vτ,κ? so that ∂tz < 0 yields a negative sub-solution and we

deduce similarly e (ξ)− ϕ (ξ − τ, x)� 0. The end of the proof is carried on similarly.
If min e−1 ({0}) does not exist, then max e−1 ({0}) does: it suffices to change the roles of e

and ϕ, in the sense that now we have to show that ϕ (ξ − τ, x) − e (ξ) � 0. Near ξ = −∞, the
studied quantity is κe − ϕ with κ ≤ 1, and near ξ = +∞, the studied quantity is κe − ϕ with
κ ≥ 1. Once κ? = 1 is established, the end of the proof is exactly the same.

Remark. The preceding proof only works in the case of constant a1 and a2. In the case of
non-constant extinction states, this type of quenching argument does not hold anymore because
Proposition 3.16 is not true anymore and therefore we cannot prove that ξ? < −∞ when trying
to prove that κ? = 1. We do not know how to prove the theorem in such a case and we stress
that this is really unsatisfying. Still, we think it is natural to make the following conjecture.

Conjecture 3.46. Theorem 3.45 still holds true in the non-constant case.

3.3.5 Uniqueness of the asymptotic speed
From now on, (ck)k>k? refers to the general family indexed on (k?,+∞) instead of an a priori

extracted convergent sequence. In the following, we will prove that (ck)k>k? converges indeed to
c∞ as k → +∞.

Definition 3.47. We say that s ∈ R satisfies Property (E (d, α, f1, f2)) if one of the following
holds:
— s = 0 and there exists a segregated stationary equilibrium;
— s 6= 0 and there exists a segregated pulsating front with speed s.

The set of all s ∈ R satisfying Property (E (d, α, f1, f2)) is referred to as Σ(d,α,f1,f2).

Remark. This set does not depend at all on k?.
Following Theorems 3.44 and 3.45, we deduce the following uniqueness result.

Corollary 3.48. There is at most one s ∈ R satisfying Property (E (d, α, f1, f2)).

To conclude about the convergence of the speeds, it suffices to recall that c∞ satisfies of course
Property (E (d, α, f1, f2)).

Proposition 3.49. The limit at +∞ of the function k 7→ ck is well-defined.

Remark. If a1 and a2 are non-constant, as explained before, the quenching argument cannot be
used and we do not have the uniqueness in R of the elements satisfying Property (E (d, α, f1, f2)).
Still, we have the uniqueness in R\ {0}, whence in particular the countability of the limit points
of k 7→ ck as k → +∞. Therefore, using the intermediate value theorem, we can still prove that
the limit of the continuous function k 7→ ck as k → +∞ is well-defined. In other words, the
convergence of (ck) can be proved even without proving Conjecture 3.46.
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3.3.6 Conclusion of this section
The function k 7→ ck converges at +∞.
If its limit c∞ is non-zero, then both families ((u1,k, u2,k))k>k? and ((ϕ1,k, ϕ2,k))k>k? have a

unique limit point (which are respectively the segregated pulsating front w traveling with speed
c∞ and its profile φ), and therefore the functions k 7→ (ϕ1,k, ϕ2,k) and k 7→ (u1,k, u2,k) converge
as well as k → +∞.
If c∞ = 0, then ((u1,k, u2,k))k>k? might have multiple limit points, each one of them being a

segregated stationary equilibrium.

3.4 Sign of the asymptotic speed depending on the
parameters

In this final section, we investigate the sign of c∞ as a function of (d, α), which is consequently
not considered as fixed anymore (L > 0 and (f1, f2) are still fixed nevertheless).
We assume the existence of Dexis ≥ 0 such that, for any d > Dexis and any α > 0, (Hexis) is

satisfied.
Once (d, α) ∈ (Dexis,+∞)× (0,+∞) is given, c∞ is naturally defined. If c∞ 6= 0, φ and w are

well-defined as well.
Remark. These assumptions are natural in view of the existence result under the hypothesis
(Hfreq) exhibited by the first author [Gir17]. Indeed, if (Hfreq) is assumed, then it implies
(Hexis) and the existence of an explicit Dexis:

Dexis =
{
M2

(
L
π −

1√
M1

)2
if L
√
M1 > π

0 if L
√
M1 ≤ π.

3.4.1 Necessary and sufficient conditions on the parameters for the
asymptotic speed to be zero

Here the idea is to follow what we did in the space-homogeneous case [GN15] to deduce a free
boundary condition satisfied by any segregated stationary equilibrium. To this end, we need the
following result, which shares some similarities with Proposition 4.1 of Du–Lin [59, 60] but is, on
one hand, restricted to the null speeds and, on the other hand, extended to the space-periodic
non-linearities.

Proposition 3.50. Let x0 ∈ R and f : [0,+∞)×R→ R, periodic with respect to x and satisfying
(H1), (H2) and (H3). The following problem:{

−z′′ = zf [z] in (x0,+∞)
z (x0) = 0

admits a unique non-negative non-zero solution zx0,f ∈ C2 ([x0,+∞)).
Furthermore, the function

Θ : (x0, f) 7→ z′x0,f (x0)

(that is the right-sided derivative of zx0,f at x0) satisfies:
1. Θ� 0;
2. Θ is continuous with respect to the canonical topology of R× C1 (R2,R

)
;
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3. Θ is periodic with respect to its first variable;
4. for any κ > 0,

Θ
(
x0, (z, x) 7→ f

( z
κ
, x
))

= κΘ (x0, f) .

Proof. Firstly, let us point out that Du–Lin’s proposition [59, 60] is readily extended to generic
“KPP”-type non-linearities which do not depend on the spatial variable. We do not detail this
extension here.
Thus, let f : z 7→ max

y∈C
f (z, y). It can be checked that z 7→ zf [z] is indeed a KPP-type non-

linearity (mostly, it reduces to the proof of the fact that f is decreasing and negative after some
fixed value). Then, let z be the solution given by (the aforementioned extension of) Du–Lin’s
proposition of: {

−z′′ (x) = zf [z] in (x0,+∞)
z (x0) = 0.

Similarly, let f : z 7→ min
y∈C

f (z, y) and z be the solution of:

{
−z′′ (x) = zf [z] in (x0,+∞)
z (x0) = 0.

We intend to prove that z and z form an ordered pair of super- and sub-solution for the
problem at hand.
Let a be the positive constant given by (H3) such that f (a, x) = 0 for all x ∈ C. By standard

elliptic estimates,
lim
+∞

z = lim
+∞

z = a.

By Du–Lin’s proposition, we know that z′ (x0) and z′ (x0) (understood as right-sided deriva-
tives) are finite, whence there exists κ > 0 such that:

κz − z ≥ 0 in (x0,+∞) .

Let:
κ? = inf {κ > 0 | κz − z � 0 in (x0,+∞)}

and assume by contradiction that κ? > 1. We can fix a sequence (κn)n∈N ∈ (1, κ?)N which
converges to κ? from below. There exists a sequence (xn)n∈N ∈ (x0,+∞)N such that:

(κnz − z) (xn) < 0.

Since lim
+∞

(κnz − z) = (κn − 1) a > 0, the sequence (xn)n∈N is bounded and then convergent up
to extraction.
If x∞ is the limit of (xn), then by continuity:

κ?z (x∞) = z (x∞) .

Now, remarking that:
κ?zf [z] ≥ κ?zf [κ?z]

by monotonicity of f , it follows by Lipschitz-continuity of f that κ?z − z is a positive super-
solution of some linear elliptic problem which vanishes at x∞. Provided x∞ 6= x0, this contradicts
the elliptic strong minimum principle and the strict ordering at +∞.
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But if x∞ = x0, then Hopf’s lemma implies that:

(κ?z − z)′ (x0) > 0.

From this inequality, the optimality of κ? is easily contradicted.
Hence κ? = 1, that is z and z are indeed a pair of ordered super- and sub-solution of the

problem. Since f depends on x (the special case of f constant with respect to x, that is Du–
Lin’s case, can be discarded here without loss of generality), they are not solutions themselves,
whence their ordering is strict:

z � z in (x0,+∞) .

Finally, by virtue of classical existence–comparison results for semi-linear elliptic problems,
there exists a solution of the problem zx0,f satisfying furthermore:

z � zx0,f � z.

The uniqueness of zx0,f follows from similar arguments.
The positivity of Θ easily follows from zx0,f � z. Its continuity comes from the uniqueness

of zx0,f and classical compactness arguments. Its periodicity with respect to x comes from the
uniqueness of zx0,f and the periodicity of f with respect to x. The last property comes from the
following easy fact. Let κ > 0 and Z = κzx0,f . It is easily verified that:

−Z ′′ = Zf

[
Z

κ

]
in (x0,+∞)

and then by uniqueness Z = zx0,fκ where fκ : (z, x) 7→ f
(
z
κ , x

)
.

Before going any further, we recall that it suffices to choose different normalization sequences
to deduce that, if c∞ = 0, there exists at least one segregated stationary equilibrium e1 satisfying:

inf e−1
1 ((−∞, 0)) > −∞

and at least one segregated stationary equilibrium e2 satisfying:

sup e−1
2 ((0,+∞)) < +∞.

If c∞ = 0, we define consequently x1 = min e−1
1 ({0}) and x2 = max e−1

2 ({0}). Recall that,
without loss of generality, we can assume that (x1, x2) ∈ [0, L)2.

Lemma 3.51. Let (d, α) ∈ (Dexis,+∞) × (0,+∞), f1,x1 : (z, x) 7→ f1 (z, 2x1 − x) and Θ be
defined as in Proposition 3.50. Assume c∞ = 0.
Then:

αΘ (x1, f1,x1) ≥ dΘ
(
x1,

1
d
f2

)
,

αΘ (x2, f1,x2) ≤ dΘ
(
x2,

1
d
f2

)
.

Proof. We prove the first inequality, the second one being proved similarly (using e2 instead of
e1).
First, if:

e−1
1 ({0}) \ {x1} = ∅,

127



Chapitre 3 Compétition en milieu périodique : II – Limite ségrégative d’ondes pulsatoires et
résultat de type « L’union ne fait pas la force »

then e1 has a unique zero. Now, consider the problems satisfied by the functions:

z1 : x 7→ e+
1 (2x1 − x) ,

z2 : x 7→ e−1 (x) .

It is clear that:

(z1, z2) =
(
zx1,(z,x)7→f1( zα ,2x1−x), zx1,(z,x) 7→ 1

d f2( zd ,x)
)
.

Since e1 ∈ C2 (R), z′1
(
x+

1
)

= z′2
(
x+

1
)
is necessary. From the relations:

Θ
(
x1, (z, x) 7→ f1

( z
α
, 2x1 − x

))
= αΘ (x1, f1,x1) ,

Θ
(
x1, (z, x) 7→ 1

d
f2

(z
d
, x
))

= dΘ
(
x1,

1
d
f2

)
,

we see that we are in the case of equality.
Next, if:

e−1
1 ({0}) \ {x1} 6= ∅,

then let:
y1 = min e−1

1 ({0}) \ {x1} .

Clearly, z3 =
(
e−1
)
|(x1,y1) is the unique non-negative non-zero solution of:{

−dz′′ = zf2
[
z
d

]
in (x1, y1)

z (x1) = z (y1) = 0.

Now it can be easily verified that z3 is a sub-solution for the problem satisfied by zx1,(z,x)7→ 1
d f2( zd ,x).

The inequality follows.

Remark. We explained previously that, if (Hfreq) [Gir17] is assumed, each segregated stationary
equilibrium has a unique zero xe. In such a case, we have equality:

αΘ (xe, f1,xe) = dΘ
(
xe,

1
d
f2

)
.

Let (d, α) ∈ (0,+∞)2. With the same notations as before, we define the following sets:

X+
(d,α) =

{
x ∈ [0, L) | αΘ (x, f1,x) ≥ dΘ

(
x,

1
d
f2

)}
,

X−(d,α) =
{
x ∈ [0, L) | αΘ (x, f1,x) ≤ dΘ

(
x,

1
d
f2

)}
.

Clearly, from the preceding corollary, if c∞ = 0,{
X+

(d,α) 6= ∅
X−(d,α) 6= ∅.
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Proposition 3.52. Let (d, α) ∈ (0,+∞)2, f1,x : (z, y) 7→ f1 (z, 2x− y) , Θ be defined as in
Proposition 3.50 and :

Ad : x 7→
dΘ
(
x, 1

df2
)

Θ (x, f1,x) .

The function Ad is continuous, positive and periodic, does not depend on α and satisfies the
following properties.
— If there exists x ∈ X+

(d,α), then α ≥ Ad (x).

— If there exists x ∈ X−(d,α), then α ≤ Ad (x).
— It has a global minimum and a global maximum .

Consequently, provided d > Dexis, α ∈ [minAd,maxAd] if and only if c∞ = 0.

Proof. Everything is straightforward apart maybe the following implication: if α ∈ [minAd,maxAd],
then c∞ = 0. In fact, if there exists xe ∈ [0, L) such that α = A (xe), then the following function:

z : y 7→
{
zxe,(z,x)7→f1( zα ,2xe−x) (2xe − y) if y < xe,

−zxe,(z,x) 7→ 1
d f2( zd ,x) (y) if y ≥ xe,

is a segregated stationary equilibrium, which implies by uniqueness (see Theorem 3.45) that
c∞ = 0.

Remark. The preceding proposition characterizes sharply {α > 0 | c∞ = 0}. Moreover, it also
gives an implicit characterization of the diffusion rates such that c∞ = 0. With this in mind,
understanding whether Ad is constant or not would be of great interest.
Let us recall that if a1 and a2 are not constant, we do not know how to prove Theorem 3.45.

Therefore in such a case the preceding sharpness is lost and we might still have a non-zero c∞ for
some α ∈ [minAd,maxAd]. This pathological situation seems highly unlikely (recall Conjecture
3.46).
From this result, we can also deduce an explicit estimate for the range of parameters (d, α),

as indicated by the following statement.

Proposition 3.53. Let Λ ⊂ R2 be the following set:{
(d, α) ∈ (0,+∞)2 | X+

(d,α) 6= ∅ and X
−
(d,α) 6= ∅

}
.

There exists r > 0 and r ≥ r, defined by formulas
(
Fr
)
and (Fr) which only depend on (f1, f2),

such that, for any (d, α) ∈ Λ,

r ≤ α2

d
≤ r.

Remark. Although these estimates do not depend on d, they are also less precise than the previous
statement. Indeed, we will see in the course of the proof that, for any d > 0:√

rd ≤ minAd,

maxAd ≤
√
rd,

and furthermore it should be expected that these inequalities are actually strict. Thus the interest
of this proposition lies mostly in the fact that r and r do not depend on d.
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Proof. Recalling from Proposition 3.50 the definition of zx0,f , we define for any d > 0 and any
y ∈ C the following functions:

z1,y = zy,f1,y ,

z2,y : x 7→ zy, 1
d f2

(√
dx+ y

)
.

Most importantly, z2,y satisfies:{
−z′′2,y (x) = z2,y (x) f2

(
z2,y (x) ,

√
dx+ y

)
for any x ∈ (0,+∞) ,

z2,y (0) = 0.

Let f2 : z 7→ max
x∈C

f2 (z, x) and z be the solution of:

{
−z′′ = zf2 [z] in (0,+∞)
z (0) = 0.

Similarly, let f2 : z 7→ min
x∈C

f2 (z, x) and z be the solution of:

{
−z′′ = zf2 [z] in (0,+∞)
z (0) = 0.

It can easily be checked (see the proof of Proposition 3.50) that the solutions z and z form a pair
of sub-solution and super-solution for the problem satisfied by z2,y. By uniqueness, z ≤ z2,y ≤ z.
Since

√
dΘ
(
y, 1

df2
)

= z′2,y (0), consequently:

z′ (0) ≤
√
dΘ
(
y,

1
d
f2

)
≤ z′ (0) .

Then, for any (d, α) ∈ Λ, we deduce from the preceding estimate and from the definitions of
X+

(d,α) and X−(d,α) that there exists (x1, x2) ∈ [0, L)2 such that:

αΘ (x1, f1,x1) ≥
√
dz′ (0) ,

αΘ (x2, f1,x2) ≤
√
dz′ (0) .

The conclusion follows from the following definitions:

r =

 z′ (0)
max
x∈C

Θ (x, f1,x)

2

,
(
Fr
)

r =

 z′ (0)
min
x∈C

Θ (x, f1,x)

2

. (Fr)

Corollary 3.54. Assume that, for any i ∈ {1, 2}, fi has the particular form (u, x) 7→ µi (x) (1− u)
with µi ∈ C1

per (R), µi � 0.
Then:

min
C

(µ2)

max
C

(µ1) ≤ r ≤ r ≤
max
C

(µ2)

min
C

(µ1) .
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Proof. In such a case, the functions f2 and f2 defined in the proof of Proposition 3.53 reduce to:

f2 : z 7→ max
C

(µ2) (1− z) ,

f2 : z 7→ min
C

(µ2) (1− z) .

Define analogously:
f1 : z 7→ max

C
(µ1) (1− z) ,

f1 : z 7→ min
C

(µ1) (1− z) .

Denoting the functions z and z defined in the proof of Proposition 3.53 as z2 and z2, the
definitions of r and r read:

r =

 z′2 (0)
max
x∈C

Θ (x, f1,x)

2

,

r =

 z′2 (0)
min
x∈C

Θ (x, f1,x)

2

.

Defining analogously the functions z1 and z1, we obtain by a super- and sub-solution argument
similar to that of Proposition 3.53 the following estimates:

z′1 (0) ≤ min
x∈C

Θ (x, f1,x) ≤ max
x∈C

Θ (x, f1,x) ≤ z′1 (0) ,

which lead subsequently to:

r ≥
(
z′2 (0)
z′1 (0)

)2
,

r ≤
(
z′2 (0)
z′1 (0)

)2
.

Now let us determine Θ (0, z 7→ r (1− z)) for any constant r > 0. Multiplying the equality
satisfied by z = z0,z 7→r(1−z) by z′, we find:

−

(
(z′)2

2

)′
= r

(
z2

2

)′
− r

(
z3

3

)′
.

Integrating between 0 and +∞, it follows (z′ (0))2 = r
6 , that is:

Θ (0, z 7→ r (1− z)) =
√
r

6 .

Applying this equality with r = max
C

(µ2), r = min
C

(µ2), r = max
C

(µ1) and r = min
C

(µ1), the

claimed estimates for r and r follow directly.

Thanks to the existence of r and r, we now know that the quantity α2

d plays a particular role
(and this is obviously reminiscent of the space-homogeneous case [GN15]). Therefore, we also
state the following (immediate) proposition.
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Proposition 3.55. For any d ∈ (0,+∞), let:

R0
d =

[
(minAd)2

d
,

(maxAd)2

d

]
. (FR0)

The set R0
d is a non-empty, closed, subinterval of [r, r].

Assume moreover that d > Dexis. Then c∞ = 0 if and only if α
2

d ∈ R
0
d.

Remark. Once more, in the case of non-constant a1 and a2, one implication is lacking, but
proving Conjecture 3.46 would be sufficient to recover it.
The length of R0

d is a very interesting open question (which is obviously equivalent to that
of the constancy of Ad). Recall that in the space-homogeneous case [GN15], R0

d =
{
f2[0]
f1[0]

}
is a

singleton which does not depend on d.

3.4.2 Sign of a non-zero asymptotic speed

Proposition 3.56. Let (d, α) ∈ (0,+∞)2. Let z be a segregated pulsating front with speed s 6= 0
and profile ϕ.
Then s has the sign of:∫ L

0

∫ αa1

−da2

η (z, x) dzdx =
∫ L

0

(
α2
∫ a1

0
zf1 (z, x) dz − d

∫ a2

0
zf2 (z, x) dz

)
dx.

Remark. In view of well-known results about bistable scalar traveling waves, and more recently
pulsating fronts (see for instance Ding–Hamel–Zhao [57]), such a result was to be expected.
It could be tempting to try to get rid of the a priori condition s 6= 0 and to show that the

existence of a segregated stationary equilibrium implies:∫
C

∫ αa1

−da2

η (z, x) dzdx = 0.

But Zlatos [148] showed on the contrary that it is possible to build counter-examples of pure
bistable non-linearities F of positive integral such that:

∂tz − ∂xxz = F [z]

does not admit any transition front with non-zero speed. Therefore we do not investigate further
in this direction.

Proof. We have justified previously that in the equation (SPF [s]), every term (div (E∇ϕ), ∂ξϕ
and η [ϕ]) is well-defined in L2

loc

(
R2). Thus we consider the test function ∂ξϕ1[−B,B]×C ∈

L2
loc

(
R2) for some large enough B > 0. By large, we mean here that we assume the following:

min
x∈C

ϕ (ξ, x) > 0 for any ξ < −B,

max
x∈C

ϕ (ξ, x) < 0 for any ξ > B.

Hence the subset of the free boundary
{

(ξ, x) ∈ R× C | ϕ (ξ, x) = 0
}
is included in (−B,B)×

C.
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Multiplying (SPF [s]) by ∂ξϕ and integrating over (−B,B)× C yield:∫ B

−B

∫ L

0
div (E∇ϕ) ∂ξϕ+ s

∫ B

−B

∫ L

0
σ [ϕ] (∂ξϕ)2 = −

∫ B

−B

∫ L

0
η [ϕ] ∂ξϕ.

First, by change of variable, Lipschitz-continuity of the free boundary (see Proposition 3.28)
and definition of η:

−
∫ L

0

∫ B

−B
η [ϕ] ∂ξϕ =

∫ L

0

∫ ϕ(−B,x)

ϕ(B,x)
η (z, x) dzdx

=
∫ L

0

(
α2
∫ ϕ(−B,x)/α

0
zf1 (z, x) dz − d

∫ −ϕ(B,x)/d

0
zf2 (z, x) dz

)
dx.

Then, since we do not know that ∂ξϕ is continuous, the term
∫ B
−B
∫ L

0 div (E∇ϕ) ∂ξϕ is dealt
with a standard mollification procedure. There exists a sequence of non-negative non-zero mol-
lifiers (θn)n∈N ∈ D (R). For any n ∈ N, let:

ϕn : (ξ, x) 7→
∫
ϕ (ξ − ζ, x) θn (ζ) dζ.

On one hand, for any n ∈ N, it is clear that all the terms ∂ξξϕn, ∂xxϕn, ∂ξxϕn are classically
defined. By periodicity and integration by parts, we easily obtain:∫ B

−B

∫ L

0
div (E∇ϕn) ∂ξϕn = 1

2

∫ L

0

([
(∂ξϕn)2 (ξ, x)

]B
−B
−
[
(∂xϕn)2 (ξ, x)

]B
−B

)
dx.

It can be easily verified that if both sets:

±B + 2suppθ1 = ±B + 2
⋃
n∈N

suppθn

do not intersect the free boundary, that is if B is large enough indeed, then as n→ +∞:

max
x∈C
|∂ξϕn (±B, x)− ∂ξϕ (±B, x)|+ max

x∈C
|∂xϕn (±B, x)− ∂xϕ (±B, x)| → 0.

It follows that:

1
2

∫ L

0

([
(∂ξϕn)2 (ξ, x)

]B
−B
−
[
(∂xϕn)2 (ξ, x)

]B
−B

)
dx→ 1

2

∫ L

0

([
(∂ξϕ)2 (ξ, x)

]B
−B
−
[
(∂xϕ)2 (ξ, x)

]B
−B

)
dx.

On the other hand:

∫ B

−B

∫ L

0
div (E∇ϕ) ∂ξ (ϕ− ϕn) ≤ ‖div (E∇ϕ) ‖L2((−B,B)×C)‖∂ξ (ϕ− ϕn) ‖L2((−B,B)×C),

∫ B

−B

∫ L

0
div (E∇ (ϕ− ϕn)) ∂ξϕn ≤ ‖div (E∇ (ϕ− ϕn)) ‖L2((−B,B)×C) sup

n∈N
‖∂ξϕn‖L2((−B,B)×C),

and, once more by standard mollification theory, ‖∂ξ (ϕ− ϕn) ‖L2((−B,B)×C) and ‖div (E∇ (ϕ− ϕn)) ‖L2((−B,B)×C)
converge to 0 as n→ +∞.
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Therefore, passing to the limit n→ +∞, we obtain the expected equality:∫ B

−B

∫ L

0
div (E∇ϕ) ∂ξϕ = 1

2

∫ L

0

([
(∂ξϕ)2 (ξ, x)

]B
−B
−
[
(∂xϕ)2 (ξ, x)

]B
−B

)
dx.

Finally, using these computations to pass to the limit B → +∞ in the equality:∫ B

−B

∫ L

0
div (E∇ϕ) ∂ξϕ+ s

∫ B

−B

∫ L

0
σ [ϕ] (∂ξϕ)2 = −

∫ B

−B

∫ L

0
η [ϕ] ∂ξϕ,

it follows:

s

∫
R×C

σ [ϕ] (∂ξϕ)2 =
∫ L

0

(
α2
∫ a1

0
zf1 (z, x) dz − d

∫ a2

0
zf2 (z, x) dz

)
dx,

and since:
0 < min

{
1, 1
d

}
‖∂ξϕ‖2L2(R×C) ≤

∫
R×C

σ [ϕ] (∂ξϕ)2
,

the claimed relationship between s and
∫ L

0
∫ αa1
−da2

η (z, x) dzdx follows.

Corollary 3.57. Let (d, α) ∈ (Dexis,+∞)× (0,+∞). Then:
1. if α

2

d > maxR0
d, c∞ > 0;

2. if α
2

d < minR0
d, c∞ < 0.

Proof. It suffices to remark that, for any i ∈ {1, 2},
∫ L

0
∫ ai

0 zfi (z, x) dzdx > 0.

Remark. We recall that, in the proof of Proposition 3.56, the fact that a1 and a2 are constant
is crucial. This issue has already been encountered (see the remark following Proposition 3.7).
Therefore, in the general setting, it is not possible to obtain such an explicit formula for the sign
of c∞. Nevertheless, let us point out that the results of Corollary 3.57 should still hold in this
case:
— there still exists r ≥ r > 0 such that 0 /∈ Σ(d,α,f1,f2) if (d, α) does not satisfy r ≤ α2

d ≤ r,
since the whole subsection 3.4.1 can be easily generalized (even though:
— we cannot prove that c∞ = 0 if α ∈ [minAd,maxAd], i.e. if α2

d ∈ R
0
d (but recall

Conjecture 3.46);
— additional care is needed since a non-constant a2 would a priori depend on d);

— we will prove in the next section that (d, α) 7→ c∞ is continuous at least in{
(d, α) ∈ (Dexis,+∞)× (0,+∞) | α

2

d
/∈ R0

d

}
;

— the study of the limit of the segregated pulsating front as α → 0 or α → +∞ (which can
be rigorously done since Dexis does not depend on α) should easily yield the sign of the
speed at such limits:
— formally, as α→ 0, the positive part of w vanishes and we are left with a Fisher–KPP

pulsating front connecting 0 to −da2, consequently with a negative speed;
— formally, as α→ +∞, the negative part of wα vanishes and we are left with a Fisher–

KPP pulsating front connecting a1 to 0, consequently with a positive speed;
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— hence, by connectedness and continuity, Corollary 3.57 would be recovered indeed.
To conclude, let us highlight an important particular case.

Corollary 3.58. Assume that, for any i ∈ {1, 2}, fi has the particular form (u, x) 7→ µi (x) (1− u)
with µi ∈ C1

per (R), µi � 0.
Let:

r =
‖µ2‖L1(C)

‖µ1‖L1(C)
.

If c∞ 6= 0, then it has the sign of α2r − d.

Proof. In such a case, for any i ∈ {1, 2}, ai = 1 and:∫ L

0

∫ 1

0
zfi (z, x) dzdx = 1

6

∫ L

0
µi (x) dx.

3.4.3 Continuity of the asymptotic speed with respect to the parameters
In this final subsection, we even allow (f1, f2) to vary in the set F of all L-periodic f :

[0,+∞) × R → R satisfying (H1), (H2) and (H3), equipped with the canonical topology of
C1 (R2,R

)
.

Proposition 3.59. Assume that for any (f1, f2) ∈ F2, there exists a non-negative Dexis = Df1,f2
exis

as defined before.
Let:

P =
{

(d, α, f1, f2) ∈ (0,+∞)2 ×F2 | d > Df1,f2
exis

}
.

The function:
P → R

(d, α, f1, f2) 7→ c∞

is well-defined and continuous.
Assume moreover that the function (d, α, f1, f2) ∈ P 7→ k? is locally bounded. Then the

convergence of ((d, α, f1, f2) ∈ P 7→ ck)k>k? to (d, α, f1, f2) ∈ P 7→ c∞ is locally uniform.

Remark. If (Hexis) follows from (Hfreq) [Gir17] and if:

Dexis =
{
M2

(
L
π −

1√
M1

)2
if L
√
M1 > π,

0 if L
√
M1 ≤ π,

then (f1,f2) 7→ Df1,f2
exis is indeed well-defined (and actually continuous) in F2.

Proof. Just verify (with the same integrations by parts than those used in the course of the
proofs of Propositions 3.6 and 3.7) that:
— all families of segregated pulsating fronts satisfy some locally uniform estimates (with

respect to (d, α, f1, f2)) in Cloc
(
R, L2

loc (R)
)
∩L2

loc

(
R, H1

loc (R)
)
and therefore, by virtue of

DiBenedetto’s theory [55], in C0,β
loc

(
R2);

— all families of segregated stationary equilibrium satisfy some locally uniform estimates (with
respect to (d, α, f1, f2)) in C2,β

loc (R).
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The continuity of c∞ is then a classical consequence of Theorems 3.44 and 3.45 and of compactness
arguments.
The locally uniform convergence is proved with similar compactness arguments, this time using

the fact that the compactness estimates of Propositions 3.6 and 3.7 are locally uniform.

Remark. We recall that in the case of non-constant a1 and a2, we cannot prove Theorem 3.45.
Therefore it is not possible to prove complete continuity of c∞. In the whole subset:{

(d, α, f1, f2) ∈ P | α
2

d
∈ R0

d,f1,f2

}
,

c∞ might not be continuous and jump between 0 and some non-zero values. Still, it is not
possible to jump directly from a positive value to a negative one, whence the zero set is in any
case non-empty. Moreover, we recall that these issues are completely subordinated to Conjecture
3.46.

3.4.3.1 As a conclusion: what about monotonicity?

Regarding the monotonicity of α 7→ c∞:

it should be easily established, via super- and sub-solutions, that α 7→ c∞ is non-decreasing
(a proof that we do not detail here for the sake of brevity). Recall moreover that we already
suggested in the previous subsection that c∞ → −c? [d, 2] as α → 0 and c∞ → c? [1, 1] as
α→ +∞, whence α 7→ c∞ would in fact be from (0,+∞) onto (−c? [d, 2] , c? [1, 1]).

Regarding the monotonicity of d 7→ c∞:

on the contrary, such a result should in general not be expected. We recall that:
— the dependency of the speed of a bistable front on its diffusion coefficient is in general

unclear;
— even for the Fisher–KPP equation, as long as heterogeneity is introduced, the monotonicity

of the minimal speed as a function of the diffusion coefficient is in general lost (for instance,
in space-time periodic media, a counter example has been exhibited by the second author
[118]).

136



Chapitre 4

Compétition en milieu périodique : III –
Existence & stabilité d’états de coexistence

périodiques ségrégés

Résumé

Ce chapitre s’intéresse au système de compétition – diffusion de Lotka – Volterra à deux
espèces avec fort taux de compétition ainsi qu’à deux équations de réaction – diffusion
scalaires liées. On montre que dans certains milieux périodiques avec large période, il existe
des états stationnaires de coexistence périodiques, non-constants et stables. Les résultats sont
comparés à des résultats déjà connus sur l’existence et la non-existence de telles solutions.
Enfin, une interprétation écologique est proposée.
Ce chapitre, co-écrit avec Alessandro Zilio, a fait l’objet d’une soumission sous le titre

Competition in periodic media : III – Existence & stability of segregated periodic coexistence
states dans Mathematische Annalen [GZ18].
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4.1 Introduction
We construct stable periodic sign-changing steady states in one-dimensional spatially periodic

media for the equation
∂tz − ∂xxz = f (z, x) (4.1.1)

and its quasi-linear counterpart

∂t (σ(z)z)− ∂xxz = f (z, x) , (4.1.2)

where

f : (z, x) 7→ µ1(x)
(
a1 −

1
α
z

)
z+ − 1

d
µ2(x)

(
a2 + 1

d
z

)
z−

and the positive function σ is

σ : z 7→ 1z>0 + 1
d

1z<0.

Here L, a1, a2, α and d are positive constants, µ1, µ2 ∈ L∞ (R, (0,+∞)) are positive L-periodic
functions, z+ = max (z, 0) and z− = −min (z, 0) (so that z = z+ − z−).
We also construct stable periodic coexistence steady states for the following competition–

diffusion system: {
∂tu1 − ∂xxu1 = µ1(x) (a1 − u1)u1 − kω(x)u1u2

∂tu2 − d∂xxu2 = µ2(x) (a2 − u2)u2 − αkω(x)u1u2
(4.1.3)

where ω ∈ L∞ (R, (0,+∞)) is positive and L-periodic (with a normalized mean value, say).
System (4.1.3) belongs to the wider class of elliptic or parabolic systems of Lotka–Volterra

type in the presence of strong competition, and (4.1.1) and (4.1.2) are related to its singular
strong competition limit k → +∞. To our knowledge, the study of the strong competition limit
appeared first in [45] as a way to model biological species that are fiercely competing for the
same resource. The literature on this subject is very vast, varying from existence and uniqueness
results [43], multiplicity results in presence of strong competition [45] and the rigorous proof
of Gause’s competitive exclusion [47, 103] stating that in the homogeneous case, non-constant
solutions are necessarily unstable (in convex domains). We refer the interested reader to these
contributions and the references therein.
More recently, the strong competition limit in periodic media was the object of investigation

of two papers [Gir17, GN18] by the first author and Nadin. According to [GN18], (4.1.2) is
the equation satisfied, in the strong competition limit, by the quantity αu1 − du2 with (u1, u2)
solution of (4.1.3). Notice that, by normalizing (u1, u2), we can assume without loss of generality
a1 = a2 = 1. This is assumed indeed from now on. Notice also that, although all results of
[Gir17, GN18] are stated for ω = 1, they are readily extended to the case of non-constant ω.
Steady states of (4.1.1) and of (4.1.2) satisfy the same elliptic semilinear equation:

− z′′(x) = µ1(x)
(

1− 1
α
z(x)

)
z+(x)− 1

d
µ2(x)

(
1 + 1

d
z(x)

)
z−(x). (4.1.4)

However, due to the different time dependencies, (4.1.1) and (4.1.2) involve in general different
notions of stability and therefore different eigenproblems. Before going any further, let us precise
this important point.
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4.1.1 Notions of stability
For any functional space X, XL-per denotes the set of L-periodic functions whose restriction

to any interval of length L are elements of X. Accordingly, for any second order monotone
elliptic operator L , λ1,L-per (−L ) denotes the periodic principal eigenvalue of L given by the
Krein–Rutman theorem. Recall that if (u1, u2) is a solution of (4.1.3), then the system satisfied
by (u1, 1− u2) is a monotone system, whence its linearization admits indeed a periodic principal
eigenvalue (details can be found in [Gir17]).
Hereafter, a solution z ∈ H2

L-per (R) of (4.1.4) such that the L-periodic function

f1 [z] : x 7→ ∂1f (z(x), x) ,

is well-defined (at least weakly) is referred to as linearly stable in the sense of (4.1.1) if

λ1,L-per

(
− d2

dx2 − f1 [z]
)
> 0

and as linearly stable in the sense of (4.1.2) if

λ1,L-per

(
−σ̂(z) d2

dx2 − σ̂(z)f1 [z]
)
> 0,

with
σ̂ : z 7→ 1z≥0 + d1z<0.

The constant solutions of (4.1.4) are α, −d and 0. It is easily verified that α and −d are linearly
stable in both senses whereas 0 is linearly unstable (namely, not linearly stable) in both senses.
The definition of linear stability in the sense of (4.1.2) can be formally understood by plugging

perturbations of the form e−λtϕ(x), with ϕ L-periodic, into the equation (4.1.2) linearized at an
almost everywhere nonzero steady state z. Indeed, such a perturbation solves the linear equation
if and only if

−λσ(z)ϕ− ϕ′′ = f1 [z]ϕ,
that is, due to the almost everywhere equality σ (z(x)) σ̂ (z(x)) = 1, if and only if

−σ̂(z)ϕ′′ − σ̂(z)f1 [z]ϕ = λϕ.

Similarly, a steady state solution (u1, u2) of (4.1.3) is a solution of{
−u′′1(x) = µ1(x) (1− u1(x))u1(x)− kω(x)u1(x)u2(x)
−du′′2(x) = µ2(x) (1− u2(x))u2(x)− αkω(x)u1(x)u2(x) (4.1.5)

and is referred to as linearly stable if

λ1,L-per

(
−

(
d2

dx2 + µ1 (1− 2u1)− kωu2 kωu1

αkωu2 d d2

dx2 + µ2 (1− 2u2)− αkωu1

))
> 0.

The steady states (1, 0) and (0, 1) are linearly stable whereas (0, 0) is linearly unstable.
By analogy with the spatially homogeneous setting and in view of the stability of the con-

stant solutions, (4.1.1), (4.1.2) and (4.1.3) are sometimes referred to as bistable. However our
main contribution is to prove that this terminology can be misleading: because of the spatial
heterogeneity, a third stable state can very well exist.
Let us point out that the previous two parts of the series “Competition in periodic me-

dia”[Gir17, GN18] only used the notion of stability in the sense of the system (4.1.3). This
explains why the two notions of stability for the segregated equation (4.1.4) are only introduced
now.
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4.1.2 Main results

Let (r0, r1, r2) ∈ (0, 1)3 such that 2r0 + 2r1 + 2r2 = 1. Let (M1,M2) ∈ (0,+∞)2 and define
two 1-periodic functions µ?1 and µ?2 by

(µ?1)|[0,1] = M11[0,r1] +M11[r1+2r0+2r2,1]

(µ?2)|[0,1] = M21[r1+r0,r1+r0+2r2]

and, for all L > 0, (
µL1 , µ

L
2
)

: x 7→ (µ?1, µ?2)
( x
L

)
.

Our first main result is concerned with the equation (4.1.4).

Theorem 4.1. There exists L > 0 such that, for all L > L, (4.1.4) with (µ1, µ2) =
(
µL1 , µ

L
2
)

or with (µ1, µ2) =
(
µL1 + µL2 , µ

L
1 + µL2

)
admits a linearly stable in both senses, sign-changing,

L-periodic solution.
Furthermore, for all L > L, there exist a neighborhood UL of

(
µL1 , µ

L
2
)
in the topology of(

L∞L-per
)2 and a neighborhood VL of µL1 +µL2 in the topology of

(
L∞L-per

)
such that, for all (µ1, µ2) ∈

UL and all µ ∈ VL, (4.1.4) with (µ1, µ2) or (µ, µ) admits a linearly stable in both senses, sign-
changing, L-periodic solution.

This first result will be proved by explicit construction of v and non-trivial application of the
implicit function theorem.
In biological terms, the growth rate µL1 + µL2 corresponds to a periodic environment where

large favorable areas are separated by large neutral areas. A neutral area could be, say, in a
woodland inhabited by herbivorous animals looking for glades, an area densely covered by trees
where predators live and hide and where linear death rates roughly equal linear birth rates and
no intraspecific competition occurs. The associated stable steady state describes the situation
where one competitor settles in the evenly numbered favorable areas whereas the other settles
in the oddly numbered ones. This particular form is illustrated by Figure 4.2.1.
Let us point out that well-known density results yield immediately the following corollary.

Corollary 4.2. For all L > L, there exists (µ1, µ2) ∈
(
C∞L-per (R, (0,+∞))

)2 such that (4.1.4)
admits a linearly stable in both senses, sign-changing, L-periodic solution.

Our second main result is concerned with the system (4.1.5) and states that the existence of
stable steady states for the segregated equation implies the existence of stable steady states for
the strongly competitive system. It will be proved as a consequence of Theorem 4.1 and of degree
theory.

Theorem 4.3. For all L > L, there exist k? > 0 and (µ1, µ2) ∈
(
C∞L-per (R, (0,+∞))

)2 such that,
for all k > k?, (4.1.5) admits a linearly stable, component-wise positive, L-periodic solution.

4.1.3 Discussion and comparison with known results
Theorem 4.1 and Theorem 4.3 complement interestingly a result of the first author [Gir17,

Theorem 1.2] stating that, provided L is sufficiently small, that is

L ∈

(
0, π

((
max
[0,L]

µ1

)− 1
2

+
√
d

(
max
[0,L]

µ2

)− 1
2
))

,
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and provided k is large enough, all L-periodic coexistence states are unstable and vanish as
k → +∞.
Theorem 4.1 is also strictly related to a result due to Ding, Hamel and Zhao [57, Theorem 1.5]

which shows in particular that the regular bistable equation

∂tz − ∂xxz = gL(x, z),

with gL : (z, x) 7→ g
(
z, xL

)
, g 1-periodic with respect to x and independent of L, 0 and 1

linearly stable steady states (in the standard sense) and θ ∈ C1−per (R, (0, 1)) intermediate zero
of g, admits bistable pulsating fronts connecting 0 and 1 provided L is large enough and the
nonlinearity g satisfies

min
x∈[0,L]

∫ 1

0
g(x, z)dz > 0 and min

x∈[0,L]

∂g

∂z
(x, θ(x)) > 0.

Their proof is based on a very important result by Fang and Zhao [69] stating in a general setting
that bistable pulsating fronts exist if all intermediate periodic steady states are unstable and
invadable. Therefore the proof of Ding–Hamel–Zhao basically shows that the above conditions
imply the nonexistence of stable periodic steady states. Importantly,
— on one hand, the family of scaled functions (fL)L>L in Theorem 4.1 satisfies

min
x∈[0,L]

∫ α

−d
fL(x, z)dz = 0 for all L > L

(recalling that here the two constant stable states are −d and α instead of 0 and 1);
— on the other hand, any family of regularized and positive functions obtained from Corol-

lary 4.2 satisfies indeed the above two positivity conditions, but by the result of Ding–
Hamel–Zhao cannot be of the prescribed scaled form as L varies (in other words, the
neighborhoods UL and VL obtained with the implicit function theorem are not uniform
with respect to L and shrink as L→ +∞).

We point out that a recent paper by Zlatǒs [148] constructed an example of periodic bistable non-
linearity admitting no pulsating front. His result is very related to ours but remains qualitatively
different: we focus on stable intermediate steady states whereas Zlatǒs focuses on nonexistence of
transition fronts. Furthermore, our construction has a very simple ecological interpretation and
is valid for all large periods, whereas the construction of Zlatǒs requires a very precise period.
In this regard, our paper is an interesting complement.
Theorem 4.1 is also related to a family of results stating, loosely speaking, that the geome-

try of a homogeneous domain with boundary can block bistable propagation. See for instance
Berestycki–Bouhours–Chapuisat [13] and references therein.
Ecologically speaking, Theorem 4.3 shows that strong interspecific competition and heterogene-

ity of the habitat can lead together to spatial segregation and therefore to speciation and increased
biodiversity. Having this interpretation in mind, we notice that the strength of the competition
is crucial: indeed, in the weak competition case, Dockery–Hutson–Mischaikow–Pernarowski [58]
showed on the contrary that heterogeneity leads to extinction of all competitors but the one with
the lowest diffusion rate. Ecologically, strong competition occurs for instance when resources are
rare. Mathematically, it is known to lead indeed to spatial segregation, or in other words pattern
formation, in homogeneous domains with appropriate boundary conditions or initial conditions
(see for instance [38, 41, 47] and references therein). As such, our result can be seen as a contri-
bution to the overarching research program on pattern formation in strongly competing systems
and as one of the first results in spatially heterogeneous domains.

141



Chapitre 4 Compétition en milieu périodique : III – Existence & stabilité d’états de
coexistence périodiques ségrégés

It is worthy to recall that by a result of Berestycki–Hamel–Rossi [18, Proposition 6.6], the
periodic principal eigenvalue of a self-adjoint periodic scalar elliptic operator coincides with the
decreasing limit as R → +∞ of its Dirichlet principal eigenvalue in the ball (−R,R). Conse-
quently, if the domain of a linearly stable in both senses, periodic, sign-changing steady state
solution z of (4.1.4) is restricted to a periodicity cell (y, y + L) with y chosen so that z (y) = 0,
then we obtain a steady state for the corresponding Dirichlet problem which is linearly stable in
the following senses:

λ1,Dir

(
− d2

dx2 − f1 [z] , (y, y + L)
)
> 0,

λ1,Dir

(
−σ̂(z) d2

dx2 − σ̂(z)f1 [z] , (y, y + L)
)
> 0.

4.1.4 What about more general bistable equations?
The particular shape of function f in (4.1.4) is due to the underlying ecological model. With

very few modifications, Theorem 4.1 can be extended more general bistable equations in periodic
media, like for instance the familiar Allen–Cahn equation

∂tz − ∂xxz = µL(x)(1− z2)z.

4.1.5 Structure of the paper
In Section 2, we prove Theorem 4.1, focusing first on the construction of v and then using the

implicit function theorem to obtain the open neighborhood U . In Section 3, we prove Theorem 4.3
thanks to Theorem 4.1 and topological arguments.

4.2 The segregated bistable equation
Our goal in this section is to prove that (4.1.4) admits sign-changing solutions that are also

stable in the sense of (4.1.1) and (4.1.2).
Before going any further, we observe the following: replacing

(
µ1
α ,

µ2
d2

)
by (µ1, µ2), (4.1.4) reads

− z′′ = µ1 (α− z) z+ − µ2 (d+ z) z−. (4.2.1)

Hence up to end of this section we have in mind the above more compact form. The piecewise-
constant functions µ?1 and µ?2 defined in the introduction are accordingly modified, with

(
M1
α , M2

d2

)
replaced by (M1,M2).
In order to construct a sing-changing, periodic and stable solution to (4.2.1), we need a pre-

liminary result concerning its linearization.

4.2.1 Linearization near a non-constant stationary solution
Since the right hand side of (4.2.1) is only Lipschitz continuous at z = 0, we need some caution

in order to properly introduce the linearization of the equation around a sign-changing steady
state. Many authors have already addressed similar issues (see, for instance, [47, Section 4.1]).
Since we could not find the precise statement that we needed, we decided to present a complete
proof. We wish to point out that the result can be adapted to more general equations (for
instance bounded domains with Neumann boundary conditions).
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For all (µ1, µ2, z) ∈
(
L∞L-per

)2 ×H2
L-per, we define

F :
(
L∞L-per

)2 ×H2
L-per → L2

L-per

such that, for all test functions ϕ ∈ H2
L-per,

〈F (µ1, µ2, z), ϕ〉 =
∫ L

0
z′ϕ′ −

∫ L

0

(
µ1 (α− z) z+ − µ2 (d+ z) z−

)
ϕ. (4.2.2)

We recall that, by Sobolev embedding, the inclusion H2
L-per ↪→ C

1, 1
2

L-per holds true.

Lemma 4.4. Let O ⊂ H2
L-per be an open set in the topology of H2

L-per such that for all z ∈ O,
the closed set z−1 ({0}) has zero Lebesgue measure.
Then F ∈ C 1

((
L∞L-per

)2 ×O,L2
L-per

)
.

For any (µ1, µ2, z) ∈
(
L∞L-per

)2 × O and any (η1, η2, w) ∈
(
L∞L-per

)2 ×H2
L-per, the differential

dF [µ1, µ2, z] evaluated at (η1, η2, w) is

ϕ 7→
∫ L

0
w′ϕ′ −

∫ L

0

(
η1 (α− z) z+ − η2 (d+ z) z−

)
ϕ

−
∫ L

0
(µ1 (α− 2z) 1z>0 + µ2 (d+ 2z) 1z<0)wϕ.

Remark. Some assumptions on the open set O are necessary. In general, the Gâteaux differential
of F at (µ1, µ2, z) in the direction (η1, η2, w) fails to be linear with respect to (η1, η2, w). More
precisely, it is the sum of the linear functional above and of

ϕ 7→ −
∫ L

0

(
µ1αw

+ − µ2dw
−)1z=0ϕ,

which is non-linear with respect to w. We can prove this by partitioning R = {z > 0} ∪ {z =
0} ∪ {z < 0}.

Proof. The linear mapping appearing in the statement above is readily continuous. Thus we
only need to show that it is indeed the Gâteaux differential.
Fix (µ1, µ2, z) ∈

(
L∞L-per

)2 × O and (η1, η2, w) ∈
(
L∞L-per

)2 × H2
L-per. For all t > 0 and all

ϕ ∈ H2
L-per,

1
t

(F [(µ1, µ2, z) + t (η1, η2, w)]−F [(µ1, µ2, z)]) (ϕ) =∫ L

0
w′ϕ′ − 1

t

∫ L

0

(
(µ1 + tη1) (α− (z + tw)) (z + tw)+ − µ1(α− z)v+)ϕ
+ 1
t

∫ L

0

(
(µ2 + tη2) (d+ (z + tw)) (z + tw)− − µ2(d− z)z−

)
ϕ.

The first term in the right hand side does not depend on t. We only need to consider the second
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one, as the third one can be dealt with in a similar way. Rearranging the terms, we find

1
t

∫ L

0

(
(µ1 + tη1) (α− (z + tw)) (z + tw)+ − µ1(α− z)v+)ϕ

=
∫ L

0
η1 (α− (z + tw)) (z + tw)+ϕ

+
∫ L

0
µ1

(α− (z + tw)) (z + tw)+ − (α− z)v+

t
ϕ.

The dominated convergence theorem yields∫ L

0
η1 (α− (z + tw)) (z + tw)+ϕ→

∫ L

0
η1 (α− z) v+ϕ as t→ 0.

Rearranging the last term of the preceding equality, we find

∫ L

0
µ1

(
(α− z − tw) (z + tw)+ − (α− z) z+

t

)
ϕ

=
∫ L

0
µ1

(
(z + tw)+ − z+

t

)
(α− z)ϕ−

∫ L

0
µ1wα (z + tw)+

ϕ.

By dominated convergence,

lim
t→0

∫ L

0
µ1wα (z + tw)+

ϕ =
∫ L

0
µ1wαz

+ϕ.

Since by assumption z−1({0}) has zero Lebesgue measure and the map ζ 7→ ζ+ is smooth away
from 0, the dominated convergence theorem yields once again

lim
t→0

∫ L

0
µ1

(
(z + tw)+ − z+

t

)
(α− z)ϕ =

∫ L

0
µ1w1z>0 (α− z)ϕ.

This concludes the proof.

4.2.2 Construction of the solution
We now proceed by constructing the solution of (4.2.1). To do so, we first consider the equation

with piecewise-constant coefficients. In this case, solutions can be constructed by gluing together
different profiles. The implicit function theorem then leads to an open neighborhood of valid
coefficients near this piecewise-constant pair.

4.2.2.1 Piecewise-constant coefficients

In the following result we collect some properties of the solutions of the logistic equation with
non-zero Dirichlet conditions. These properties are well known and straightforward consequences
of the comparison principle. For this reason, we do not present here a fully detailed proof.
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Lemma 4.5. For all A > 0, M > 0, ν ∈
[ 1

2 , 1
)
and R > 0 there exists a unique positive solution

wA,M,ν,R ∈ C 2 ([−R,R]) of {
−w′′ = M (A− w)w in (−R,R)
w (±R) = νA.

The function wA,M,ν,R is even and satisfies

νA < wA,M,ν,R(x) < A for all x ∈ (−R,R).

Furthermore, let
Φ : (A,M, ν,R) 7→ w′A,M,ν,R (−R) .

The following properties hold true.
1. Φ is positive and continuous;
2. it holds

lim
R→0+

Φ(A,M, ν,R) = 0;

3. there exists γA,M,ν ∈ (0,+∞) such that

γA,M,ν = lim
R→+∞

Φ (A,M, ν,R) .

Moreover, (A,M, ν) 7→ γA,M,ν is continuous with respect to A, M and ν, increasing with
respect to A and M and decreasing with respect to ν. In particular 0 = limν→1 γA,M,ν <
γA,M,ν < γA,M, 1

2
;

4. the function R 7→ Φ(A,M, ν,R) is an increasing homeomorphism from (0,+∞) onto
(0, γA,M,ν);

5. the function ν 7→ Φ(A,M, ν,R) is a decreasing homeomorphism from
[ 1

2 , 1
)
onto

(
0,Φ(A,M, 1

2 , R)
]
.

We point out that the upper limit γA,M,ν can actually be determined explicitly.

Proof. We perform the following change of variables

w(x) = AWρ,ν

(√
AMx

)
and ρ =

√
AMR.

Here the function Wρ,ν is a solution to the scaled equation{
−W ′′ = (1−W )W in (−ρ, ρ)
W (±ρ) = ν.

(4.2.3)

We can rephrase all the statements of the result in terms of the dependence of Wρ,ν on ρ and ν.
Here we consider only the dependence on ρ. The same arguments can be adapted to show the
corresponding results in terms of ν.
For any value of ρ > 0 and ν ∈ [ 1

2 , 1), the previous equation admits a unique, positive solution
which is even and is such that ν < W (x) < 1 for all x ∈ (−ρ, ρ). This follows by standard
arguments. We just observe that the functions x 7→ ν cos(γx)/ cos(γρ) are sub-solutions of
(4.2.3) for γ small enough, while the constant 1 is always a super-solution.
Notice that, for all κ > 1:

− (κWρ,ν)′′ = (1−Wρ,ν)κWρ,ν ≥ (1− κWρ,ν)κWρ,ν in (−ρ, ρ) .
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For all ρ′ > ρ > 0, the following quantity is well-defined:

κ? = inf {κ > 1 | κWρ′,ν ≥Wρ,ν in (−ρ, ρ)} .

Assuming by contradiction that κ? > 1 and applying the strong maximum principle, we get
a contradiction. Hence the family (Wρ,ν)ρ>0 is non-decreasing, and once more by the strong
maximum principle, it is in fact increasing.
It follows that the function ρ 7→ max[−ρ,ρ]Wρ,ν(x) is increasing with limit 1 as ρ → +∞. By

classical elliptic estimates (see Gilbarg–Trudinger [80]) the family converges locally uniformly to
a bounded and positive solution of (4.2.3) defined on the whole line R. Hence, as ρ → +∞, we
find that Wρ,ν → 1 locally in C 2.
We now consider the shifted family of functions

W ρ,ν(x) = Wρ,ν (x− ρ) for x ∈ [0, 2ρ].

The family ρ 7→W ρ,ν is increasing. In particular, by the Hopf lemma,

ρ 7→W
′
ρ,ν(0)

is increasing as well. Once again, classical elliptic estimates show that, as ρ → +∞, the family
W ρ,ν converges locally uniformly to the unique solution W of

−W ′′ =
(
1−W

)
W in (0,+∞)

W (0) = ν

ν < W < 1 in (0,+∞)
(4.2.4)

(see Du–Lin [59, 60, Proposition 4.1]). Thus, the limit as ρ → +∞ of W ′ρ,ν(−ρ) is finite and
positive. We can figure out its value by testing (4.2.4) against W ′. This yields the identity

lim
ρ→+∞

W
′
ρ,ν(−ρ) =

√
1
3 + ν2

(
2
3ν − 1

)
.

Observe that the limit is always positive and bounded.
We conclude by observing that the continuity of W ′ρ,ν with respect to ρ is a classical conse-

quence of the uniqueness of W ρ,ν and of compactness arguments.

From the previous result we deduce a property which is crucial for our construction. For sake
of brevity, from now on we will simply write

Φ1(ν, L) = Φ(α,M1, ν, r1L),

Φ2(ν, L) = Φ(d,M2, ν, r2L),
(recalling that M1 > 0, M2 > 0, r1 > 0 and r2 > 0 were fixed in the introduction).
We can finally construct the periodic stable solutions of (4.2.1) with the piecewise-constant

coefficients.

Proposition 4.6. There exists L > 0 such that, for any L > L, (4.2.1) with either (µ1, µ2) =(
µL1 , µ

L
2
)
or with (µ1, µ2) =

(
µL1 + µL2 , µ

L
1 + µL2

)
admits a nonzero sign-changing solution v ∈

H2
L-per satisfying, for all L-periodic test functions ϕ ∈ H1

L-per,∫ L

0
v′ϕ′ =

∫ L

0

(
µ1 (α− v) v+ − µ2 (d+ v) v−

)
ϕ.

Furthermore, v is linearly stable in the sense of (4.1.1) and (4.1.2).
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r1L

r2L

r0L

α

α
2

−d2

−d

ν1α

−ν2d

Figure 4.2.1 – Visual representation of the construction of v. In red, areas where µL1 = M1. In
blue, areas where µL2 = M2. In gray, the bounds given by νL and νL. In black,
the solution v.

Proof. Let
δ : (ν, L) 7→ −Φ1 (ν, L) r0L+ αν.

The function ν 7→ δ (ν, L) is, for all L > 0, an increasing homeomorphism from
[ 1

2 , 1
)
onto[

−Φ1

(
1
2 , L

)
r0L+ α

2 , α
)
.

Since L 7→ −Φ1
( 1

2 , L
)
r0L is decreasing and goes to −∞ as L→ +∞, we can define the unique

L0 > 0 satisfying

−Φ1

(
1
2 , L0

)
r0L0 + α

2 = −d.

Then for all L > L0, we can define the unique νL ∈
( 1

2 , 1
)
and the unique νL ∈

(
νL, 1

)
satisfying

respectively
δ
(
νL, L

)
= −d and δ (νL, L) = −d2 .

Now let
ψ : (ν, L) 7→ Φ1 (ν, L)− Φ2

(
−δ (ν, L)

d
, L

)
,

well-defined in
(
νL, νL

]
for all L > L0. For all L > L0, ν 7→ ψ (ν, L) is a decreasing homeomor-

phism satisfying

lim
ν→νL

ψ (ν, L) =
ανL + d

r0L
> 0,

ψ (νL, L) =
ανL + d

2
r0L

− Φ2

(
1
2 , L

)
.

Since L 7→ ψ (νL, L) goes to −γd,M2,
1
2
< 0 as L → +∞, we can define L ≥ L0 such that, for all

L > L,
ψ (νL, L) < 0
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and deduce that for all L > L, there exists a unique νL ∈
(
νL, νL

)
satisfying ψ (νL, L) = 0, that

is
Φ1 (νL, L) = Φ2

(
−δ (νL, L)

d
, L

)
.

Next, we fix L > L and define w1 = wα,M1,νL,r1L, w2 = wd,M2,−d−1δ(νL,L),r2L as well as the
nonzero, sign-changing, L-periodic function v by

v|[0,L)(x) =



w1 (x) if x ∈ [0, r1L)
−Φ1 (νL, L) (x− r1L) + νLα if x ∈ [r1L, r1L+ r0L)
w2 (x− r1L− r0L− r2L) if x ∈ [r1L+ r0L, r1L+ r0L+ 2r2L)
Φ1 (νL, L) (x− L+ r1L) + νLα if x ∈ [r1L+ r0L+ 2r2L, r1L+ 2r0L+ 2r2L)
w1 (x− L) if x ∈ [r1L+ 2r0L+ 2r1L,L)

Since, by construction, v is a C 1,1
L-per ⊂ H2

L-per juxtaposition of piecewise solutions of (4.2.1),
we readily deduce that it is a solution of (4.2.1).
Regarding the stability of the solution v, from Lemma 4.4 we evince that the linearized elliptic

operator at v, denoted L ∈ L
(
H2
L-per, L

2
L-per

)
, is

L : η 7→ η′′ + [µ1 (α− 2v) 1v>0 + µ2 (d+ 2v) 1v<0] η.

First we verify the stability in the sense of (4.1.1). Let λ be the corresponding periodic principal
eigenvalue and ψ ∈ H2

L-per be the associated unique periodic positive eigenfunction, normalized
in L2 ((0, L)). From the identity ∫ L

0
(−Lψ − λψ)ψ = 0

we deduce∫ L

0
(ψ′)2 =

∫ L

0
[µ1 (α− 2v) 1v>0 + µ2 (d+ 2v) 1v<0]ψ2 + λ

= M1

∫
{µ1>0}∩{v>0}

(α− 2v)ψ2 +M2

∫
{µ2>0}∩{v<0}

(d+ 2v)ψ2 + λ.

Since by construction
v ≥ νLα >

α

2 in {µ1 > 0} ∩ {v > 0}

and
v ≤ −

(
−δ (νL, L)

d

)
d < −d2 in {µ2 > 0} ∩ {v < 0},

we deduce

λ >

∫ L

0
(ψ′)2

> 0.

Similarly, we verify the stability of v in the sense of (4.1.2). The same computations as before
lead us to the desired conclusion.
This conclude the proof of existence and stability of sign-changing solutions for piecewise-

constant coefficients
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Remark. Going carefully through the proof, using νL < 1 and assuming that L is minimal, we
obtain the estimate L < L?, where L? > 0 is the unique solution of

Φ2

(
1
2 , L

?

)
L? = 1

r0
max

(
α+ d

2 ,
α

2 + d

)
.

Hence estimating L is only a matter of estimating L 7→ Φ2
( 1

2 , L
)
. Unfortunately, being unable

to find any satisfying estimation of Φ2, we do not pursue further.

4.2.2.2 With regular coefficients

The function v constructed in Proposition 4.6 is linear around v = 0. Thus there exists an
open neighborhood O ⊂ H2

L-per satisfying the assumptions of Lemma 4.4.

Proposition 4.7. Under the assumptions of Proposition 4.6, for any L > L there exists an open
neighborhood U ⊂

(
L∞L-per

)2 of (µ1, µ2) such that for all (ρ1, ρ2) ∈ U , (4.2.1) with (ρ1, ρ2) admits
a sign-changing, L-periodic, weak solution. The solution is also linearly stable in the sense of
(4.1.1) and (4.1.2).

Proof. Let L > L and let (µ1, µ2, v) ∈
(
L∞L-per

)2 ×H2
L-per be the solution constructed in Propo-

sition 4.6.
The prerequisites of the implicit function theorem are readily satisfied for the functional F

at (µ1, µ2, v). In particular, since the solution v is linearly stable in the sense of (4.1.1), the
functional ∂F

∂z [µ1, µ2, v] is invertible in the following sense: for all f ∈ L2
L-per, there exists a

unique weak solution zf ∈ H2
L-per of

∂F

∂v
[µ1, µ2, z] (zf ) = f.

This follows by standard regularity results.
By virtue of the implicit function theorem, there exists an open neighborhood U ⊂

(
L∞L-per

)2
of (µ1, µ2), an open neighborhood V ⊂ O ⊂ H2

L-per of v and a C 1 diffeomorphism Ψ : U → V
such that, for all (ρ1, ρ2) ∈ U ,

F [ρ1, ρ2,Ψ [ρ1, ρ2]] = 0.

Finally, since the map Ψ is C 1, we find that the linear stability of the solution is preserved in a
open neighborhood of (µ1, µ2).

4.2.3 Uniqueness
We end this section with the following uniqueness result, which will be used later on. We

emphasize that this is not a full uniqueness result.

Lemma 4.8. Let ε1 > 0, ε2 > 0, L > L, (µ1, µ2) ∈ U and v be the solution of (4.2.1) given by
Proposition 4.7.
Then any solution z of (4.2.1) satisfying

z+ > ε1v
+ and z− > ε2v

−

coincides with v.
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Proof. Let z be any such solution. By continuity of z and by the fact that z admits only one
zero in each periodicity cell, the condition of the statement directly guarantees that {z > 0} =
{v > 0}, {z < 0} = {v < 0} and {z = 0} = {v = 0}.
Now we focus on one connected component of, say, {v > 0}. By translation, we can assume

without loss of generality that this interval has the form (0, R) with R < L. The functions z|(0,R)
and v|(0,R) are then both solutions of the following Dirichlet problem:{

−z′′ = µ1 (1− z) z in (0, R)
z (0) = z (R) = 0.

Since it is well-known that such a solution is unique (we refer for instance to Berestycki [12]),
we deduce that z and v coincide in any connected component of {v > 0}.
Repeating subsequently the argument in {v < 0}, we obtain the claimed uniqueness.

4.3 The strongly competitive competition–diffusion system
In the previous section we have considered the equation

−z′′ = µ1

α
(α− z) z+ − µ2

d2 (d+ z) z−.

For this equation and particular choices of µ1 and µ2, we have constructed a sign-changing
solution v ∈ C 1,1

L-per for periods L larger than a threshold L. We have also shown that this
solution is linearly stable in the sense of (4.1.1) and (4.1.2).
In this section, we aim at using this result to prove the existence of linearly stable solutions

of (4.1.5). Specifically, fixing L > L and a positive L-periodic smooth function ω, our aim is
to prove that for any k > 0 large enough there exists a positive and stable solution of (4.1.5)
(u1,k, u2,k) ∈ C 1,1

L-per such that

(u1,k, u2,k)→
(
v+

α
,
v−

d

)
as k → +∞

in H1
L-per and C 0,γ

L-per for γ ∈ (0, 1
2 ).

We will show the result in a series of steps: first, we give some a priori estimates of the solution
of a more general class of systems. Then, by means of topological arguments, we deduce from
these estimates the existence of solutions. Finally we establish the uniqueness and the linear
stability of the solutions.

4.3.1 A priori estimate
We start by showing a priori estimates for the solutions of a family of systems that contains

(4.1.5) as a special case. We are here interested in the L-periodic positive solutions of−u
′′
1 = µ1(x)(1− u1)u1 − kω(x)u1

[
tu2 + (1− t) v

−

d

]
−du′′2 = µ2(x)(1− u2)u2 − αkω(x)u2

[
tu1 + (1− t) v

+

α

] (4.3.1)

where k > 0 and t ∈ [0, 1]. Observe that if we take t = 1, then (4.3.1) reduces to the original
system (4.1.5). On the contrary, if t = 0, the equations in (4.3.1) are decoupled.
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Lemma 4.9. There exists a constant C > 0, independent of k > 0 and t ∈ [0, 1], such that if
(u1, u2) ∈ C 1,1

L-per is a solution of (4.3.1) with

u1 >
v+

2α and u2 >
v−

2d ,

then
‖(u1, u2)‖H1

L-per
+ ‖(u1, u2)‖

C
0, 1

2
L-per

≤ C.

Let ((u1,k, u2,k))k be any sequence of solutions as before, with k → +∞ and t = tk ∈ [0, 1].
Then

(u1,k, u2,k)→
(
v+

α
,
v−

d

)
as k → +∞

in H1
L-per and in C 0,γ for any γ ∈ (0, 1

2 ).

Proof. We first observe that if (u1, u2) is a non-negative solution of (4.3.1) then, by the maximum
principle, 0 < u1 < 1 and 0 < u2 < 1.
We now consider the equation in u1 in (4.3.1). By testing the equation against u1 itself, we

find ∫ L

0
(u′1)2 + µ1u

3
1 + kωu2

1

[
tu2 + (1− t)v

−

d

]
≤
∫ L

0
µ1u

2
1 ≤ C

where the constant C > 0 can be chosen independently of t and k. Thus u1 is uniformly bounded
in H1

L-per and, by Sobolev’s embeddings, u1 is also uniformly bounded in C
0, 1

2
L-per. We can argue

similarly for the component u2.
Let us now consider a sequence of solutions ((u1,k, u2,k))k as in the statement, with k → +∞.

By testing the equation in u1,k against
(
u1,k − v+

α

)
∈ H1

L-per, we obtain

∫ L

0
u′1,k

(
u1,k −

v+

α

)′
+ kωu1,k

(
u1,k −

v+

α

)[
tu2,k + (1− t)v

−

d

]
=
∫ L

0
µ1(1− u1,k)u1,k

(
u1,k −

v+

α

)
.

After some simple algebraic manipulations, this yields

∫ L

0

[(
u1,k −

v+

α

)′]2

+ kω

(
u1,k −

v+

α

)2
v−

2d

≤
∫ L

0

(
v+

α

)′(
u1,k −

v+

α

)′
+
∫ L

0
µ1(1− u1,k)u1,k

(
u1,k −

v+

α

)
.

(4.3.2)

By the uniform H1
L-per(R) estimates, we know that the right hand-side is bounded uniformly in

k and t. Thus, if u1 is any limit of (u1,k)k (weak in H1
L-per and in C 0,γ

L-per for any γ ∈ (0, 1
2 )), we

find (
u1 −

v+

α

)2

v− = 0 a.e. in R

that is u1 = v+

α = 0 where v− > 0. Since by assumption u1 >
v+

2α , by Lemma 4.8, it must be
u1 = v+

α .
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Going back to (4.3.2), the right hand side converges to 0 as k → +∞, which implies the
strong convergence in H1

L-per of a subsequence of (u1,k)k. We conclude the proof by pointing out
that the same reasoning holds for any subsequence of (u1,k)k. As a result we deduce the strong
convergence of the whole original sequence of solutions.

An interesting consequence of the previous result is that the solutions of (4.3.1), when k is
large, are close to the segregated state

(
v+

α ,
v−

d

)
, independently of the value of t ∈ [0, 1]. More

precisely, we have the following corollary.

Corollary 4.10. For all γ ∈
(
0, 1

2
)
and ε > 0, there exists k̄ = k̄(γ, ε) > 0 such that, for all

t ∈ [0, 1], k > k̄ and (u1, u2) ∈ C 1,1
L-per solution of (4.3.1) such that

u1 >
v+

2α and u2 >
v−

2d ,

we have ∥∥∥∥(u1, u2)−
(
v+

α
,
v−

d

)∥∥∥∥
H1
L-per

+
∥∥∥∥(u1, u2)−

(
v+

α
,
v−

d

)∥∥∥∥
C 0,γ
L-per

≤ ε.

4.3.2 Existence of solutions
We now show the existence of solution of (4.1.5) when k is large. We will prove this result in

two steps, first proving the existence of solutions of an auxiliary problem, and then, making use
of a homotopy argument, we will transfer this result to the original problem. Our argument is
inspired by the method proposed in [45] to prove the existence of solutions of a related problem.

Lemma 4.11. For any k > 0, there exists a unique positive solution (u1, u2) ∈ C 1,1
L-per of{

−u′′1 = µ1(1− u1)u1 − kωu1
v−

d

−du′′2 = µ2(1− u2)u2 − αkωu2
v+

α .
(4.3.3)

Furthermore, the solution is linearly stable, u1 >
v+

α and u2 >
v−

d .

Proof. Since the equations in the system are actually decoupled, we can consider them one at a
time. Thus, we show the proof only for the component u1. We can apply the same reasoning to
the equation in u2.
We consider the equation

− u′′1 =
[(
µ1 − kω

v−

d

)
− µ1u1

]
u1 (4.3.4)

with periodicity conditions. We observe that v+

α is a sub-solution whereas 1 is a super-solution,
so that there exists indeed a solution u of (4.3.4) satisfying v+

α < u1 < 1. Moreover, (4.3.4) falls
in the general theory of periodic KPP reaction–diffusion equations developed by Berestycki–
Hamel–Roques in [16]. In particular, it follows that the solution u1 is unique, periodic and
linearly stable [16, Theorem 2.4].

We now pass to the second step of the construction. For notation convenience, let X = C
0,1/4
L-per

(any Hölder exponent γ ∈
(
0, 1

2
)
would do) and let L ∈ K(X;X) be the linear compact operator

defined as

z = Lf ⇐⇒

{
−z′′ + z = f

with z, f ∈ X.
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We consider the homotopy H : X2 × [0, 1]→ X2, defined by

H(u1, u2; t) =

u1 − L
(
u1 + µ1(1− u1)u1 − kωu1

[
tu2 + (1− t) v

−

d

])
u2 − 1

dL
(
du2 + µ2(1− u2)u2 − αkωu2

[
tu1 + (1− t) v

+

α

])
.

Observe that the homotopy H is of the form id−Kt where id : X2 → X2 is the identity operator,
and Kt ∈ K(X2 × [0, 1];X2) is a compact operator for any t ∈ [0, 1] and is continuous in t by
standard elliptic estimates. In this regard, we observe that k is fixed.
We have thatH(u1, u2; 0) = 0 if and only if (u1, u2) are solutions of (4.3.3), whileH(u1, u2; 1) =

0 if and only if (u1, u2) are solutions of (4.1.5). Our goal is to apply the theory of the Leray-
Schauder degree in order to evince the existence of solutions of (4.1.5) from the existence of
solutions of (4.3.3), Lemma 4.11.
Let Oε ⊂ X2 be the connected open subset of X2 defined as the set of all (u1, u2) ∈ X2 such

that
v+

2α < u1 < 1, v
−

2d < u2 < 1,
∥∥∥∥(u1, u2)−

(
v+

α
,
v−

d

)∥∥∥∥
X2

< ε.

Lemma 4.12. For any ε > 0 there exists k̄ > 0 such that the equation

H(u1, u2; t) = 0

has no solutions for any t ∈ [0, 1] and k ≥ k̄ on ∂Oε.

This result follows directly from Corollary 4.10.

Lemma 4.13. The equation
H(u1, u2; 0) = 0

has a unique solution in Oε. Moreover there exists k̄ > 0 such that if k ≥ k̄, then such solution
has fixed point index 1, that is

indX2(Oε; (u1, u2)) = 1.

This result follows from Lemma 4.11. We also recall that the fixed point index of isolated
solution can be computed by linearization if the equation involves C 1 operators, [3, Theorem
4.2.11].
We can thus conclude by virtue of the Leray–Schauder theorem (see [107] and [3, Theorem

4.3.4]).

Lemma 4.14. For any ε > 0, there exists k̄ > 0 such that, for all k > k̄, (4.1.5) has a solution
(u1,k, u2,k) in Oε. We have

lim
k→+∞

∥∥∥∥(u1,k, u2,k)−
(
v+

α
,
v−

d

)∥∥∥∥
H1
L-per

+
∥∥∥∥(u1,k, u2,k)−

(
v+

α
,
v−

d

)∥∥∥∥
C 0,γ

= 0

for any γ ∈ (0, 1
2 ).

If needed, one can improve the convergence result, by stating that the solutions are uniformly
bounded in the Lipschitz norm and converge in the C 0,γ norm for any γ ∈ (0, 1). See, on this
subject, the results in [38].
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4.3.3 Linear stability for k large
We now investigate the linear stability of the solutions obtained in Lemma 4.14. To this

end, we consider the linearized system (4.1.5) at the solution (u1, u2) and introduce its periodic
principal eigenvalue.
For all k > k̄, let

λ1,k = λ1,L-per

(
−

(
d2

dx2 + µ1 (1− 2u1,k)− kωu2,k kωu1,k

αkωu2,k d d2

dx2 + µ2 (1− 2u2,k)ψ − αkωu1,k

))

and assume that the associated periodic principal eigenfunction (ϕk, ψk) is normalized in such a
way that

max
x∈[0,L]

(αϕk + dψk) (x) = 1.

Observe that since both ϕk and ψk are positive, this automatically implies that the two functions
are globally bounded.
We start by showing a priori estimates on the principal eigenvalue and the principal eigen-

functions.

Lemma 4.15. The principal eigenvalues are uniformly bounded from below. There exists C ∈ R
such that

λ1,k > −C for all k > k̄.

Proof. It suffices to take

C = sup
k>k̄,x∈R

(|µ1(1− 2u1,k)|+ |µ2(1− 2u2,k)|) .

Indeed, the solution (u1,k, u2,k) ∈ Oε are uniformly bounded. Thus C is finite. We then consider
the sum of the equation in αϕk and in ψk. The conclusion follows from the fact that the equation

− (αϕk + dψk)′′ = µ1(1− 2u1,k)αϕk + µ2(1− 2u2,k)ψk + λ1,k (αϕk + ψk) ,

where the right-hand side is smaller than or equal to (C + λ1,k) (αϕk + ψk), has no positive
L-periodic solution if λ1,k < −C.

Lemma 4.16. For any ε > 0 and δ > 0, there exists k̄ > 0 such that

sup
{v−>ε}

ϕk + sup
{v+>ε}

ψk ≤ δ

for any k ≥ k̄.

Proof. We prove only the estimate in ψk, since the estimate in ϕk follows the same reasoning.
Moreover we will implicitly prove the estimate in an interval of length L, and extend them by
periodicity. By virtue of a scaling and a translation, we can also assume for simplicity that
{v+ > 0} = (−1, 1).
By Lemma 4.14, we already know that

ω(x)u1,k > ω(x)v
+

2α ≥ D(1− x2)+
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for k large enough. Here D > 0 is a small constant independent of k. Plugging this information
in (4.1.3), we find that{

−du′′2,k +Dk(1− x2)+u2,k ≤ µ2(1− u2,k)u2,k ≤ G in (−1, 1)
0 < u2,k < 1

where
G = sup

k,x∈R
µ2(1− u2,k)u2,k

is by assumption a finite constant. We are then in position to apply the estimate of Lemma 4.20.
This yields

Dk(1− x2)+u2,k ≤ C
1

(1− x2)2 + 2G.

We now fix ε > 0 small. By the previous estimate we find that there exists Cε > 0 such that

sup
x∈[−1+ ε

2 ,1−
ε
2 ]
kω(x)u2,k ≤ Cε.

From the equation in ψk, we deduce{
−dψ′′k +Dk(1− x2)+ψk ≤ C in

(
−1 + ε

2 , 1−
ε
2
)

0 < ψk <
1
d

for another constant C > 0 that does not depend on k. We can conclude by applying again
Lemma 4.20 to obtain the sought decay estimate of ψk in the interval (−1 + ε, 1− ε).

With the uniform estimates of Lemma 4.15 and Lemma 4.16 we are now in position to show
that the solution (u1, u2) constructed in the previous section is indeed linearly stable if k is
sufficiently large.
Of course, if lim inf

k→+∞
λ1,k = +∞, then the proof is done. Hence we assume from now on that

lim inf
k→+∞

λ1,k < +∞. Up to extraction of a subsequence, we also assume that λ1,k → lim inf
k→+∞

λ1,k

as k → +∞. In particular, (λ1,k)k is bounded.

Lemma 4.17. For all k > k̄, we define Zk ∈ C 1,1
L-per as

Zk = αϕk + dψk.

Then the sequence of positive functions (Zk)k is uniformly bounded in W 2,p
L-per and C 1,γ

L-per for any
p <∞ and γ < 1. Each Zk solves

−Z ′′k =
[
µ1

(
1− 2v

+

α

)
+ 1
d
µ2

(
1 + 2v

−

d

)]
Zk + λ1,kσ(v)Zk + ok(1)

where ok(1) is a sequence of functions, bounded uniformly in L∞ and such that ok(1) → 0 in
LpL-per for any p <∞.

Proof. Once again, we take the sum of the equation in αϕk and the equation in ψk. We thus
find

− (αϕk + dψk)′′ = µ1 (1− 2u1,k)αϕk + µ2 (1− 2u2,k)ψk + λ1,k (αϕk + ψk) . (4.3.5)
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We observe that the terms in the right hand side of (4.3.5) are uniformly bounded. Thus there
exists Z ∈ (H2 ∩C 1,γ)L-per such that, up to subsequence, Zk → Z ≥ 0. By uniform convergence
we have maxZ = 1. As a consequence of Lemma 4.16, we also have that

(αϕk + ψk)→
(

1v>0 + 1
d

1v<0

)
Z = σ(v)Z

in Lp for any p <∞.
We now rearrange the terms of (4.3.5) as follows:

− Z ′′k =
[
µ1

(
1− 2v

+

α

)
+ 1
d
µ2

(
1 + 2v

−

d

)]
Zk + λ1,kσ(v)Zk

+ λ1,k [(αϕk + ψk)− σ(v)Zk]

+
[
2αµ1

(
v+

α
− u1,k

)
ϕk − 2µ2

(
v−

d
+ u2,k

)
ψk

]
−
(
µ1

(
1− 2v

+

α

)
dψk + 1

d
µ2

(
1 + 2v

−

d

)
αϕk

)
.

In order to conclude, we need to show that the second, third and fourth lines in the previous
equation are small contributions in the LpL-per norm. Now, we just proved that the second line
converges to zero in the Lp topology. The third line also converges to zero, since (u1, u2)k →(
v+

α ,
v−

d

)
in C 0,γ . Finally, by Lemma 4.16, the fourth line also converges to zero in LpL-per.

We now recall that the solution v is, by construction, linearly stable in the sense of (4.1.2).
This implies in particular that any eigenpair (λ, Z) satisfying

− Z ′′ −
[
µ1

(
1− 2v

+

α

)
1v>0 + 1

d
µ2

(
1 + 2v

−

d

)
1v<0

]
Z = λσ(v)Z (4.3.6)

is such that λ has a positive real part. More precisely, using the uniqueness part of the Krein–
Rutman theorem, we can establish the following convergence result.

Lemma 4.18. There exists k̄ > 0 such that for any k ≥ k̄ the solution (u1,k, u2,k) is linearly
stable.
Furthermore, the sequence ((λ1,k, Zk))k and the principal eigenpair (λ1, Z) given by the notion

of stability in the sense of (4.1.2) satisfy the following equalities:

lim inf
k→+∞

λ1,k = λ1 > 0 and lim
k→+∞

Zk = Z

in W 2,p
L-per and C 1,γ

L-per for any p <∞ and γ < 1.

Proof. In view of Lemma 4.17, (Zk)k converges to some limit Z∞ in W 2,p
L-per and C 1,γ for any

p < ∞ and γ < 1. This limit is obviously an eigenfunction associated with the eigenvalue
lim inf
k→+∞

λ1,k and, moreover, Z∞ is L-periodic, maxZ∞ = 1 and Z∞ > 0. Hence, by uniqueness
up to normalization of the positive eigenfunction, the result follows.

4.3.4 Uniqueness of solutions
We conclude with the following observation.

156



4.A A technical estimate

Lemma 4.19. The solution in Lemma 4.14 is unique in Oε.

Proof. By homotopy, the Leray–Schauder degree of H(u1, u2; t) at 0 is constant for t ∈ [0, 1].
For t = 0, we know that

degX2(H(·, ·; t),Oε, 0) = indX2(Oε; (u1, u2)) = 1.

On the other hand, by Lemma 4.18, any solution of the equation H(u1, u2; 1) = 0 in Oε is linearly
stable, and thus also isolated. By conservation of the Leray–Schauder degree, it must be that
the solution in Oε is unique.
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4.A A technical estimate
Lemma 4.20. There exists a universal constant C > 0 such that for all A > 0, B > 0 and
k > 0, if u satisfies {

−u′′ + k(1− x2)u ≤ B in (−1, 1)
0 < u < A

then the following estimate holds

k(1− x2)u(x) ≤ C A

(1− x2)2 + 2B.

We observe that, for x close to 0 (the point of minimum of the right hand side) the estimate is
sharp, at least with respect to the order. Indeed the solution of the equation with u(0) = B/(2k)
and u′(0) = 0 is not positive in the interval (−1, 1).

Proof. For any x ∈ (−1, 1), let d(x) = 1 − |x| be the distance of x to {−1, 1}. We observe that
d(x) < (1− x2) < 2d(x). We have, for y ∈ (−1, 1), that{

−u′′ + kd(y)u ≤ B in Bd(y)(y)
0 < u < A.

By [135, Lemma 2.2], we have that there exists a universal constant C > 0 such that

kd(y)u(y) ≤ CA

d(y)2 +B

and we can easily reach the conclusion.
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Systèmes de Fisher – KPP
non-monotones

« Ce n’est ni le plus fort de l’espèce
qui survit, ni le plus intelligent.
C’est celui qui sait le mieux
s’adapter au changement. »

(C. Darwin)





Chapitre 5

Systèmes de Fisher – KPP non-monotones :
ondes progressives et comportement en

temps long

Résumé

L’objet de ce chapitre est l’étude de systèmes de réaction – diffusion non-coopératifs dont
la structure est similaire à celle de l’équation de Fisher – KPP. Cette similarité rend possible
de prouver, entre autres, une dichotomie extinction – persistance et, en cas de persistance,
l’existence d’un état stationnaire strictement positif, l’existence d’ondes progressives avec une
demi-droite de vitesses admissibles et une vitesse minimale strictement positive, ainsi que
l’égalité entre cette vitesse et la vitesse de propagation de solutions de certains problèmes de
Cauchy. Les systèmes KPP non-coopératifs peuvent modéliser divers phénomènes impliquant
les trois mécanismes suivants : diffusion spatiale locale, coopération linéaire et compétition
surlinéaire.
Ce chapitre a fait l’objet d’une publication sous le titre Non-cooperative Fisher–KPP

systems : traveling waves and long-time behavior dans Nonlinearity [Gir18b].
Dans une appendice, une question laissée ouverte dans l’article (extinction dans le cas

critique) est résolue.

161
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temps long

5.1 Introduction
In this paper, we study a large class of parabolic reaction–diffusion systems whose prototype

is the so-called Lotka–Volterra mutation–competition–diffusion system:

∂tu1 − d1∂xxu1 = r1u1 −

(
N∑
j=1

c1,juj

)
u1 − µu1 + µu2

∂tu2 − d2∂xxu2 = r2u2 −

(
N∑
j=1

c2,juj

)
u2 − 2µu2 + µu1 + µu3

...

∂tuN − dN∂xxuN = rNuN −

(
N∑
j=1

cN,juj

)
uN − µuN + µuN−1

where N is an integer larger than or equal to 2 and the coefficients di, ri, ci,j (with i, j ∈
{1, . . . , N}) and µ are positive real numbers.

This system can be understood as an ecological model, where (u1, . . . , uN ) is a metapopulation
density phenotypically structured, µui−1 − µui and µui+1 − µui are the step-wise mutations of
the i-th phenotype with a mutation rate µ, di is its dispersal rate, ri is its growth rate per capita
in absence of mutation, ci,j is the rate of the competition exerted by the j-th phenotype on the
i-th phenotype, ri

ci,i
is the carrying capacity of the i-th phenotype in absence of mutation and

interphenotypic competition.
We are especially interested in spreading properties which describe the invasion of the popu-

lation in an uninhabited environment and which are expected to involve so-called traveling wave
solutions. Such solutions were first studied, independently and both in 1937, by Fisher [72] on
one hand and by Kolmogorov, Petrovsky and Piskunov [104] on the other hand for the equation
that is now well-known as the Fisher–KPP equation, Fisher equation or KPP equation:

∂tu− ∂xxu = u (1− u) .

While a lot of work has been accomplished about traveling waves and spreading properties for
scalar reaction–diffusion equations, the picture is much less complete regarding coupled systems
of reaction–diffusion equations. In particular, almost nothing is known about non-cooperative
systems like the system above.
Before going any further, let us introduce more precisely the problem.

5.1.1 Notations

Let (n, n′) ∈ (N ∩ [1,+∞))2. The set of the first n positive integers [1, n] ∩ N is denoted [n]
(and [0] = ∅ by convention).

5.1.1.1 Typesetting conventions

In order to ease the reading, we reserve the italic typeface (x, f , X) for reals, real-valued func-
tions or subsets of R, the bold typeface (v, A) for euclidean vectors or vector-valued functions,
in lower case for column vectors and in upper case for other matrices 1, the sans serif typeface
in upper case (B, K) for subsets of euclidean spaces 2 and the calligraphic typeface in upper case
(C , L ) for functional spaces and operators.

1. This convention being superseded by the previous one when the dimension is specifically equal to 1.
2. Same exception.
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5.1.1.2 Linear algebra notations

— The canonical basis of Rn is denoted (en,i)i∈[n]. The euclidean norm of Rn is denoted |•|n.
The open euclidean ball of center v ∈ Rn and radius r > 0 and its boundary are denoted
Bn (v, r) and Sn (v, r) respectively.

— The space Rn is equipped with one partial order ≥n and two strict partial orders >n and
�n, defined as

v ≥n v̂ if vi ≥ v̂i for all i ∈ [n] ,

v >n v̂ if v ≥n v̂ and v 6= v̂,

v�n v̂ if vi > v̂i for all i ∈ [n] .

The strict orders >n and �n coincide if and only if n = 1.
A vector v ∈ Rn is nonnegative if v ≥n 0, nonnegative nonzero if v >n 0, positive if v�n 0.
The sets of all nonnegative, nonnegative nonzero and positive vectors are respectively
denoted Kn, K+

n and K++
n .

— The sets K+
n ∩Sn (0, 1) and K++

n ∩Sn (0, 1) are respectively denoted S+
n (0, 1) and S++

n (0, 1).
— For any X ⊂ R, the sets of X-valued matrices of dimension n×n′ and n×n are respectively

denoted Mn,n′ (X) and Mn (X) . If X = R and if the context is unambiguous, we simply
write Mn,n′ and Mn. As usual, the entry at the intersection of the i-th row and the j-th
column of the matrix A ∈ Mn,n′ is denoted ai,j and the i-th component of the vector
v ∈ Rn is denoted vi. For any vector v ∈ Rn, diagv denotes the diagonal matrix whose
i-th diagonal entry is vi.

— Matrices are vectors and consistently we may apply the notations ≥nn′ , >nn′ and �nn′

as well as the vocabulary nonnegative, nonnegative nonzero and positive to matrices. We
emphasize this convention because of the possible confusion with the notion of “positive
definite square matrix”.

— A matrix A ∈ Mn is essentially nonnegative, essentially nonnegative nonzero, essentially
positive if A− min

i∈[n]
(ai,i) In is nonnegative, nonnegative nonzero, positive respectively.

— The identity of Mn and the element of Mn,n′ whose every entry is equal to 1 are respectively
denoted In and 1n,n′ (1n if n = n′) .

— We recall the definition of the Hadamard product of a pair of matrices (A,B)2 ∈ (Mn,n′)2:

A ◦B = (ai,jbi,j)(i,j)∈[n]×[n′] .

The identity matrix under Hadamard multiplication is 1n,n′ .
— The spectral radius of any A ∈ Mn is denoted ρ (A). Recall from the Perron–Frobenius

theorem that if A is nonnegative and irreducible, ρ (A) is the dominant eigenvalue of A,
called the Perron–Frobenius eigenvalue λPF (A), and is the unique eigenvalue associated
with a positive eigenvector. Recall also that if A ∈ Mn is essentially nonnegative and
irreducible, the Perron–Frobenius theorem can still be applied. In such a case, the unique

eigenvalue of A associated with a positive eigenvector is λPF (A) = ρ

(
A− min

i∈[n]
(ai,i) In

)
+

min
i∈[n]

(ai,i). Any eigenvector associated with λPF (A) is referred to as a Perron–Frobenius

eigenvector and the unit one is denoted nPF (A).
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5.1.1.3 Functional analysis notations

— We will consider a parabolic problem of two real variables, the “time” t and the “space” x. A
(straight) parabolic cylinder in R2 is a subset of the form (t0, tf )× (a, b) with (t0, tf , a, b) ∈
R4, t0 < tf and a < b. The parabolic boundary ∂PQ of a bounded parabolic cylinder
Q is defined classically. A classical solution of some second-order parabolic problem of
dimension n set in a parabolic cylinder Q = (t0, tf )× (a, b) is a solution in

C 1 ((t0, tf ) ,C 2 ((a, b) ,Rn)
)
∩ C (Q ∪ ∂Q,Rn) .

Similarly, a classical solution of some second-order elliptic problem of dimension n set in
an interval (a, b) ⊂ R is a solution in

C 2 ((a, b) ,Rn) ∩ C ((a, b) ∪ ∂ (a, b) ,Rn) .

— Consistently with Rn, the set of functions (Rn)
(
Rn
′)

is equipped with

f ≥Rn′ ,Rn f̂ if f (v)− f̂ (v) ∈ Kn for all v ∈ Rn
′
,

f >Rn′ ,Rn f̂ if f ≥Rn′ ,Rn f̂ and f 6= f̂ ,

f �Rn′ ,Rn f̂ if f (v)− f̂ (v) ∈ K++
n for all v ∈ Rn

′
.

We define consistently nonnegative, nonnegative nonzero and positive functions 3.

— The composition of two compatible functions f and f̂ is denoted f
[
f̂
]
, the usual ◦ being

reserved for the Hadamard product.
— If the context is unambiguous, a functional space F (X,R) is denoted F (X).
— For any smooth open bounded connected set Ω ⊂ Rn′ and any second order linear elliptic

operator L : C 2 (Ω,Rn)→ C (Ω,Rn) with coefficients in Cb (Ω,Rn), the Dirichlet principal
eigenvalue of L in Ω, denoted λ1,Dir (−L ,Ω), is well-defined if L is order-preserving in
Ω. Recall from the Krein–Rutman theorem that λ1,Dir (−L ,Ω) is the unique eigenvalue
associated with a principal eigenfunction positive in Ω and null on ∂Ω. Sufficient conditions
for the order-preserving property are:
— n = 1;
— n ≥ 2 and the system is weakly coupled (the coupling occurs only in the zeroth order

term) and fully coupled (the zeroth order coefficient is an essentially nonnegative
irreducible matrix). When n ≥ 2, order-preserving operators are also referred to as
cooperative operators.

5.1.2 Setting of the problem
From now on, an integer N ∈ N ∩ [2,+∞) is fixed. For the sake of brevity, the subscripts

depending only on 1 or N in the various preceding notations will be omitted when the context
is unambiguous.
We also fix d ∈ K++, D = diagd, L ∈ M and c ∈ C 1 (RN ,RN).
3. Regarding functions, some authors use > to denote what is here denoted �. Thus the use of these two

functional notations will be as sparse as possible and we will prefer the less ambiguous expressions “nonnegative
nonzero” and “positive”.
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The semilinear parabolic evolution system under scrutiny is

∂tu−D∂xxu = Lu− c [u] ◦ u, (EKPP )

the unknown being u : R2 → RN (although (EKPP ) might occasionally be restricted to a
parabolic cylinder).
The associated semilinear elliptic stationary system is

−Du′′ = Lu− c [u] ◦ u, (SKPP )

the unknown being u : R → RN (although (SKPP ) might occasionally be restricted to an
interval).

5.1.2.1 Restrictive assumptions

The main restrictive assumptions are the following ones.
(H1) L is essentially nonnegative and irreducible.
(H2) c (K) ⊂ K.
(H3) c (0) = 0.
(H4) There exist

(α, δ, c) ∈ [1,+∞)2 × K++

such that
N∑
j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn)

for all
(n, α, i) ∈ S+ (0, 1)× [α,+∞)× [N ] .

A few immediate consequences of these assumptions deserve to be pointed out.
— (EKPP ) and (SKPP ) are not cooperative and do not satisfy a comparison principle.
— The Perron–Frobenius eigenvalue λPF (L) is well-defined and the system u′ = Lu is coop-

erative.
— For all v ∈ RN , the Jacobian matrix of w 7→ c (w) ◦w at v is

diagc (v) + (v11,N ) ◦Dc (v) .

In particular, at v = 0, this Jacobian is null if and only if (H3) is satisfied. Also, if
Dc (v) ≥ 0 for all v ∈ K, then the system u′ = −c [u] ◦ u is competitive.

— This framework contains both the Lotka–Volterra linear competition c (u) = Cu and the
Gross–Pitaevskii quadratic competition c (u) = C (u ◦ u) (with, in both cases, C� 0).

5.1.2.2 KPP property

The system (EKPP ) is, in some sense, a “multidimensional KPP equation”. Let us recall the
main features of scalar KPP nonlinearities:

1. f ′ (0) > 0 (instability of the null state),
2. f ′ (0) v ≥ f (v) for all v ≥ 0 (no Allee effect),
3. there exists K > 0 such that f (v) < 0 if and only if v > K (saturation).
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Of course, our assumptions (H1)–(H4) aim to put forward a possible generalization of these
features. A few comments are in order.
Regarding the saturation property, the growth at least linear of c (H4) will imply an analo-

gous statement. Ensuring uniform L∞ estimates is really the main mathematical role of the
competitive term.
Regarding the presence of an Allee effect, c (K) ⊂ K (H2) and c (0) = 0 (H3) clearly yield that

∂tu−D∂xxu = Lu is the linearization at 0 of (EKPP ) and moreover that f : v 7→ Lv− c (v) ◦v
satisfies

Df (0) v ≥ f (v) for all v ∈ K.

Regarding the instability of the null state, we stress here that the notion of positivity of
matrices is somewhat ambiguous and, consequently, finding a natural generalization of f ′ (0) > 0
is not completely straightforward.
In order to decide which positivity sense is the right one, we offer the following criterion.

On one hand, a suitable multidimensional generalization of the KPP equation should enable
generalizations of the striking results concerning its scalar counterpart. On the other hand, the
most remarkable result about the KPP equation is that the answer to many natural questions
(value of the spreading speed, persistence in bounded domains, etc.) only depends on f ′ (0) (the
importance of f ′ (0) can already be seen in the features above). Thus, in our opinion, a KPP
system should also be linearly determinate regarding these questions.
With this criterion in mind, let us explain for instance why positivity understood as posi-

tive definite matrices (i.e. positive spectrum) is not satisfying. In such a case, Lotka–Volterra
competition–diffusion nonlinearities, whose linearization at 0 has the form diagr with r ∈
K++, would be KPP nonlinearities. Nevertheless, it is known that the spreading speed of a
competition–diffusion system is not necessarily linearly determinate (for instance, see Lewis–Li–
Weinberger [108]).
On the contrary, the main theorems of the present paper will show unambiguously that irre-

ducibility and essential nonnegativity (H1) supplemented with λPF (L) > 0 is the right notion.
This confirmation of the relevance of (H1)–(H4) will then lead us to a general definition of
multidimensional KPP nonlinearity.

5.1.3 Main results
5.1.3.1 KPP-type theorems established under (H1)–(H4)

Theorem 5.1. [Strong positivity] For all nonnegative classical solutions u of (EKPP ) set in
(0,+∞)× R, if x 7→ u (0, x) is nonnegative nonzero, then u is positive in (0,+∞)× R.
Consequently, all nonnegative nonzero classical solutions of (SKPP ) are positive.

Theorem 5.2. [Absorbing set and upper estimates] There exists a positive function g ∈ C ([0,+∞),K++),
component-wise non-decreasing, such that all nonnegative classical solutions u of (EKPP ) set in
(0,+∞)× R satisfy

u (t, x) ≤
(
gi

(
sup
x∈R

ui (0, x)
))

i∈[N ]
for all (t, x) ∈ [0,+∞)× R

and furthermore, if x 7→ u (0, x) is bounded, then(
lim sup
t→+∞

sup
x∈R

ui (t, x)
)
i∈[N ]

≤ g (0) .
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Consequently, all bounded nonnegative classical solutions u of (SKPP ) satisfy

u ≤ g (0) .

Theorem 5.3. [Extinction or persistence dichotomy]
1. Assume λPF (L) < 0. Then all bounded nonnegative classical solutions of (EKPP ) set in

(0,+∞)×R converge asymptotically in time, exponentially fast, and uniformly in space to
0.

2. Conversely, assume λPF (L) > 0. Then there exists ν > 0 such that all bounded positive
classical solutions u of (EKPP ) set in (0,+∞)×R satisfy, for all bounded intervals I ⊂ R,(

lim inf
t→+∞

inf
x∈I

ui (t, x)
)
i∈[N ]

≥ ν1N,1.

Consequently, all bounded nonnegative nonzero classical solutions of (SKPP ) are valued in

N∏
i=1

[ν, gi (0)] .

Remark. The critical case λPF (L) = 0, for which extinction still occurs, was unsolved at the
time of writing of the initial article. It was solved later on thanks to an hint of Adrian Lam and
its proof is presented in the appendix of the current chapter (see Section 5.A).
Although Theorem 5.3 proves that the attractor of the induced semiflow is reduced to {0}

in the extinction case, in the persistence case the long-time behavior is unclear and might not
be reduced to a locally uniform convergence toward a unique stable steady state. This direct
consequence of the multidimensional structure of (EKPP ) is a major difference with the scalar
KPP equation. Still, the following theorem provides some additional information about the
steady states of (EKPP ) and confirms in some sense the preceding conjecture.

Theorem 5.4. [Existence of steady states]
1. If λPF (L) < 0, there exists no positive classical solution of (SKPP ).
2. If λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} ,

there exists no bounded positive classical solution of (SKPP ).
3. If λPF (L) > 0, there exists a constant positive classical solution of (SKPP ).

Due to the unclear long-time behavior of (EKPP ) when λPF (L) > 0, it seems inappropriate
to consider only traveling wave solutions connecting 0 to some stable positive steady state (as
is usually done in the monostable scalar setting). Hence we resort to the following more flexible
definition.

Definition. A traveling wave solution of (EKPP ) is a pair

(p, c) ∈ C 2 (R,RN)× [0,+∞)

which satisfies:
1. u : (t, x) 7→ p (x− ct) is a bounded positive classical solution of (EKPP );

2.
(

lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

∈ K+;

167



Chapitre 5 Systèmes de Fisher – KPP non-monotones : ondes progressives et comportement en
temps long

3. lim
ξ→+∞

p (ξ) = 0.

We refer to p as the profile of the traveling wave and to c as its speed. 4

Theorem 5.5. [Traveling waves] Assume λPF (L) > 0.
1. There exists c? > 0 such that:

a) there exists no traveling wave solution of (EKPP ) with speed c for all c ∈ [0, c?);
b) if, furthermore,

Dc (v) ≥ 0 for all v ∈ K,

then there exists a traveling wave solution of (EKPP ) with speed c for all c ≥ c?.
2. All profiles p satisfy

p ≤ g (0) .

3. All profiles p satisfy (
lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

≥ ν1N,1.

4. All profiles are component-wise decreasing in a neighborhood of +∞.

When traveling waves exist for all speeds c ≥ c?, c? is called the minimal wave speed.

Theorem 5.6. [Spreading speed] Assume λPF (L) > 0. For all x0 ∈ R and all bounded nonneg-
ative nonzero v ∈ C

(
R,RN

)
, the classical solution u of (EKPP ) set in (0,+∞)×R with initial

data v1(−∞,x0) satisfies(
lim

t→+∞
sup

x∈(y,+∞)
ui (t, x+ ct)

)
i∈[N ]

= 0 for all c ∈ (c?,+∞) and all y ∈ R,

(
lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)
)
i∈[N ]

∈ K++ for all c ∈ [0, c?) and all R > 0.

Of course, by well-posedness of (EKPP ), the solution with initial data x 7→ v (−x) 1(−x0,+∞)
is precisely (t, x) 7→ u (t,−x) (u being the solution with initial data v1(−∞,x0)). This gives
the expected symmetrical spreading result (the solution with initial data x 7→ v (−x) 1(−x0,+∞)
spreads on the left at speed −c?). Moreover, since these two spreading results with front-like
initial data actually cover compactly supported v, we also get straightforwardly the spreading
result for compactly supported initial data (the solution spreads on the right at speed c? and on
the left at speed −c?).
Consequently, c? is also called the spreading speed associated with front-like or compactly

supported initial data. We recall that for generic KPP problems these two spreading speeds are
different as soon as the spatial domain is multidimensional. In such a case, the spreading speed
associated with front-like initial data generically coincides with the minimal wave speed whereas
the spreading speed associated with compactly supported initial data is smaller.

Theorem 5.7. [Characterization and estimates for c?] Assume λPF (L) > 0. We have

c? = min
µ>0

λPF
(
µ2D + L

)
µ

4. Let us emphasize once and for all that the vector field c is not to be confused with the real number c. The
former is named after “competition” whereas the latter is traditionally named after “celerity”.
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and this minimum is attained at a unique µc? > 0.
Consequently, if we assume (without loss of generality)

d1 ≤ d2 ≤ . . . ≤ dN ,

the following estimates hold.
1. We have

2
√
d1λPF (L) ≤ c? ≤ 2

√
dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are equalities.
2. For all i ∈ [N ] such that li,i > 0, we have

c? > 2
√
dili,i.

3. Let r ∈ RN and M ∈ M be given by the unique decomposition of L of the form

L = diagr + M with MT1N,1 = 0.

Let (〈d〉 , 〈r〉) ∈ (0,+∞)× R be defined as
〈d〉 = dTnPF (µ2

c?D+L)
11,NnPF (µ2

c?
D+L) ,

〈r〉 = rTnPF (µ2
c?D+L)

11,NnPF (µ2
c?

D+L) .

If 〈r〉 ≥ 0, then
c? ≥ 2

√
〈d〉 〈r〉.

5.1.3.2 General definition of multidimensional KPP nonlinearity

The set of assumptions (H1)–(H4) supplemented with λPF (L) > 0 can be seen as a particular
case of the following definition, which we expect to be optimal with respect to the preceding
collection of theorems.

Definition 5.8. A nonlinear function f ∈ C 1 (RN ,RN) is a KPP nonlinearity if:
1. f (0) = 0;
2. Df (0) is essentially nonnegative, irreducible and λPF (Df (0)) > 0;
3. Df (0) v ≥ f (v) for all v ∈ K;
4. the semiflow induced by ∂tu = D∂xxu + f [u] with globally bounded, sufficiently regular

initial data admits an absorbing set bounded in L∞ (R).

Let us explain more precisely how this definition differs from (H1)–(H4) supplemented with
λPF (L) > 0. Defining

L = Df (0) ,

c : v 7→
{(

1
vi

((Lv)i − fi (v))
)
i∈[N ]

if v 6= 0
0 if v = 0

,

we find
f (v) = Lv− c (v) ◦ v for all v ∈ RN .

On one hand, the irreducibility and essential nonnegativity of L (H1), the positivity of its Perron–
Frobenius eigenvalue, as well as the nonnegativity of c on K (H2) with c (0) = 0 (H3) follow
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directly. On the other hand, the C 1 regularity of c at 0 and its specific growth at infinity (H4)
are not satisfied in general.
These two properties are satisfied indeed for the applications we have in mind (which will be

exposed in a moment). However it might be mathematically interesting to consider the case
where at least one of them fails. For instance, let us discuss briefly (H4).
The only forthcoming result whose proof depends directly on (H4) is Lemma 5.11 (which is

remarkably one of the main assumptions of a related paper by Barles, Evans and Souganidis
[10, (F3)]). It is easily seen that if c grows sublinearly, we cannot hope in general to recover
Lemma 5.11 (in other words, under some reasonable assumptions, Barles–Evans–Souganidis’s
(F3) is satisfied if and only if (H4); of course this makes (H4) even more interesting).
Nevertheless, this lemma is not a result in itself but a tool used for the proofs of Theorem 5.2

as well as the existence results of Theorem 5.4 and Theorem 5.5. Hence relaxing (H4) mainly
means finding new proofs of these results.
Now, without entering into too much details, we point out that if there exists η > 0 such that

the following dissipative assumption:

(Hdiss,η)

 ∃C1 ≥ 0 ∀v ∈ RN (f (v) + ηv)T v ≤ C1
∃C2 ≥ 0 ∀v ∈ RN Df (v) + ηI ≤ C21

∃ (C3, p) ∈ [0,+∞)2 ∀v ∈ RN |f (v) + ηv| ≤ C3 (1 + |v|p) ,

holds, then the semiflow induced by ∂tu = D∂xxu + f [u] admits an attractor in some locally
uniform topology which is bounded in Cb

(
R,RN

)
(see Zelik [147]). If the semiflow leaves K

invariant and if we only consider nonnegative initial data, then the quantifiers ∀v ∈ RN above
can all be replaced by ∀v ∈ K.
In particular, v 7→ Lv− c (v) ◦ v supplemented with (H1)–(H3) and

(H ′4) lim
|v|→+∞,v∈K

|c (v)| = +∞ with at most algebraic growth

satisfies (Hdiss,η) for any η > 0. (Clearly, (H4) ∪ (H ′4) contains every choice of c such that
lim

|v|→+∞,v∈K
|c (v)| = +∞.)

Consequently, dissipative theory provides for some slowly decaying KPP nonlinearities a proof
of Theorem 5.2. It should also provide a proof of Proposition 5.15, which is the key estimate to
derive the existence of traveling waves, as well as a proof of the existence result of Theorem 5.4
. With these proofs at hand, all our results would be recovered.

5.1.4 Related results in the literature
5.1.4.1 Cooperative or almost cooperative systems

The bibliography about weakly and fully coupled elliptic and parabolic linear systems is of
course extensive. It is possible, for instance, to define principal eigenvalues and eigenfunctions
(Sweers et al. [24, 136]), to prove the weak maximum principle (the classical theorems of Protter–
Weinberger [129] were refined in the more involved elliptic case by Figueiredo et al. [53, 54] and
Sweers [136]) or Harnack inequalities (Chen–Zhao [37] or Arapostathis–Gosh–Marcus [5] for the
elliptic case 5, Földes–Poláčik [73] for the parabolic case) and to use the super- and sub-solution
method to deduce existence of solutions (Pao [125] among others). In some sense, weakly and
fully coupled systems form the “right”, or at least the most straightforward, generalization of
scalar equations.

5. They both prove the same type of results but we will refer hereafter only to the latter because the former
does not cover, as stated, the one-dimensional space case.
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For (possibly nonlinear) cooperative systems, results analogous to Theorem 5.5 1, 3, Theo-
rem 5.6 and Theorem 5.7 were established by Lewis, Li and Weinberger [110, 142]. Recently,
Al-Kiffai and Crooks [1] introduced a convective term into a two-species cooperative system to
study its influence on linear determinacy.
For non-cooperative systems that can still be controlled from above and from below by weakly

and fully coupled systems whose linearizations at 0 coincide with that of the non-cooperative
system, Wang [140] recovered the results of Lewis–Li–Weinberger by comparison arguments.
Before going any further, let us point out that we will use extensively comparison arguments as
well, nevertheless we will not need equality of the linearizations at 0. This is a crucial difference
between the two sets of assumptions. To illustrate this claim, let us present an explicit example
of system covered by our assumptions and not by Wang’s ones: take any N ≥ 3, r > 0, µ ∈

(
0, r2
)

and define L and c as follows:

L = rI + µ



−1 1 0 . . . 0

1 −2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −2 1

0 . . . 0 1 −1


,

c : v 7→ 1v.

On one hand, (H1)–(H4) are easily verified, but on the other hand, the function f : v 7→
Lv− c [v] ◦ v is such that, for all i ∈ [N ] \ {1, N} and all v ∈ K++,

∂fi
∂vj

(v) = −vi < 0 for all j ∈ [N ] \ {i− 1, i, i+ 1} .

Consequently, the application v 7→ fi (vej) is decreasing in [0,+∞). This clearly violates Wang’s
assumptions: this instance of (EKPP ) cannot be controlled from below by a cooperative system
whose linearization at 0 is ∂tu−D∂xxu = Lu.
Even if L is essentially positive and the cooperative functions f−, f+ satisfyingf− (v) ≤ Lv− c (v) ◦ v ≤ f+ (v)

f− (0) = f+ (0) = 0
Df− (0) = Df+ (0) = L

are constructible, in general it is difficult to verify that f− and f+ have each a minimal positive
zero (another requirement of Wang). Our setting needs not such a verification.
Furthermore, even if these minimal zeros exist, several results presented here are still new.
1. Theorem 5.5 1 adds to [140, Theorem 2.1 iii)–v)] the existence of a critical traveling wave

(Wang obtained the existence of a bounded non-constant nonnegative solution traveling at
speed c? but the limit at +∞ of its profile was not addressed).

2. Theorem 5.1, Theorem 5.2, Theorem 5.3 and Theorem 5.4 as well as Theorem 5.5 2, 4 rely
more deeply on the KPP structure and are completely new to the best of our knowledge.

5.1.4.2 KPP systems

Regarding weakly coupled systems equipped with KPP nonlinearities, as far as we know most
related works assume the essential positivity of L, some even requiring its positivity. Our results
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tend to show that this collection of results should be generalizable to the whole class of irreducible
and essentially nonnegative L (H1) provided λPF (L) > 0.
Dockery, Hutson, Mischaikow and Pernarowski [58] studied in a celebrated paper the solutions

of (SKPP ) in a bounded and smooth domain with Neumann boundary conditions. Their matrix
L had the specific form a (x) I + µM where a is a non-constant function of the space variable
and with minimal assumptions on the constant matrix M. They also assumed strict ordering of
the components of d, explicit and symmetric Lotka–Volterra competition, vanishingly small µ.
They proved the existence of a unique positive steady state, globally attractive for the Cauchy
problem with positive initial data, and which converges as µ → 0 to a steady state where only
u1 persists.
More recently, the solutions of (SKPP ), still in a bounded and smooth domain with Neumann

boundary conditions, were studied under the assumptions of essential positivity of L and small
Lipschitz constant of v 7→ c (v)◦v by Hei and Wu [91]. They established by means of super- and
sub-solutions the equivalence between the negativity of the principal eigenvalue of −D d2

dx2 − L
and the existence of a positive steady state.
Provided the positivity of L, the vanishing viscosity limit of (EKPP ) is the object of a work

by Barles, Evans and Souganidis [10]. Although their paper and the present one differ both in
results and in techniques, they share the same ambition: describing the spreading phenomenon
for KPP systems. Therefore our feeling is that together they give a more complete answer to the
problem.
For two-component systems with explicit Lotka–Volterra competition, D = I2 and symmetric

and positive L, Theorem 5.4 and Theorem 5.5 1, 3, 4 reduce to the results of Griette and Raoul
[82] (see Alfaro–Griette [2] for a partial extension to space-periodic media). Their paper uses very
different arguments (topological degree, explicit computations involving in particular the sum of
the equations, weak mutation limit, phase plane analysis) but was our initial motivation to work
on this question: our intent is really to extend their result to a larger setting by changing the
underlying mathematical techniques. Let us emphasize that they obtained an algebraic formula
for the minimal wave speed, c? = 2

√
λPF (L), that we are able to generalize (Theorem 5.7). The

case D 6= I2 has been investigated heuristically and numerically by Elliott and Cornell [65], who
considered the weak mutation limit as well and obtained further results.
Let us point out that the problem of the spreading speed for the Cauchy problem for the

two-component system with explicit Lotka–Volterra competition was formulated but left open
by Elliott and Cornell [65] as well as by Cosner [39] and not considered by Griette and Raoul
[82]. This problem is completely solved here (see Theorem 5.6).
Just after the submission of this paper, a paper by Morris, Börger and Crooks [115] submit-

ted concurrently and devoted to the analytical confirmation of Elliott and Cornell’s numerical
observations was brought to our attention. By applying’s successfully Wang’s framework, they
obtained the existence of traveling waves as well as the spreading speed for the Cauchy prob-
lem. However, in order to apply Wang’s framework, they had to make additional assumptions
(roughly speaking, small interphenotypic competition and small mutations) and which are in
fact, in view of our results, unnecessary. They also obtained very interesting results regarding
the dependency on the mutation rate µ of the spreading speed

λPF
(
µc?D + µ−1

c? (diagr + µM)
)

and the associated distribution

nPF
(
µc?D + µ−1

c? (diagr + µM)
)
.
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5.1.5 From systems to non-local equations, from mathematics to
applications

It is well-known that systems can be seen as discretizations of continuous models. In this
subsection, we present briefly some equations structured not only in time and space but also
with a third variable and whose natural discretizations are particular instances of our system
(EKPP ) satisfying the criterion λPF (L) > 0. Our results bring therefore indirect insight into
the spreading properties of these equations.
Since these examples provide also examples of biomathematical applications of our results, this

subsection gives us the opportunity to present more precisely these applications, to explain how
non-cooperative KPP systems arise in modeling situations and finally to comment our results
from this application point of view. Several fields of biology are concerned: evolutionary invasion
analysis (also known as adaptive dynamics), population dynamics, epidemiology. Applications
in other sciences might also exist.

5.1.5.1 The cane toads equation with non-local competition

Recall the definition of the discrete laplacian in a finite domain of cardinal N ,

MLap,N =



−1 1 0 . . . 0

1 −2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −2 1

0 . . . 0 1 −1


if N ≥ 3,

MLap,2 =
(
−1 1
1 −1

)
if N = 2.

With this notation, the Lotka–Volterra mutation–competition–diffusion system exhibited ear-
lier reads

∂tu−D∂xxu = diag (r) u + µMLapu− (Cu) ◦ u.

An especially interesting instance of it is the system where:

— for all i ∈ [N ], dN,i = θ + (i− 1) δθ with δθ = θ−θ
N−1 and with some fixed θ > θ > 0;

— rN = r1N,1 with some fixed r > 0;
— µN = α

δθ2 with some fixed α > 0;
— CN = δθ1N .

Since λPF (MLap,N ) = 0 (because MLap,N1N,1 = 0), the Perron–Frobenius eigenvalue of L is
positive indeed:

λPF

(
rIN + α

δθ2 MLap,N

)
= r + λPF

( α

δθ2 MLap,N

)
= r > 0.

As N → +∞, this system converges (at least formally) to the cane toads equation with
non-local competition and bounded phenotypes:{

∂tn− θ∂xxn− α∂θθn = n (t, x, θ)
(
r −

∫ θ
θ
n (t, x, θ′) dθ′

)
∂θn (t, x, θ) = ∂θn

(
t, x, θ

)
= 0 for all (t, x) ∈ R2
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where n is a function of (t, x, θ), θ ∈
[
θ, θ
]
is the motility trait, α is the mutation rate and∫ θ

θ
n (t, x, θ′) dθ′ is the total population present at (t, x).
This equation is named after an invasive species currently invading Australia. A startling

ecologic fact is that this invasion is accelerating whereas biological invasions usually occur at
a constant speed (as predicted by the KPP equation). However this issue is solved when the
phenotypical structure is taken into account and the following spatial sorting phenomenon is
understood: the fastest toads lead the invasion, reproduce at the edge of the front, give birth
to a new generation of toads among which faster and slower toads can be found (as a result of
mutations), and the new fastest toads take the lead of the invasion.
The introduction of a motility trait θ with a local mutation term α∂θθn into the scalar KPP

equation is then a way of verifying this theory: does it lead to accelerating invasions? The
answer is positive (transitory acceleration up to a constant asymptotic speed if θ < +∞, constant
acceleration if θ = +∞) and this is why the cane toads equation achieved some fame (we refer
for instance to [11, 26, 27, 28], where more detailed modeling explanations can also be found).
The overcrowding effect, which is nowadays standardly taken into account in population biol-

ogy modeling, is modeled by the term −n (t, x, θ)
∫ θ
θ
n (t, x, θ′) dθ′ which basically considers that

one given toad competes with all other toads surrounding it, independently of their phenotype,
and does not compete with distant toads. Mathematically, this term is the only responsible for
the nonlinearity, non-locality and non-cooperativity of the model: it could be tempting to neglect
it. However, linear growth models (which go back to Malthus) generically lead to exponential
blow-up. The basic idea of the literature about the cane toads equation is then exactly the same
as the one we are going to use in the forthcoming proofs: point out and use the KPP nature of
the problem.
The results of the present paper are consistent with the ones for the cane toads equation with

bounded phenotypes. Therefore it might be possible, in a future sequel providing new estimates
uniform with respect to N , to rigorously derive the cane toads equation as the continuous limit
of a family of KPP systems. Since the discrete version is easier to study, new results might
be unfolded by this approach. However, let us stress that the problem of finding these new
uniform estimates is not to be underestimated and is expected to be a very difficult one. At
least regarding biologists, whose field measurements somehow always produce discrete classes of
phenotypes instead of a continuum of phenotypes, our results bring forth an interesting new lead
to address the general problem of adaptive dynamics.
Let us point out that if, instead of phenotypes of cane toads, the components of u model

different strains of virus, then we obtain an epidemiological model representing the invasion of a
population of sane individuals by a structured population of infected individuals (Griette–Raoul
[82]).
Notice that this cane toads equation is only the first step of a larger research program: a more

realistic model should replace clonal reproduction by sexual reproduction and should take into
account the possibility of non-constant coefficients α and r as well as that of a more general
competition term (logistic with a non-constant weight or even non-logistic). It is also interesting
to consider non-local spatial or phenotypical dispersion.

5.1.5.2 The cane toads equation with non-local mutations and competition

Actually, historically, the cane toads equation comes from a doubly non-local model due to
Prévost et al. [6, 128] (see also the earlier individual-based model by Champagnat and Méléard
[36]). Since the non-local mutation operator is too difficult to handle mathematically, the cane
toads equation with local mutations was favored as a simplified first approach. However it
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remains unsatisfying from the modeling point of view and non-local kernels, which could take
into account large mutations, are the real aim.
Defining as above δθ = θ−θ

N−1 and (θi)i∈[N ] = (θ + (i− 1) δθ)ı̈∈[N ], the natural discretization of
the doubly non-local cane toads equation,

∂tn− d (θ) ∂xxn = rn+ α (K ?θ n− n)− n
∫ θ

θ

n (t, x, θ′) dθ′

with d ∈ C
([
θ, θ
]
, (0,+∞)

)
and K ∈ C (R, [0,+∞)), is

∂tu−DN∂xxu = LNu− (δθ1Nu) ◦ u,

with
dN = (d (θi))i∈[N ] ,

LN = rIN + α
(
δθ (K (θi − θj))(i,j)∈[N ]2 − IN

)
= (r − α) IN + αδθ (K ((i− j) θN ))(i,j)∈[N ]2 .

The assumptions on c (H2)–(H4) are obviously satisfied and, as soon as, say, K is positive,
the assumption on L(H1) is satisfied as well. Subsequently, λPF (LN ) ≥ r − α, whence r > α is
a sufficient condition to ensure λPF (LN ) > 0 for all N ∈ N.
More generally, the system corresponding to the following equation (see Prévost et al. [6, 128]):

∂tn− d (θ) ∂xxn = r (θ)n (t, x, θ) +
∫ θ

θ

n (t, x, θ′)K (θ, θ′) dθ′

− n (t, x, θ)
∫ θ

θ

n (t, x, θ′)C (θ, θ′) dθ′

with d ∈ C
([
θ, θ
]
, (0,+∞)

)
, r ∈ C

([
θ, θ
]
, [0,+∞)

)
, K,C ∈ C

([
θ, θ
]2
, [0,+∞)

)
is

∂tu−DN∂xxu = LNu− (CNu) ◦ u,

with
dN = (d (θi))i∈[N ] ,

LN = diag (r (θi))i∈[N ] + δθ (K (θi, θj))(i,j)∈[N ]2 ,

CN = δθ (C (θi, θj))(i,j)∈[N ]2 .

Again, (H3) and (H4) are clearly satisfied, (H2) is satisfied if C is nonnegative and both (H1)
and λPF (LN ) > 0 are satisfied if, say, K is positive.

In both cases, of course, the positivity of K is a far from necessary condition and might be
relaxed.
To the best of our knowledge, these doubly non-local equations have been the object of no

study apart from [6, 128] and are therefore still very poorly understood. In particular, the
traveling wave problem as well as the spreading problem are completely open. Consequently, our
results are highly valuable when applied to this system. For mathematicians, they motivate the
future work on the limit N → +∞. For biologists, they provide new insight into these modeling
problems and show for instance how two different mutation strategies can be compared and how
the spreading speed can be evaluated.
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5.1.5.3 The Gurtin–MacCamy equation with diffusion and overcrowding effect

In view of the preceding two examples, it is natural to investigate the existence of completely
different applications, that is applications not concerned at all with evolutionary biology. Such
applications exist indeed, as shown by this third example.
Consider the following age-structured equation with diffusion:

∂tn+ ∂an− d (a) ∂xxn = −n (t, x, a)
(
r (a) +

∫ A
0 n (t, x, a′)C (a, a′) da′

)
n (t, x, 0) =

∫ A
am

n (t, x, a′)K (a′) da′ for all (t, x) ∈ R2

n (t, x,A) = 0 for all (t, x) ∈ R2

where n is a function of (t, x, a), a ∈ [0, A] is the age variable, am ≥ 0 is the maturation age, A >
am is the maximal age, d ∈ C ([0, A] , (0,+∞)) is the diffusion rate, r ∈ C ([0, A] , (0,+∞)) is the
mortality rate, C ∈ C

(
[0, A]2 , [0,+∞)

)
is the competition kernel and K ∈ C ([0, A] , [0,+∞)) is

the birth rate. This equation is well-known, at least if C = 0, and detailed modeling explanations
can be found in the classical Gurtin–MacCamy references [87, 86].
Defining

δa = A

N
,

(ai)i∈[N ] = ((i− 1) δa)i∈[N ] ,

jm,N = min {j ∈ [N ] | aj ≥ am} ,

u (t, x) = (n (t, x, ai))i∈[N ] ,

dN = (d (ai))i∈[N ] ,

Lmortality,N = −diag
(
r (ai)i∈[N ]

)
,

Lbirth,N = δa


0 . . . 0 K

(
ajm,N

)
. . . K (aN )

0 . . . 0
...

...
0 . . . 0

 ,

Laging,N = 1
δa



0 0 . . . . . . 0

1 −1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1 −1


,

LN = Lmortality,N + Lbirth,N + Laging,N ,

CN = δa (C (ai, aj))(i,j)∈[N ]2 ,

it follows again that
∂tu−DN∂xxu = LNu− (CNu) ◦ u

is the natural discretization with (H3) and (H4) automatically satisfied. K nonnegative nonzero
and C nonnegative are sufficient conditions to enforce (H1) and (H2).
Since we have

λPF (LN ) ≥ λPF (Lbirth,N + Laging,N )−max
[0,A]

r
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and since λPF (Lbirth,N + Laging,N ) is bounded from below by a positive constant independent
of N (the proof of this claim being deliberately not detailed here for the sake of brevity), if max

[0,A]
r

is small enough, then λPF (LN ) > 0 for all N ∈ N.
We point out that this KPP system differs noticeably from the Lotka–Volterra mutation–

competition–diffusion system presented up to now as the main instance of KPP system: here,
the matrix L is highly non-symmetric. This should have important qualitative consequences,
numerically observable. It might even be unexpected that these two systems share important
properties and this makes our theorems even more interesting.
As far as we know, the traveling wave problem and the spreading problem for the continuous

age-structured problem are completely open. Therefore the earlier remarks concerning the impact
of our results on the doubly non-local cane toads equation apply here as well.

5.2 Strong positivity
Theorem 5.1 is mainly straightforward and follows from the following local result.

Proposition 5.9. Let Q ⊂ R2 be a bounded parabolic cylinder and u be a classical solution of
(EKPP ) set in Q.
If u is nonnegative on ∂PQ, then it is either null or positive in Q.

Proof. Let K = max
Q
|u| and observe that, for all i ∈ [N ] and all (t, x) ∈ Q,

|li,i − ci (u (t, x))| ≤ |li,i|+ max
v∈B(0,K)

|ci (v)| .

Then, define
A : (t, x) 7→ L− diag (c (u (t, x))) .

By the irreducibility and the essential nonnegativity of L (H1), A (t, x) has these two properties
as well for all (t, x) ∈ Q. By the boundedness of u in Q, A is bounded in Q as well.
Therefore u is a solution of the following linear weakly and fully coupled system with bounded

coefficients:
∂tu−D∂xxu−Au = 0.

By virtue of Protter–Weinberger’s strong maximum principle [129, Chapter 3, Theorem 13],
u is indeed either null or positive in Q.

Actually, noticing that the previous proof remains true without any modification if we add to
(EKPP ) a diagonal drift term b ◦ ∂xu with b ∈ RN , we state right now a corollary that will be
quite useful later on.

Corollary 5.10. Let (a, b, c) ∈ R3 such that a < b. Let u be a nonnegative classical solution of

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then u is either null or positive in (a, b).

Remark. This statement does not establish the non-negativity of all solutions of −Du′′ − cu′ =
Lu − c [u] ◦ u; it only enforces the interior positivity of the nonnegative nonzero solutions.
Regarding the weak maximum principle, we refer among others to Figueiredo [53], Figueiredo–
Mitidieri [54], Sweers [136]. In view of what is known in the simpler scalar case, it is to be
expected that, for small |c| and large enough intervals (a, b), sign-changing solutions exist.
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5.3 Absorbing set and upper estimates
On the contrary, Theorem 5.2 requires some work.

5.3.1 Saturation of the reaction term
For all i ∈ [N ], let Hi ⊂ RN be the closed half-space defined as

Hi =
{
v ∈ RN | (Lv)i ≥ 0

}
.

Lemma 5.11. There exists k ∈ K++ such that, for all i ∈ [N ] and for all v ∈ K\e⊥i ,

(L (v + kiei)− c (v + kiei) ◦ (v + kiei))i < 0.

Proof. Let i ∈ [N ] and let
Fi =

(
S+ (0, 1) ∩ Hi

)
\e⊥i .

Let
fi : (0,+∞)× S (0, 1) → R

(α,n) 7→
N∑
j=1

li,jnj − ci (αn)ni.

Notice that for all n ∈ S+ (0, 1) \Fi, either
N∑
j=1

li,jnj < 0 and then fi (α,n) < 0 for all α > 0

or ni = 0 and then fi (α,n) =
N∑
j=1

li,jnj ≥ 0 does not depend on α.

Let n ∈ Fi. By virtue of the behavior of c as α→ +∞ (H4) and since n /∈ e⊥i ,

lim
α→+∞

fi (α,n) = −∞.

Therefore the following quantity is finite and nonnegative:

αi,n = inf {α ≥ 0 | ∀α′ ∈ (α,+∞) fi (α′,n) < 0} .

Now, the set

{αi,nni | n ∈ Fi} = {αi,nni | n ∈ Fi, αi,n > α} ∪ {αi,nni | n ∈ Fi, αi,n ≤ α}

is bounded if and only if the set {αi,nni | n ∈ Fi, αi,n > α} is bounded. Recall the definition of
α ≥ 1 and δ ≥ 1 (H4). For all n ∈ Fi such that αi,n > α, thanks to (H4), we have by virtue of
the discrete Cauchy–Schwarz inequality

|αi,nni| = αi,nni

≤ αδi,nni

≤
∑N
j=1 li,jnj

ci

≤

∣∣∣(li,j)j∈[N ]

∣∣∣
ci

,
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5.3 Absorbing set and upper estimates

whence the finiteness of
ki = sup {αi,nni | n ∈ Fi}

is established. Its positivity follows from the fact that c vanishes at 0 (H3) which implies that
for all n ∈ intFi, αi,n > 0.
The result about v + kiei with v ∈ K\e⊥i is a direct consequence.

Assuming in addition strict monotonicity of α 7→ ci (αn) (which is for instance satisfied if
c (v) = Cv with C� 0, that is in the Lotka–Volterra competition case), we can obtain the fol-
lowing more precise geometric description of the reaction term. The proof is quite straightforward
and is not detailed here.

Lemma 5.12. Assume in addition that α 7→ ci (αn) is increasing for all n ∈ Hi.
Then there exists a collection of connected C 1-hypersurfaces

(Zi)i∈[N ] ⊂
N∏
i=1

((
K+ ∩ Hi

)
\e⊥i

)
such that, for any i ∈ [N ] and any v ∈ (K+ ∩ Hi) \e⊥i ,

(Lv− c (v) ◦ v)i = 0 if and only if v ∈ Zi.

For all i ∈ [N ], Zi satisfies the following properties.
1. For all n ∈ (S+ (0, 1) ∩ Hi) \e⊥i , Zi ∩ Rn is a singleton.
2. The function zi which associates with any n ∈ (S+ (0, 1) ∩ Hi) \e⊥i the unique element of

Zi ∩ Rn is continuous and is a C 1-diffeomorphism of (S++ (0, 1) ∩ intHi) \e⊥i onto intZi.
3. For any v ∈ K+\e⊥i , (Lv− c (v) ◦ v)i > 0 if and only if

v ∈ Hi and |v| <
∣∣∣∣zi( v

|v|

)∣∣∣∣ .
5.3.2 Absorbing set and upper estimates
Define for all i ∈ [N ]

gi : [0,+∞) → (0,+∞)
µ 7→ max (µ, ki) .

The function gi is non-decreasing and piecewise affine (whence Lipschitz-continuous).
The following local in space L∞ estimate for the parabolic problem is due to Barles–Evans–

Souganidis [10]. We repeat its proof for the sake of completeness.

Lemma 5.13. Let Q ⊂ R2 be a parabolic cylinder bounded in space and bounded from below in
time.
Let u be a nonnegative classical solution of (EKPP ) set in Q such that

u|∂PQ ∈ L∞
(
∂PQ,RN

)
.

Then we have (
sup

Q
ui

)
i∈[N ]

≤
(
gi

(
sup
∂PQ

ui

))
i∈[N ]

.
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Proof. Let t0 ∈ R, T ∈ (0,+∞] and (a, b) ∈ R2 such that Q = (t0, t0 + T )× (a, b). Let i ∈ [N ].
Define a smooth convex function η : R→ R which satisfiesη (u) = 0 if u ∈ (−∞, gi

(
sup
∂PQ

ui

)
]

η (u) > 0 otherwise.

For all t ∈ (t0, t0 + T ), let

Ξi (t) =
{
x ∈ (a, b) | ui (t, x) > gi

(
sup
∂PQ

ui

)}
.

This set is measurable and, by integration by parts, for all t ∈ (t0, t0 + T ),

∂t

(∫ b

a

η (ui (t, x)) dx
)

=
∫ b

a

η′ (ui (t, x)) ∂tui (t, x) dx

= −di
∫ b

a

η′′ (ui (t, x)) (∂xui (t, x))2 dx

+
∫ b

a

η′ (ui (t, x))

 N∑
j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)

dx

= −di
∫

Ξi(t)
η′′ (ui (t, x)) (∂xui (t, x))2 dx

+
∫

Ξi(t)
η′ (ui (t, x))

 N∑
j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)

dx

≤ 0

Since
∫ b
a
η (ui (t0, x)) dx = 0, we deduce

ui ≤ gi
(

sup
∂PQ

ui

)
in Q,

whence
sup

Q
ui ≤ gi

(
sup
∂PQ

ui

)
.

As a corollary of this local estimate, we get Theorem 5.2.

Proposition 5.14. Let u0 ∈ Cb (R,K). Then the unique classical solution u of (EKPP ) set in
(0,+∞)× R with initial data u0 satisfies(

sup
(0,+∞)×R

ui

)
i∈[N ]

≤
(
gi

(
sup
R
u0,i

))
i∈[N ]

and furthermore (
lim sup
t→+∞

sup
x∈R

ui (t, x)
)
i∈[N ]

≤ g (0) .
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Consequently, all bounded nonnegative classical solutions of (SKPP ) are valued in

N∏
i=1

[0, gi (0)] .

Proof. To get the global in space L∞ estimate, apply the local one to the family (uR)R>0, where
uR is the solution of (EKPP ) set in (0,+∞)× (−R,R) with{

uR (0, x) = u0 (x) for all x ∈ [−R,R] ,
uR (t,±R) = u0 (±R) for all t ≥ 0,

and recall that, by classical parabolic estimates (Lieberman [111]) and a diagonal extraction
process, (uR)R>0 converges up to extraction in C 1

loc

(
(0,+∞) ,C 2

loc

(
R,RN

))
to the solution of

(EKPP ) set in (0,+∞)× R with initial data u0.
Next, let us prove that the invariant set

N∏
i=1

[0, gi (0)] =
N∏
i=1

[0, ki]

is in fact an absorbing set.
Assume by contradiction that there exists a bounded nonnegative classical solution u of

(EKPP ) set in (0,+∞)× R such that there exists i ∈ [N ] such that

lim sup
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Since [0, gi (0)] is invariant, it implies directly

sup
x∈R

ui (t, x) > gi (0) for all t ≥ 0.

Using the classical second order condition at any local maximum, it is easily seen that at any
local maximum in space of ui, the time derivative is negative. At any t > 0 such that there is
no local maximum in space, by C 1 regularity of ui, x 7→ ui (t, x) is either strictly monotonic or
piecewise strictly monotonic with one unique local minimum and consequently it converges to
some constant as x→ ±∞. At least one of these constants is sup

x∈R
ui (t, x). For instance, assume

it is the limit at +∞. By classical parabolic estimates and a diagonal extraction process, there
exists (xn)n∈N ∈ RN such that xn → +∞ and such that the following sequence converges in
C 1
loc

(
(0,+∞) ,C 2

loc (R)
)
:

((t′, x) 7→ ui (t+ t′, x+ xn))n∈N .

Let v be its limit; by construction,

v (0, x) = sup
x∈R

ui (t, x) for all x ∈ R,

so that
∂xxv (0, x) = 0 for all x ∈ R.

Using the equation satisfied by ui, we obtain

∂tv (0, x) < 0 for all x ∈ R.
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Since this argument does not depend on the choice of the sequence (xn)n∈N, we deduce

lim sup
x→+∞

∂tui (t, x) < 0.

In all cases,
t 7→ ‖x 7→ ui (t, x) ‖L∞(R)

is a decreasing function, and using the global L∞ estimate derived earlier, we deduce that

t 7→ ‖ui‖L∞((t,+∞)×R)

is a decreasing function as well. Therefore

lim sup
t→+∞

sup
x∈R

ui (t, x) = lim inf
t→+∞

sup
x∈R

ui (t, x) = lim
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Now, the sequence
((t, x) 7→ ui (t+ n, x))n∈N

being uniformly bounded in L∞ ((0,+∞)× R), by classical parabolic estimates and a diagonal
extraction process, it converges up to extraction in C 1

loc

(
(0,+∞) ,C 2

loc (R)
)
to some limit u∞,i ∈

C 1 ((0,+∞) ,C 2 (R)
)
.

On one hand, by construction, the function

t 7→ ‖x 7→ u∞,i (t, x) ‖L∞(R)

is constant and larger than gi (0). But on the other hand, passing also to the limit the other
components of (t, x) 7→ u (t+ n, x) and then repeating the argument used earlier to prove the
strict monotonicity of

t 7→ ‖x 7→ ui (t, x) ‖L∞(R),

we deduce the strict monotonicity of

t 7→ ‖x 7→ u∞,i (t, x) ‖L∞(R),

which is an obvious contradiction.

Quite similarly, we can establish an L∞ estimate for (SKPP ), set in a strip, and with an
additional drift.

Proposition 5.15. Let (a, b, c) ∈ R3 such that a < b and u be a nonnegative classical solution
of

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then (
max
[a,b]

ui

)
i∈[N ]

≤
(
gi

(
max
{a,b}

ui

))
i∈[N ]

.

Proof. Assume by contradiction that there exists i ∈ [N ] such that

max
[a,b]

ui > gi

(
max
{a,b}

ui

)
.

Then there exists x0 ∈ (a, b) such that

max
[a,b]

ui = ui (x0) > ki.
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There exists (x1, x2) ∈ (a, b)2 such that x1 < x0 < x2 and{
ui (x) > ki for all x ∈ (x1, x2)

ui (x) = 1
2 (ki + ui (x0)) for all x ∈ {x1, x2} .

But then we find the inequality

−diu′′i − cu′i � 0 in (x1, x2)

which contradicts the existence of an interior maximum at x0 ∈ (x1, x2).

5.4 Extinction and persistence
This section is devoted to the proof of Theorem 5.3. The extinction case is mainly straight-

forward but, because of the lack of comparison principle, the persistence case is more involved.

5.4.1 Extinction
Proposition 5.16. Assume λPF (L) < 0.
Then all bounded nonnegative classical solutions of (EKPP ) set in (0,+∞)×R converge asymp-

totically in time, exponentially fast, and uniformly in space to 0.

Proof. It suffices to notice that if u is a nonnegative bounded solution of (EKPP ), then v :
(t, x) 7→ eλPF (L)tnPF (L) satisfies by virtue of the nonnegativity of c on K (H2)

∂t (v− u)−D∂xx (v− u)− L (v− u) = c [u] ◦ u ≥ 0.

Hence, up to a multiplication of v by a large constant, the comparison principle (Protter–
Weinberger [129, Chapter 3, Theorem 13]) applied to the linear weakly and fully coupled operator
∂t −D∂xx − L in (0,+∞)× R implies that 0 ≤ u ≤ v. The limit easily follows.

We recall that the critical case λPF (L) = 0 is solved in the appendix of the current chapter.

5.4.2 Persistence
The first step toward the persistence result is giving some rigorous meaning to the statement

“if λPF (L) > 0, then 0 is unstable”.

5.4.2.1 Slight digression: generalized principal eigenvalues and eigenfunctions for weakly
and fully coupled elliptic systems

Theorem 5.17. Let (n, n′) ∈ N∩ [1,+∞)×N∩ [2,+∞) and L : C 2
(
Rn,Rn′

)
→ C

(
Rn,Rn′

)
be a second-order elliptic operator, weakly and fully coupled, with continuous and bounded coef-
ficients.
Let

λ1 (−L ) = sup
{
λ ∈ R | ∃v ∈ C 2 (Rn,K++

n′

)
−L v ≥ λv

}
∈ R.

Then
lim

R→+∞
λ1,Dir (−L ,Bn (0, R)) = λ1 (−L ) .

Furthermore, λ1 (−L ) is in fact a finite maximum and there exists a generalized principal
eigenfunction, that is a positive solution of

−L v = λ1 (−L ) v.
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Remark. The convergence of the Dirichlet principal eigenvalue to the aforementioned generalized
principal eigenvalue as R → +∞ as well as the existence of a generalized principal eigenfunc-
tion are well-known for scalar elliptic equations (see Berestycki–Rossi [21]), but as far as we
know these results do not explicitly appear in the literature regarding elliptic systems. Still, the
proof of Berestycki–Rossi [21] uses arguments developed in the celebrated article by Berestycki–
Nirenberg–Varadhan [20] and which have been generalized to weakly and fully coupled elliptic sys-
tems already in order to prove the existence of a Dirichlet principal eigenvalue in non-necessarily
smooth but bounded domains by Birindelli–Mitidieri–Sweers [24]. Hence we only briefly out-
line here the proof so that it can be checked that the generalization to unbounded domains is
straightforward.
It begins with the standard verification of the equality between the generalized principal eigen-

value as defined above and the Dirichlet principal eigenvalue for bounded smooth domains (whose
existence was proved for instance by Sweers [136]). Then, since the generalized principal eigen-
value is, by definition, non-increasing with respect to the inclusion of the domains, we get that
the limit of the Dirichlet principal eigenvalues as R → +∞ exists and is larger than or equal
to the generalized principal eigenvalue. It remains to prove that it is also smaller than or equal
to it. This is done thanks to the family of Dirichlet eigenfunctions (vR)R>0 associated with the
family of Dirichlet principal eigenvalues normalized by

min
i∈[n′]

vi,R (0) = 1.

Thanks to Arapostathis–Gosh–Marcus’s Harnack inequality [5] applied to the operator L , we
obtain a locally uniform L∞ estimate, whence, by virtue of classical elliptic estimates (Gilbarg–
Trudinger [80]) and a diagonal extraction process, the existence of a limit, up to extraction, for
the family (vR)R>0 as R→ +∞. This limit v∞ is nonnegative nonzero and satisfies

−L v∞ =
[

lim
R→+∞

λ1,Dir (−L ,Bn (0, R))
]

v∞.

Thanks again to Arapostathis–Gosh–Marcus’s Harnack inequality, v∞ is in fact positive in Rn.
Thus, by definition of the generalized principal eigenvalue, the limit as R→ +∞ is indeed smaller
than or equal to it, and in the end the equality is proved as well as the existence of a generalized
principal eigenfunction v∞.

5.4.2.2 Local instability and persistence

Let γ ∈ [0, 1]. On one hand, as a direct result of Dancer [44] or Lam–Lou [105],

lim
ε→0

λ1,Dir

(
−ε2D d2

dx2 − (L− γλPF (L) I) ,B (0, 1)
)

= − (1− γ)λPF (L) .

On the other hand, by a standard change of variable,

limε→0 λ1,Dir

(
−ε2D d2

dx2 − (L− γλPF (L) I) ,B (0, 1)
)

limR→+∞ λ1,Dir

(
−D d2

dx2 − (L− γλPF (L) I) ,B (0, R)
) = 1.

Therefore, in view of Theorem 5.17,

λ1

(
−D d2

dx2 − (L− γλPF (L) I)
)

= − (1− γ)λPF (L) .
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This equality deserves some attention: the generalized principal eigenvalue of D d2

dx2 +(L− γλPF (L) I)
does not depend on D. Of course, this is reminiscent of the scalar case, where the equality

λ1

(
−d d2

dx2 − r
)

= −r

is well-known (and follows for instance from a direct computation of λ1,Dir

(
−d d2

dx2 − r, (−R,R)
)

or from the equality with the periodic principal eigenvalue λ1,per

(
−d d2

dx2 − r
)
).

As a corollary, we get the following lemma.

Lemma 5.18. Assume λPF (L) > 0. Then there exists
(
R0, R1/2

)
∈ (0,+∞)2 such that

λ1,Dir

(
−D d2

dx2 − L, (−R0, R0)
)
< 0,

λ1,Dir

(
−D d2

dx2 −
(

L− λPF (L)
2 I

)
,
(
−R1/2, R1/2

))
< 0.

Remark. In fact, much more precisely, it can be shown that, for all γ ∈ [0, 1],

R 7→ λ1,Dir

(
−D d2

dx2 − (L− γλPF (L) I) , (−R,R)
)

is a decreasing homeomorphism from (0,+∞) onto (− (1− γ)λPF (L) ,+∞).
By continuity of c and the fact that it vanishes at 0 (H3), as soon as λPF (L) > 0, the quantity

α1/2 = max
{
α > 0 | ∀v ∈ [0, α]N c (v) ≤ λPF (L)

2 1N,1
}

is well-defined in R and is positive. The pair
(
R1/2, α1/2

)
will be used repeatedly up to the end

of this section.

Lemma 5.19. Assume λPF (L) > 0. For all µ ∈
(
0, α1/2

)
, let

Tµ =
lnα1/2 − lnµ

−λ1,Dir

(
−D d2

dx2 −
(
L− λPF (L)

2 I
)
,
(
−R1/2, R1/2

)) > 0.

For all (t0, T, a, b) ∈ R× (0,+∞)× R2 such that b−a
2 = R1/2 and for all nonnegative classical

solutions u of (EKPP ) set in the bounded parabolic cylinder (t0, t0 + T )× (a, b), if

min
i∈[N ]

min
x∈[a,b]

ui (t0, x) = µ,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2,

then T < Tµ.

Proof. Let

Λ = λ1,Dir

(
−D d2

dx2 −
(

L− λPF (L)
2 I

)
,
(
−R1/2, R1/2

))
< 0.
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Let n be the principal eigenfunction associated with the preceding Dirichlet principal eigen-
value normalized so that

max
i∈[N ]

max
[−R1/2,R1/2]

ni = 1.

By definition, we have in
(
−R1/2, R1/2

)
−
(
−Dn′′ −

(
L− λPF (L)

2 I
)

n
)

= −Λn� 0.

By definition of α1/2 and by the nonnegativity of c on K (H2), for all v ∈
[
0, α1/2

]N ,

c (v) ◦ v ≤ λPF (L)
2 v,

whence
− (Lv− c (v) ◦ v) ≤ −

(
L− λPF (L)

2 I
)

v.

Now, fix (t0, T, a, b) ∈ R × (0,+∞) × R2 such that b−a
2 = R1/2 and T ≥ Tµ. Assume by

contradiction that there exists a nonnegative solution u : (t0, t0 + T ) × (a, b) → K of (EKPP )
such that the following properties hold

µ = min
i∈[N ]

min
x∈[a,b]

ui (t0, x) > 0,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2.

In particular, since µ > 0, u is nonnegative nonzero.
To simplify the notations, hereafter we assume that t0 = 0 and a+b

2 = 0. The general case is
only a matter of straightforward translations.
Define the function

v : (t, x) 7→ µe−Λtn (x) .
Clearly

v (0, x) ≤ u (0, x) for all x ∈ [a, b] .
It is easily verified as well that v satisfies in (0, Tµ)×

(
−R1/2, R1/2

)
−
(
∂tv−D∂xxv−

(
L− λPF (L)

2 I
)

v
)
≥ 0,

whence, by construction of α1/2, w = u− v satisfies

∂tw−D∂xxw−
(

L− λPF (L)
2 I

)
w ≥ ∂tu−D∂xxu− Lu + c [u] ◦ u = 0.

Most importantly, since by construction

Tµ = max
{
t > 0 | max

i∈[N ]
max

x∈[−R1/2,R1/2]
vi (t, x) ≤ α1/2

}
,

there exists t? ≤ Tµ ≤ T and x? ∈
(
−R1/2, R1/2

)
such that w � 0 in [0, t?) ×

(
−R1/2, R1/2

)
and

w (t?, x?) ∈ ∂K.
The strong maximum principle applied to the weakly and fully coupled linear operator ∂t −

D∂xx −
(
L− λPF (L)

2 I
)

proves then that w = 0 in [0, t?) ×
(
−R1/2, R1/2

)
, which contradicts

w
(
0,±R1/2

)
� 0.
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The persistence result follows.

Proposition 5.20. Assume λPF (L) > 0.
There exists ν > 0 such that all bounded nonnegative nonzero classical solutions u of (EKPP )

set in (0,+∞)× R satisfy, for all bounded intervals I ⊂ R,(
lim inf
t→+∞

inf
x∈I

ui (t, x)
)
i∈[N ]

≥ ν1N,1.

Consequently, all bounded nonnegative classical solutions of (SKPP ) are valued in

N∏
i=1

[ν, gi (0)] .

Proof. Let u be a bounded nonnegative nonzero classical solution of (EKPP ) set in (0,+∞)×R.
In view of Proposition 5.14, for all ε > 0 there exists tε ∈ (0,+∞) such that

u ≤
(

max
i∈[N ]

(gi (0)) + ε

)
1N,1 in (tε,+∞)× R.

Let I ⊂ R be a bounded interval. Fix temporarily ε > 0 and x ∈ I and define Ix =(
x−R1/2, x+R1/2

)
.

A first application of Lemma 5.19 establishes that there exists t̂x ∈ [tε,+∞) such that

max
i∈[N ]

max
y∈Ix

ui
(
t̂x, y

)
= α1/2

and that there exists τ > 0 such that

max
i∈[N ]

max
y∈Ix

ui (t, y) > α1/2 for all t ∈
(
t̂x, t̂x + τ

)
.

Hence the following quantity is well-defined in
[
t̂x + τ,+∞

]
:

t1 = inf
{
t ≥ t̂x + τ | max

i∈[N ]
max
y∈Ix

ui (t, y) < α1/2

}
.

Assume first t1 < +∞. Then by continuity,

max
i∈[N ]

max
y∈Ix

ui (t1, y) = α1/2.

Let
AL,c,ε = max

(i,j)∈[N ]2
|li,j |+ max

i∈[N ]
max

w∈

[
0,max
i∈[N]

(gi(0))+ε

]N ci (w) .

By virtue of Földes–Poláčik’s Harnack inequality [73], there exists κ > 0, dependent only on N ,
R1/2, min

i∈[N ]
di, max

i∈[N ]
di and AL,c,ε such that, for all

w ∈ Cb

(
(0,+∞)× R,

[
0,max
i∈[N ]

(gi (0)) + ε

]N)
,
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all nonnegative classical solutions v of the linear weakly and fully coupled system with bounded
coefficients

∂tv−D∂xxv− (L− diag (c [w])) v = 0 in Ix

satisfy
min
i∈[N ]

min
y∈Ix

vi (t1 + 1, y) ≥ κmax
i∈[N ]

max
y∈Ix

vi (t1, y) .

We stress that κ does not depend on w. In particular, taking w = v = u, we deduce

min
i∈[N ]

min
y∈Ix

ui (t1 + 1, y) ≥ κα1/2.

Of course, up to a shrink of κ, we can assume without loss of generality κ ∈ (0, 1). Then let

T = − ln κ
−λ1,Dir

(
−D d2

dx2 −
(
L− λPF (L)

2 I
)
, Ix

) > 0.

T does not depend on the choice of u.
A second application of Lemma 5.19 establishes

max
i∈[N ]

max
y∈Ix

ui (t1 + 1 + T, y) > α1/2.

Hence, defining the sequence (tn)n∈N by the recurrence relation

tn+1 = inf
{
t ≥ tn + 1 + T | max

i∈[N ]
max
y∈Ix

ui (t, y) < α1/2

}
and repeating by induction the process, we deduce that any connected component of{

t ∈
(
t̂x,+∞

)
| max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}
is an interval of length smaller than 1 + T .
A second application of Földes–Poláčik’s Harnack inequality shows that there exists σε > 0,

dependent only on N , R1/2, T , min
i∈[N ]

di, max
i∈[N ]

di and AL,c,ε such that, for all t ∈
(
t̂x,+∞

)
,

min
i∈[N ]

min
y∈Ix

ui (t+ T + 2, y) ≥ σε max
i∈[N ]

max
(t′,y)∈[t,t+T+1]×Ix

ui (t′, y) ,

whence
min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σεα1/2 for all t ∈
(
t̂x + T + 2,+∞

)
.

Assume next t1 = +∞. Then

max
i∈[N ]

max
y∈Ix

ui (t, y) ≥ α1/2 for all t ∈
(
t̂x ,+∞

)
,

and consequently

min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σεα1/2 for all t ∈
(
t̂
x

+ T + 2,+∞
)
.
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Since I is bounded and x 7→ t̂x can be assumed continuous in R without loss of generality, it
follows

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σεα1/2 for all t ∈
(

max
x∈I

(
t̂
x

)
+ T + 2,+∞

)
,

whence
lim inf
t→+∞

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σεα1/2

with σεα1/2 dependent only on ε. The conclusion follows of course by setting

ν = sup
ε>0

(σε)α1/2.

Remark. We point out that max
x∈I

t̂
x
is finite because I is bounded. Of course, in I = R, this

problem becomes a spreading problem (see Proposition 5.40).

5.5 Existence of positive steady states
This section is devoted to the proof of Theorem 5.4 .

Proposition 5.21. Assume λPF (L) < 0. Then there exists no positive classical solution of
(SKPP ).

Proof. Recall that the Dirichlet principal eigenvalue is non-increasing with respect to the zeroth
order coefficient.
On one hand, by virtue of the nonnegativity of c on K (H2), we have for all R > 0 and all

v ∈ Cb (R,K++),

λ1,Dir

(
−D d2

dx2 − (L− diagc [v]) , (−R,R)
)
≥ λ1,Dir

(
−D d2

dx2 − L, (−R,R)
)
,

whence, as R→ +∞,

λ1

(
−D d2

dx2 − (L− diagc [v])
)
≥ −λPF (L) > 0.

On the other hand, any positive steady state v is also a generalized principal eigenfunction for
the generalized principal eigenvalue

λ1

(
−D d2

dx2 − (L− diagc [v])
)

= 0.

Proposition 5.22. Assume λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} .

Then there exists no bounded positive classical solution of (SKPP ).

Remark. The forthcoming argument is quite standard in the scalar setting. We detail it for the
sake of completeness.
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Proof. Assume by contradiction that there exists a bounded positive classical solution v of
(SKPP ).
By boundedness of v, there exists κ ∈ (0,+∞) such that κnPF (L)− v ≥ 0 in R. Let

κ? = inf {κ ∈ (0,+∞) | κnPF (L)− v ≥ 0 in R} .

By positivity of v, κ? > 0. Let (κn)n∈N ∈ (0, κ?)N which converges from below to κ?. For all
n ∈ N, there exists xn ∈ R such that

κnnPF (L)− v (xn) < 0.

Let
vn : x 7→ v (x+ xn) for all n ∈ N.

By virtue of the global boundedness of v, Arapostathis–Gosh–Marcus’s Harnack inequality [5]
applied to the linear weakly and fully coupled operator with bounded coefficients

D d2

dξ2 + c
d
dξ + (L− diag (c [vn]))

and classical elliptic estimates (Gilbarg–Trudinger [80]), (vn)n∈N converges up to a diagonal
extraction in C 2

loc as n→ +∞ to a nonnegative solution v? of (SKPP ). Moreover, v? satisfies

v? ≤ κ?nPF (L) in R,

κ?nPF (L)− v? (0) ∈ ∂K,

−
(

D d2

dx2 + L
)

(κ?nPF (L)− v?) = c [v?] ◦ v? ≥ 0 in R.

Applying Arapostathis–Gosh–Marcus’s Harnack inequality [5] to D d2

dx2 + L, we deduce

κ?nPF (L) = v? in R

and subsequently

c (κ?nPF (L)) ◦ κ?nPF (L) = −
(

D d2

dx2 + L
)

0 = 0,

whence c (κ?nPF (L)) = 0, which contradicts directly κ? > 0.

Finally, recall that if λPF (L) > 0, then the following quantity is well-defined and positive:

α1/2 = max
{
α > 0 | ∀v ∈ [0, α]N c (v) ≤ λPF (L)

2 1N,1
}
.

Proposition 5.23. Assume λPF (L) > 0. Then there exists a solution v ∈ K++ of

Lv = c (v) ◦ v.

Proof. By virtue of the Perron–Frobenius theorem, nPF
(
LT
)
∈ K++.

There exists η > 0 such that, for all v ∈ K, if nPF
(
LT
)T v = η, then v ∈

[
0, α1/2

]N . Defining

A =
{

v ∈ K | nPF
(
LT
)T v = η

}
,
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it follows that for all v ∈ A,

nPF
(
LT
)T (c (v) ◦ v) ≤ λPF (L)

2 η,

whence

nPF
(
LT
)T (Lv− c (v) ◦ v) = λPF

(
LT
)
η − nPF

(
LT
)T (c (v) ◦ v)

≥ λPF (L)
2 η,

which is positive if λPF (L) > 0 is assumed indeed.
Then, defining the convex compact set

C =
{

v ∈ K | nPF
(
LT
)T v ≥ η and v ≤ k + 1N,1

}
,

it can easily be verified that, for all v ∈ ∂C,

nTv (Lv− c (v) ◦ v) < 0

where nv is the outward pointing normal. In particular, there is no solution of Lv = c (v) ◦ v in
∂C. Also, by convexity, for all v ∈ ∂C, there exists a unique δv > 0 such that

v + δv (Lv− c (v) ◦ v) ∈ ∂C.

Assume by contradiction that there is no solution of Lv = c (v) ◦v in intC. Consequently and
by convexity again, for all v ∈ intC, there exists a unique δv > 0 such that

v + δv (Lv− c (v) ◦ v) ∈ ∂C.

The function
C → (0,+∞)
v 7→ δv

is continuous and so is the function
C → ∂C
v 7→ v + δv (Lv− c (v) ◦ v) .

According to the Brouwer fixed point theorem, this function has a fixed point, which of course
contradicts the assumption.
Hence there exists indeed a solution in intC ⊂ K++ of

Lv = c (v) ◦ v.

5.6 Traveling waves
In this section, we assume λPF (L) > 0 and prove Theorem 5.5.
Notice as a preliminary that, for any (p, c) ∈ C 2 (R,RN)× [0,+∞),

u : (t, x) 7→ p (x− ct)

is a classical solution of (EKPP ) if and only if p is a classical solution of

−Dp′′ − cp′ = Lp− c [p] ◦ p in R. (TW [c])
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5.6.1 The linearized equation
As usual in KPP-type problems, the linearized equation near 0:

−Dp′′ − cp′ = Lp in R (TW0 [c])

will bring forth the main informations we need in order to construct and study the traveling
wave solutions. Hence we devote this first subsection to its detailed study.

Lemma 5.24. Let (c, λ) ∈ R2.
If there exists a classical positive solution p of

−Dp′′ − cp′ − (L + λI) p = 0 in R, (TW0 [c, λ])

then there exists (µ,n) ∈ R×K++ such that q : ξ 7→ e−µξn is a classical solution of (TW0 [c, λ]).

Remark. This is of course to be related with the notions of generalized principal eigenvalue and
generalized principal eigenfunction (see Theorem 5.17). The mere existence of p enforces

λ1

(
−D d2

dξ2 − c
d
dξ − (L + λI)

)
≥ 0.

The following proof is inspired by Berestycki–Hamel–Roques [17, Lemma 3.1].

Proof. Let p be a classical positive solution of (TW0 [c, λ]).
Let v =

(
p′i
pi

)
i∈[N ]

. By virtue of Arapostathis–Gosh–Marcus’s Harnack inequality [5] applied

to the operator D d2

dξ2 + c d
dξ + (L + λI), classical elliptic estimates (Gilbarg–Trudinger [80]) and

invariance by translation of (TW0 [c, λ]), v is globally bounded. Let

Λi = lim sup
ξ→+∞

vi (ξ) for all i ∈ [N ] ,

Λ = max
i∈[N ]

Λi,

so that (
lim sup
ξ→+∞

vi (ξ)
)
i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N ∈ RN such that ξn → +∞ and such that there exists i ∈ [N ] such that

vi (ξn)→ Λ.

On one hand, let

p̂n : ξ 7→ p (ξ + ξn)
pi (ξn) for all n ∈ N.

Once more by virtue of Arapostathis–Gosh–Marcus’s Harnack inequality, the sequence (p̂n)n∈N
is locally uniformly bounded. Since all p̂n solve (TW0 [c, λ]), by classical elliptic estimates,
(p̂n)n∈N converges up to a diagonal extraction as n→ +∞ in C 2

loc. Let p̂∞ be its limit. Notice
by linearity of (TW0 [c, λ]) that p̂∞ is in fact smooth and all its derivatives satisfy (TW0 [c, λ])
as well.
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On the other hand, let

wn = Λp̂n − p̂′n for all n ∈ N ∪ {+∞} .

Notice the following equality:

wn (ξ) = p̂n (ξ) ◦
(
Λ1N,1 − v (ξ + ξn)

)
for all n ∈ N and ξ ∈ R.

Fix ξ ∈ R. Recalling(
lim sup
n→+∞

vi (ξ + ξn)
)
i∈[N ]

≤

(
lim sup
ζ→+∞

vi (ζ)
)
i∈[N ]

≤ Λ1N,1,

it follows that for all ε > 0 there exists nξ,ε ∈ N such that for all n ≥ nξ,ε,(
Λ + ε

)
1N,1 ≥ v (ξ + ξn) ,

whence, for all n ≥ nξ,ε,

wn (ξ) ≥ −ε
(

sup
m≥nξ,ε

p̂m,i (ξ)
)
i∈[N ]

≥ −ε
(

sup
m∈N

p̂m,i (ξ)
)
i∈[N ]

,

and consequently, passing to the limit n → +∞ and then ε → 0, we obtain the non-negativity
of w∞ (ξ).
Hence w∞ is a nonnegative solution of (TW0 [c, λ]) satisfying in addition

w∞,i (0) = p̂∞,i (0)
(

Λ− lim
n→+∞

vi (ξn)
)

= 0,

whence, again by Arapostathis–Gosh–Marcus’s Harnack inequality, w∞ is in fact the null func-
tion.
Consequently, Λp̂∞ = p̂′∞, that is p̂∞ has exactly the form

ξ 7→ eΛξn with n ∈ RN .

Since p̂∞ is nonnegative with p̂∞,i (0) = 1 by construction, n ∈ K+, and since any nonnegative
nonzero solution of (TW0 [c, λ]) is positive (Corollary 5.10), n ∈ K++. The proof is ended with
µ = −Λ.

For all µ ∈ R, the matrix µ2D + L is essentially nonnegative irreducible. Define κµ =
−λPF

(
µ2D + L

)
and nµ = nPF

(
µ2D + L

)
.

Of course, the interest of the pair (κµ,nµ) lies in the preceding lemma: for all (µ,n) ∈ R×K++,
ξ 7→ e−µξn is a solution of (TW0 [c]) if and only if

−µ2Dn + µcn− Ln = 0,

that is, thanks to the Perron–Frobenius theorem, if and only if µc = −κµ and n
|n| = nµ. This

most important observation leads naturally to the following study of the equation c = −κµµ .
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Lemma 5.25. The quantity

c? = min
µ>0

(
−κµ
µ

)
is well-defined and positive.
Let c ∈ [0,+∞). In (−∞, 0), the equation −κµµ = c admits no solution. In (0,+∞), it admits

exactly:
1. no solution if c < c?;
2. one solution µc? > 0 if c = c?;
3. two solutions (µ1,c, µ2,c) if c > c?, which satisfy moreover

0 < µ1,c < µc? < µ2,c.

Remark. c? does not depend on c and is entirely determined by D and L. It will be the
minimal speed of traveling waves and this kind of dependency is strongly reminiscent of the
scalar Fisher–KPP case, where c? = 2

√
rd. In fact the following proof is mostly a generalization

of scalar arguments.

Proof. Of course, µ 7→ −κµµ is odd in R\ {0}. It is also positive in (0,+∞):

−κµ
µ

= 1
µ
λPF

(
µ2D + L

)
>

1
µ
λPF (L) > 0.

Therefore it is negative in (−∞, 0) and in particular there is no solution of −κµµ = c ≥ 0 in
(−∞, 0).
We recall Nussbaum’s theorem [122] which proves the convexity of the function µ 7→ ρ (Aµ)

provided:
— the matrix Aµ is irreducible,
— its diagonal entries are convex functions of µ,
— its off-diagonal entries are nonnegative log-convex functions of µ.

These conditions are easily verified for µ2D + L and µD + 1
µL (actually, for all µ−γ

(
µ2D + L

)
provided γ ∈ [0, 2]). Their spectral radii being respectively −κµ and −κµµ , these are therefore
convex functions of µ. Moreover, Nussbaum’s result also proves that these convexities are actually
strict. Therefore µ 7→ −κµ and µ 7→ −κµµ are strictly convex functions in (0,+∞).
Now, we investigate the behavior of −κµµ as µ→ 0 and µ→ +∞.
By continuity,

κµ → κ0 as µ→ 0,

whence −κµµ → +∞ as µ→ 0.
Since µ 7→ −κµµ is convex and positive, either it is bounded in a neighborhood of +∞ and then

it converges to some nonnegative constant, either it is unbounded in a neighborhood of +∞ and
then it converges to +∞. Assume that it converges to a finite constant. Notice

lim
µ→+∞

1
µ2

(
µ2D + L

)
= D.

There exists a family of Perron–Frobenius eigenvectors of µD + 1
µL, (mµ)µ>0, normalized so

that max
i∈[N ]

mµ,i = 1 for all µ > 0. Thanks to classical compactness arguments in R and RN , we

can extract a sequence (µn)n∈N such that µn → +∞, −κµnµ2
n

converges to 0 and mµn converges
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to some m ∈ K+. We point out that we do not know if m ∈ K++, but from the normalizations,
we do know that m ∈ K+. Since m satisfies Dm = 0 and since D is invertible, we get a
contradiction. Thus

lim
µ→+∞

−κµ
µ

= +∞.

Hence µ 7→ −κµµ is a strictly convex positive function which goes to +∞ as µ→ 0 or µ→ +∞:
it admits necessarily a unique global minimum in (0,+∞). The quantity c? is well-defined.
Define µc? > 0 such that

c? = −κµc?
µc?

.

The quantity µc? is uniquely defined by strict convexity. The function µ 7→ −κµµ is bijective from
(0, µc?) to (c?,+∞) and from (µc? ,+∞) to (c?,+∞) as well. This ends the proof.

Putting together Lemma 5.24 and Lemma 5.25, we get the following important result.

Corollary 5.26. For all c ∈ [0,+∞), the set of nonnegative nonzero classical solutions of
(TW0 [c]) is empty if and only if c ∈ [0, c?).

We can also get the exact values of c for which 0 is an unstable steady state of (TW0 [c]), in
the sense of Lemma 5.18.

Lemma 5.27. Let c ∈ [0,+∞). Then

λ1

(
−D d2

dx2 − c
d
dx − L

)
= sup
µ∈R

(κµ + µc) .

Furthermore:
1. sup

µ∈R
(κµ + µc) = max

µ≥0
(κµ + µc);

2. max
µ≥0

(κµ + µc) < 0 if and only if c < c?.

Remark. Just as in the case c = 0, it can be shown that, for all c ∈ [0,+∞),

R 7→ λ1,Dir

(
−D d2

dξ2 − c
d
dξ − L, (−R,R)

)
is a decreasing homeomorphism from (0,+∞) onto

(
λ1

(
−D d2

dx2 − c d
dx − L

)
,+∞

)
.

Proof. The fact that sup
µ∈R

(κµ + µc) is finite and actually a maximum attained in [0,+∞) is a

direct consequence of:
— the evenness of µ 7→ κµ (whence, for all µ > 0, κ−µ + (−µ) c < κµ + µc);
— κ0 < 0;
— κµ

µ + c→ −∞ as µ→ +∞ (see the proof of Lemma 5.25).
In addition, the sign of this maximum depending on the sign c− c? is given by Lemma 5.25.
Hence it only remains to prove

λ1

(
−D d2

dx2 − c
d
dx − L

)
= max

µ≥0
(κµ + µc) .
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To do so, we use and adapt a well-known strategy of proof (see for instance Nadin [116]).
We recall from Theorem 5.17 the definition of the generalized principal eigenvalue:

λ1

(
−D d2

dx2 − c
d
dx − L

)
= sup

{
λ ∈ R | ∃n ∈ C 2 (R,K++) −Dn′′ − cn′ − Ln ≥ λn

}
.

Also, there exists a generalized principal eigenfunction. We recall from Lemma 5.24 that if there
exists a generalized principal eigenfunction, then there exists a generalized principal eigenfunction
of the form ξ 7→ e−µ?ξm with some constant µ? ≥ 0 and m ∈ K++.
Now, (µ?,m) ∈ [0,+∞)× K++ satisfies

− (µ?)2 Dm + cµ?m− Lm = λ1

(
−D d2

dξ2 − c
d
dξ − L

)
m,

that is
−
(

(µ?)2 D + L
)

m =
(
λ1

(
−D d2

dξ2 − c
d
dξ − L

)
− cµ?

)
m,

or in other words

λ1

(
−D d2

dξ2 − c
d
dξ − L

)
= κµ? + cµ? and m

|m| = nµ? .

Finally, the suitable test function to verify

λ1

(
−D d2

dξ2 − c
d
dξ − L

)
≥ κµ + µc for all µ ≥ 0

is of course vµ : ξ 7→ e−µξnµ itself, which satisfies precisely

−Dv′′µ − cv′µ − Lvµ = (κµ + µc) vµ.

Corollary 5.28. The quantity c? is characterized by

c? = sup
{
c ≥ 0 | λ1

(
−D d2

dξ2 − c
d
dξ − L

)
< 0
}

= inf
{
c ≥ 0 | λ1

(
−D d2

dξ2 − c
d
dξ − L

)
> 0
}
.

5.6.2 Qualitative properties of the traveling solutions
Thanks to Lemma 5.24 and Corollary 5.26, we are now in position to establish a few interesting

properties that have direct consequences but will also be used at the end of the construction of
the traveling waves.

Lemma 5.29. Let c ∈ [0,+∞) and p be a bounded nonnegative nonzero classical solution of
(TW [c]).

If
(

lim inf
ξ→+∞

pi (ξ)
)
i∈[N ]

∈ ∂K, then c ≥ c?.

Remark. The following proof is analogous to that of Berestycki–Nadin–Perthame–Ryzhik [19,
Lemma 3.8] for the non-local KPP equation.
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Proof. Let (ζn)n∈N ∈ RN such that, as n → +∞, ζn → +∞ and at least one component of
(p (ζn))n∈N converges to 0. Define

pn : ξ 7→ p (ξ + ζn)

and observe that pn satisfies (TW [c]) as well. By virtue of Arapostathis–Gosh–Marcus’s Harnack
inequality [5] applied to the linear operator

D d2

dξ2 + c
d
dξ + (L− diag (c [pn])) ,

classical elliptic estimates (Gilbarg–Trudinger [80]), (pn)n∈N converges up to a diagonal extrac-
tion in C 2

loc to 0. This proves that there is no limit point of p at +∞ in ∂K\ {0}.
Next, define

p̃n : ξ 7→ p (ξ + ζn)
|p (ζn)|

and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̃n)n∈N is locally
uniformly bounded. Since, for all n ∈ N, p̃n solves

−Dp̃′′n − cp̃′n = Lp̃n − c [pn] ◦ p̃n,

with, thanks to the fact that c vanishes at 0 (H3), c [pn]→ 0 locally uniformly, up to extraction
(p̃n)n∈N converges in C 2

loc to a nonnegative solution p̃ of (TW0 [c]). Since p̃n (0) ∈ S++ (0, 1) for
all n ∈ N, p̃ is nonnegative nonzero, whence positive (Corollary 5.10).
Now, from Corollary 5.26, we deduce indeed that c ≥ c?.

This result implies the nonexistence half of Theorem 5.5 1.

Corollary 5.30. For all c ∈ [0, c?), there is no traveling wave solution of (EKPP ) with speed c.

Now, with Proposition 5.14, c ≥ c? > 0 and the fact that (t, x) 7→ p (x− ct) solves (EKPP ),
we can straightforwardly derive the uniform upper bound Theorem 5.5 2, which is interestingly
independent of c.

Corollary 5.31. All profiles p satisfy

p ≤ g (0) in R.

Subsequently, using Proposition 5.20 and again c ≥ c? > 0 and the fact that (t, x) 7→ p (x− ct)
solves (EKPP ), we get Theorem 5.5 3, independent of c as well.

Corollary 5.32. All profiles p satisfy(
lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

≥ ν1N,1.

Now, we establish Theorem 5.5 4. Its proof is actually mostly a repetition of that of Lemma 5.24.

Proposition 5.33. Let (p, c) be a traveling wave solution of (EKPP ).
Then there exists ξ ∈ R such that p is component-wise decreasing in [ξ,+∞).
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Proof. Let v =
(
p′i
pi

)
i∈[N ]

. By virtue of Arapostathis–Gosh–Marcus’s Harnack inequality [5],

classical elliptic estimates (Gilbarg–Trudinger [80]) and invariance by translation of (TW [c]), v
is globally bounded. Define for all i ∈ [N ]

Λi = lim sup
ξ→+∞

vi (ξ) .

Let Λ = max
i∈[N ]

Λi, so that (
lim sup
ξ→+∞

vi (ξ)
)
i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N ∈ RN such that ξn → +∞ and such that there exists i ∈ [N ] such that

vi (ξn)→ Λ as n→ +∞.

Let

p̂n : ξ 7→ p (ξ + ξn)
pi (ξn) for all n ∈ N.

and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̂n)n∈N is locally
uniformly bounded. Since, for all n ∈ N, p̂n solves

−Dp̂′′n − cp̂′n = Lp̂n − c
[
pi (ξn) p̂n

]
◦ p̂n,

and, thanks to the fact that c vanishes at 0 (H3) and the asymptotic behavior of p at +∞,
c
[
pi (ξn) p̂n

]
converges locally uniformly to 0 as n→ +∞, up to a diagonal extraction process,

(p̂n)n∈N converges in C 2
loc to a nonnegative solution p̂∞ of (TW0 [c]).

Now we repeat the second part of the proof of Lemma 5.24 and we deduce in the end from
Lemma 5.25 that p̂∞ has exactly the form

ξ 7→ Ae−µcξnµc ,

with µc ∈ {µ1,c, µ2,c} if c > c?, µc = µc? if c = c?, A > 0 and, most importantly, with µc = −Λ.
Thus Λ < 0. This implies that there exists ξ ∈ R such that, for all ξ ≥ ξ,

v (ξ) ≤ −
∣∣Λ∣∣
2 1N,1,

whence, by positivity of p,

p′ (ξ) ≤ −
∣∣Λ∣∣
2 p (ξ) .

The right-hand side being negative, p is component-wise decreasing indeed.

Lemma 5.34. Let c ∈ [0,+∞) and p be a bounded nonnegative nonzero classical solution of
(TW [c]).

If
(

lim inf
ξ→+∞

pi (ξ)
)
i∈[N ]

∈ ∂K, then lim
ξ→+∞

p (ξ) = 0.
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Proof. Let (ζn)n∈N ∈ RN such that, as n → +∞, ζn → +∞ and at least one component of
(p (ζn))n∈N converges to 0. The proof of Lemma 5.29 shows that (pn)n∈N, defined by pn : ξ 7→
p (ξ + ζn), converges up to extraction in C 2

loc to 0.
Now, defining

vn : ξ 7→
(
p′n,i (ξ)
pn,i (ξ)

)
i∈[N ]

,

Λi = lim sup
n→+∞

max
[−1,1]

vn,i,

Λ = max
i∈[N ]

Λi,

i ∈ [N ] such that Λi = Λ,

and (nm)m∈N ∈ NN an increasing sequence such that vnm,i (0)→ Λ as m→ +∞, we can repeat
once more the argument of the proof of Lemma 5.24 and obtain

Λp̂∞ = p̂′∞ in (−1, 1)

(notice that, contrarily to the proof of Lemma 5.24 where this equality was proved in R, here it
only holds locally). This brings forth Λ = −µc < 0, as in the proof of Proposition 5.33, whence
pn is component-wise decreasing in [−1, 1] provided n is large enough.
Now, assuming by contradiction(

lim sup
ξ→+∞

pi (ξ)
)
i∈[N ]

∈ K+,

that is (
lim sup
ξ→+∞

pi (ξ)
)
i∈[N ]

∈ K++,

we deduce from the C 1 regularity of p that, for any i ∈ [N ], there exists a sequence (ζ ′n)n∈N ∈ RN

such that:
— ζ ′n → +∞ as n→ +∞,
— pi (ζ ′n) is a local minimum of pi,
— pi (ζ ′n)→ 0 as n→ +∞.

Since this directly contradicts the preceding argument, we get indeed(
lim sup
ξ→+∞

pi (ξ)
)
i∈[N ]

= 0 =
(

lim inf
ξ→+∞

pi (ξ)
)
i∈[N ]

.

Lemma 5.35. Let c ∈ [0,+∞). There exists ηc > 0 such that, for all bounded nonnegative
classical solutions p of (TW [c]), exactly one of the following properties holds:

1. lim
ξ→+∞

p (ξ) = 0;

2.
(

inf
(0,+∞)

pi

)
i∈[N ]

≥ ηc1N,1.
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Remark. The following proof is again analogous to that of Berestycki–Nadin–Perthame–Ryzhik
[19, Lemma 3.4] for the non-local KPP equation.

Proof. Recall from Corollary 5.10 and Lemma 5.34 that
(

inf
(0,+∞)

pi

)
i∈[N ]

∈ ∂K if and only if

lim
ξ→+∞

p (ξ) = 0. Hence, defining Σ as the set of all bounded nonnegative classical solutions p of

(TW [c]) such that
min
i∈[N ]

inf
(0,+∞)

pi > 0,

this set containing at least one positive constant vector by virtue of Theorem 5.4, it only remains
to show the positivity of

ηc = inf
{

min
i∈[N ]

inf
(0,+∞)

pi | p ∈ Σ
}
.

We assume by contradiction the existence of a sequence (pn)n∈N ∈ ΣN such that

lim
n→+∞

min
i∈[N ]

inf
(0,+∞)

pn,i = 0.

For all n ∈ N, define
βn = min

i∈[N ]
inf

(0,+∞)
pn,i > 0,

fix ξn ∈ (0,+∞) such that

min
i∈[N ]

pn,i (ξn) ∈
[
βn, βn + 1

n

]
,

and define finally

vn : ξ 7→ 1
βn

pn (ξ + ξn) .

By virtue of Arapostathis–Gosh–Marcus’s Harnack inequality [5], classical elliptic estimates
(Gilbarg–Trudinger [80]) and invariance by translation of (TW [c]), (vn)n∈N is locally uniformly
bounded and, up to a diagonal extraction process, converges in C 2

loc to some bounded limit v∞.
As in the proof of Lemma 5.24, it is easily verified that v∞ is a bounded positive classical solution
of (TW0 [c]). Furthermore, by definition of (vn)n∈N,

v∞ ≥ 1N,1 in (0,+∞) .

Repeating once more the argument of the proof of Lemma 5.24, we deduce that v∞ is
component-wise decreasing in a neighborhood of +∞. Thus its limit at +∞, say m ≥ 1N,1,
is well-defined. By classical elliptic estimates, m satisfies Lm = 0, which obviously contradicts
λPF (L) > 0.

5.6.3 Existence of traveling waves
This whole subsection is devoted to the adaptation of a proof of existence due to Berestycki,

Nadin, Perthame and Ryzhik [19] and originally applied to the non-local KPP equation.

Remark. There is a couple of slight mistakes in the aforementioned proof.
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1. Using the notations of [19], the sub-solution is defined as rc = max (0, rc), with rc chosen
so that

−cr′c ≤ r′′c + µrc − µqc (φ ? qc)

and it is claimed that rc satisfies as well this inequality, in the distributional sense. This
is false: in an interval where rc = 0, we have

−cr′c − r′′c − µrc = 0 > −µqc (φ ? qc) .

As we will show, the correct sub-solution is rc = max (0, rc) with rc chosen so that

−cr′c ≤ r′′c + µrc − µrc (φ ? qc) .

Fortunately, the function rc constructed by the authors satisfies this inequality as well.
2. Later on, Φa is defined as the mapping which maps u0 to the solution of

−cu′ = u′′ + µu0 (1− φ ? u0) .

This mapping does not leave invariant the set of functions Ra defined with the correct
sub-solution. It is necessary to change Φa and to define it as the mapping which maps u0
to the solution of

−cu′ = u′′ + µu (1− φ ? u0) .

Consequently, in order to establish that the set of functions Ra is invariant by Φa, the
elliptic maximum principle is applied not to u 7→ −cu′ − u′′ but to

u 7→ −u′′ − cu′ − µu

on one hand and to
u 7→ −u′′ − cu′ − µ (1− φ ? qc)u

on the other hand.

During the first three subsubsections, we fix c > c?.

5.6.3.1 Super-solution

We will use p : ξ 7→ e−µ1,cξnµ1,c as a super-solution (recall from Lemma 5.25 that it is a
solution of (TW0 [c])).

5.6.3.2 Sub-solution

Proposition 5.36. There exist ε > 0 such that, for any ε ∈ (0, ε), there exists Aε ∈ (0,+∞)
such that the function

p : ξ 7→
(

max
(
e−µ1,cξnµ1,c,i −Aεe−(µ1,c+ε)ξnµ1,c+ε,i, 0

))
i∈[N ]

,

satisfies
−Dp′′ − cp′ − Lp ≤ −c [p] ◦ p in H −1 (R,RN) .
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Remark. Notice that, in the right-hand side of the inequality above, we find c [p] and not c
[
p
]
.

This is of course related to the lack of comparison principle for (EKPP ).
During the forthcoming quite technical proof, in order to ease the reading, we denote 〈•, •〉1

and 〈•, •〉N the duality pairings of H 1 (R,R) and H 1 (R,RN) respectively, the latter being of
course defined by:

〈f ,g〉H −1(R,RN )×H 1(R,RN ) =
N∑
i=1
〈fi, gi〉H −1(R)×H 1(R) .

The speed c being fixed, we also omit the subscript c in the notations µ1,c and µ2,c.

Proof. For the moment, let A, ε > 0 (they will be made precise during the course of the proof)
and define

v : ξ 7→ e−µ1ξnµ1 −Ae−(µ1+ε)ξnµ1+ε,

p : ξ 7→
(

max
(
e−µ1ξnµ1,i −Ae−(µ1+ε)ξnµ1+ε,i, 0

))
i∈[N ]

,

Ξ+ = p−1 (K++) ,
Ξ0 = p−1 (0) ,

Ξ# = R\ (Ξ+ ∪ Ξ0) .

Notice that Ξ# is a connected compact set.
Fix a positive test function ϕ ∈H 1 (R,K++). We have to verify that〈

−Dp′′ − cp′ − Lp, ϕ
〉
N
≤
〈
−c [p] ◦ p, ϕ

〉
N
.

To this end, we distinguish three cases: suppϕ ⊂ Ξ+, suppϕ ⊂ Ξ0 and suppϕ ∩ Ξ# 6= ∅. The
case suppϕ ⊂ Ξ0 is trivial, with the inequality above satisfied in the classical sense.
Regarding the case suppϕ ⊂ Ξ+, we only have to verify the inequality in the classical sense in

Ξ+ for the regular function v.
Fix temporarily ξ ∈ Ξ+. We have

−Dv′′ (ξ)− cv′ (ξ)− Lv (ξ) = Ae−(µ1+ε)ξ
(

(µ1 + ε)2 D− c (µ1 + ε) I + L
)

nµ1+ε,

(−c [p] ◦ v) (ξ) = −e−µ1ξc
(
e−µ1ξnµ1

)
◦
(
nµ1 −Ae−εξnµ1+ε

)
.

From (
(µ1 + ε)2 D + L

)
nµ1+ε = −κµ1+εnµ1+ε,

−c (µ1 + ε) nµ1+ε = κµ1

µ1
(µ1 + ε) nµ1+ε,

and the following direct consequence of the nonnegativity of c on K (H2),

−c
(
e−µ1ξnµ1

)
◦
(
nµ1 −Ae−εξnµ1+ε

)
≥ −c

(
e−µ1ξnµ1

)
◦ nµ1 ,

it follows that it suffices to find A and ε such that

Ae−εξ (µ1 + ε)
(
− κµ1+ε

µ1 + ε
+ κµ1

µ1

)
nµ1+ε ≤ −c

(
e−µ1ξnµ1

)
◦ nµ1 .

The right-hand side above being nonnegative (µ 7→ κµ
µ is positive and convex in (0,+∞), as

detailed in the proof of Lemma 5.25), it follows clearly that such an inequality is never satisfied
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if µ1 + ε > µ2, whence a first necessary condition on ε is ε ≤ µ2− µ1 (notice that if ε = µ2− µ1,
then the inequality above holds if and only if c

(
e−µ1ξnµ1

)
= 0, which is in general not true).

Thus from now on we assume ε < µ2 − µ1. This ensures that κµ1+ε
µ1+ε −

κµ1
µ1

> 0, whence we now
search for A and ε such that

Anµ1+ε >
eεξ

(µ1 + ε)
(
κµ1+ε
µ1+ε −

κµ1
µ1

)c
(
e−µ1ξnµ1

)
◦ nµ1 .

Define ξ = min Ξ#, so that any ξ ∈ Ξ+ satisfies necessarily ξ > ξ. Remark that there exists
i ∈ [N ] such that

ξ = 1
ε

(
lnA+ ln

(
nµ1+ε,i

nµ1,i

))
.

Now, defining α : ξ 7→ e−µ1ξ, if

A ≥ max
i∈[N ]

(
nµ1+ε,i

nµ1,i

)
,

then ξ ≥ 0 and α (ξ) ≤ 1 in
(
ξ,+∞

)
. Moreover, we have

eεξ = (α (ξ))−
ε
µ1 ,

whence, for all i ∈ [N ],

eεξci
(
e−µ1ξnµ1

)
= ci (α (ξ) nµ1)

(α (ξ))
ε
µ1

,

and from the C 1 regularity of c as well as the fact that it vanishes at 0 (H3), the above function
of ξ is globally bounded in

(
ξ,+∞

)
, provided ε

µ1
≤ 1, by the positive constant

Mi = sup
ξ∈(ξ,+∞)

ci (α (ξ) nµ1)
α (ξ)

= sup
α∈(0,1)

ci (αnµ1)
α

.

Subsequently, if A and ε satisfy also
ε ≤ µ1,

A ≥ max
i∈[N ]

 Minµ1,i

(µ1 + ε)
(
κµ1+ε
µ1+ε −

κµ1
µ1

)
nµ1+ε,i

 ,

then the inequality is established indeed in Ξ+. Hence we define

ε = min (µ2 − µ1, µ1)

and, for any ε ∈ (0, ε),

Aε = max
i∈[N ]

max

nµ1+ε,i

nµ1,i
,

Minµ1,i

(µ1 + ε)
(
κµ1+ε
µ1+ε −

κµ1
µ1

)
nµ1+ε,i


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and we assume from now on ε ∈ (0, ε) and A = Aε.
Let us point out here a fact which is crucial for the next step: choosing ξ = min Ξ# instead of

ξ = max Ξ# (which might seem more natural at first view) implies that the differential inequality

−Dv′′ − cv′ − Lv ≤ −c [p] ◦ v

holds classically in Ξ# ∪ Ξ+.
To conclude, let us verify the case suppϕ∩Ξ# 6= ∅. In order to ease the following computations,

we actually assume ϕ ∈ D
(
R,RN

)
(the result with ϕ ∈ H 1 (R,RN) can be recovered as usual

by density). By definition,

〈
−Dp′′ − cp′ − Lp + c [p] ◦ p, ϕ

〉
N

=
N∑
i=1

〈
−dip′′i − cp

′
i
−

N∑
j=1

li,jpj + ci [p] p
i
, ϕi

〉
1

.

Fix i ∈ [N ] and define ξ0,i as the unique element of v−1
i ({0}) and

Ψi =
〈
−dip′′i − cp

′
i
−

N∑
j=1

li,jpj + ci [p] p
i
, ϕi

〉
1

.

Classical integrations by parts yield∫
R
p′′
i
ϕi =

∫ +∞

ξ0,i

v′′i ϕi + v′i (ξ0,i)ϕi (ξ0,i) ≥
∫ +∞

ξ0,i

v′′i ϕi,

∫
R
p′
i
ϕi =

∫ +∞

ξ0,i

v′iϕi,

whence

Ψi ≤
∫ +∞

ξ0,i

(−div′′i − cv′i + ci [p] vi)ϕi −
N∑
j=1

li,j

∫ +∞

ξ0,j

vjϕi.

As was pointed out previously, from the construction of ε and A, we know that

−Dv′′ − cv′ + c [p] ◦ v ≤ Lv in Ξ#,

whence, with Ji = {j ∈ [N ] | ξ0,j < ξ0,i},

Ψi ≤ −
∑
j∈Ji

∫ ξ0,i

ξ0,j

li,jvjϕi +
∑

j∈[N ]\Ji

∫ ξ0,j

ξ0,i

li,jvjϕi.

Finally, recalling that vj (ξ) > 0 if ξ > ξ0,j and vj (ξ) < 0 if ξ < ξ0,j , the inequality above
yields Ψi ≤ 0, which ends the proof.

5.6.3.3 The finite domain problem

Let R > 0 and define the following truncated problem:{
−Dp′′ − cp′ = Lp− c [p] ◦ p in (−R,R) ,

p (±R) = p (±R) . (TW [R, c])
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Lemma 5.37. Assume
Dc (v) ≥ 0 for all v ∈ K.

Then there exists a nonnegative nonzero classical solution pR of (TW [R, c]).

Remark. The new assumption made here ensures that the vector field c is non-decreasing in K,
in the following natural sense: if 0 ≤ v ≤ w, then 0 ≤ c (v) ≤ c (w).

Proof. Fix arbitrarily ε ∈ (0, ε), define consequently p and then define the following convex set
of functions:

F =
{
v ∈ C

(
[−R,R] ,RN

)
| p ≤ v ≤ p

}
.

Recall that Figueiredo–Mitidieri [54] establishes that the elliptic weak maximum principle
holds for a weakly and fully coupled elliptic operator with null Dirichlet boundary conditions if
this operator admits a positive strict super-solution. Since, for all v ∈ C

(
[−R,R] ,RN

)
such

that 0 ≤ v ≤ p, we have by the nonnegativity of c on K (H2)

−Dp′′ − cp′ − Lp + c [v] ◦ p ≥ −Dp′′ − cp′ − Lp ≥ 0,

p (±R)� 0,
it follows that every operator of the family(

D d2

dξ2 + c
d
dξ + (L− diagc [v])

)
0≤v≤p

supplemented with null Dirichlet boundary conditions at ±R satisfies the weak maximum prin-
ciple in (−R,R).
Define the map f which associates with some v ∈ F the unique classical solution f [v] of:{

−Dp′′ − cp′ = Lp− c [v] ◦ p in (−R,R)
p (±R) = p (±R) .

The map f is compact by classical elliptic estimates (Gilbarg–Trudinger [80]).
Let v ∈ F . By monotonicity of c, the function w = f [v]− p satisfies

−Dw′′ − cw′ − Lw ≥ −c [v] ◦ f [v] + c [p] ◦ p
≥ −c [v] ◦ f [v] + c [v] ◦ p
≥ −c [v] ◦w

with null Dirichlet boundary conditions at ±R. Therefore, by virtue of the weak maximum
principle applied to D d2

dξ2 + c d
dξ + (L− diagc [v]), f [v] ≥ p in (−R,R). Next, since it is now

established that f [v] ≥ 0, we also have by (H2)

−Dp′′ − cp′ − Lp = 0
≥ −c [v] ◦ f [v]
= −Df [v]′′ − cf [v]′ − Lf [v] ,

p (±R) ≥ p (±R) = f [v] (±R) ,

whence p ≥ f [v] follows from the weak maximum principle applied this time to D d2

dξ2 + c d
dξ + L.

Thus p ≤ f [v] ≤ p and consequently f (F ) ⊂ F .
Finally, by virtue of the Schauder fixed point theorem, f admits a fixed point pR ∈ F , which

is indeed a classical solution of (TW [R, c]) by elliptic regularity.
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5.6.3.4 The infinite domain limit and the minimal wave speed

The speed c is not fixed anymore.
The following uniform upper estimate is a direct consequence of Proposition 5.15.

Corollary 5.38. There exists R? > 0 such that, for any c > c?, any R ≥ R? and any nonnegative
classical solution p of (TW [R, c]), (

max
[−R,R]

pi

)
i∈[N ]

≤ g (0) .

We are now in position to prove the second half of Theorem 5.5 1.

Proposition 5.39. Assume
Dc (v) ≥ 0 for all v ∈ K.

Then for all c ≥ c?, there exists a traveling wave solution of (EKPP ) with speed c.

Remark. Of course, it would be interesting to exhibit other additional assumptions on c sufficient
to ensure existence of traveling waves for all c ≥ c?. In view of known results about scalar multi-
stable reaction–diffusion equations (we refer for instance to Fife–McLeod [71]), some additional
assumption should in any case be necessary.

Proof. Hereafter, for all c > c? and all R > 0, the triplet
(
p,p,pR

)
constructed in the preceding

subsections is denoted
(
pc,pc,pR,c

)
.

For all c > c?, thanks to Corollary 5.38, the family (pR,c)R>0 is uniformly globally bounded.
By classical elliptic estimates (Gilbarg–Trudinger [80]) and a diagonal extraction process, we can
extract a sequence (Rn,pRn,c)n∈N such that, as n → +∞, Rn → +∞ and pRn,c converges to
some limit pc in C 2

loc. As expected, pc is a bounded nonnegative classical solution of (TW [c]).
The fact that its limit as ξ → +∞ is 0, as well as the fact that pc is nonzero whence positive
(Corollary 5.10), are obvious thanks to the inequality p

c
≤ pc ≤ pc. At the other end of the real

line, Corollary 5.30 clearly enforces(
lim inf
ξ→−∞

pc,i (ξ)
)
i∈[N ]

∈ K++ ⊂ K+.

Thus (pc, c) is a traveling wave solution.
In order to construct a critical traveling wave (pc? , c?), we consider a decreasing sequence

(cn)n∈N ∈ (c?,+∞)N such that cn → c? as n→ +∞ and intend to apply a compactness argument
to a normalized version of the sequence (pcn)n∈N.
By Corollary 5.32,

lim inf
ξ→−∞

min
i∈[N ]

pcn,i (ξ) ≥ ν for all n ∈ N.

Recall from Lemma 5.35 the definition of ηc > 0. For all n ∈ N the following quantity is
well-defined and finite:

ξn = inf
{
ξ ∈ R | min

i∈[N ]
pcn,i (ξ) < min

(ν
2 ,
ηc?

2

)}
.

We define then the sequence of normalized profiles

p̃cn : ξ 7→ pcn (ξ + ξn) for all n ∈ N.
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A translation of a profile of traveling wave being again a profile of traveling wave, (p̃cn , cn)n∈N is
again a sequence of traveling wave solutions. Notice the following two immediate consequences
of the normalization:

min
i∈[N ]

p̃cn,i (0) = min
(ν

2 ,
ηc?

2

)
for all n ∈ N,

inf
ξ∈(−∞,0)

min
i∈[N ]

p̃cn,i (ξ) ≥ min
(ν

2 ,
ηc?

2

)
for all n ∈ N.

We are now in position to pass to the limit n → +∞. The sequence (p̃cn)n∈N being globally
uniformly bounded, it admits, up to a diagonal extraction process, a bounded nonnegative limit
pc? in C 2

loc. Since cn → c?, pc? satisfies (TW [c?]). The normalization yields

min
i∈[N ]

pc?,i (0) = min
(ν

2 ,
ηc?

2

)
,

inf
ξ∈(−∞,0)

min
i∈[N ]

pc?,i (ξ) ≥ min
(ν

2 ,
ηc?

2

)
.

Consequently, (
lim inf
ξ→−∞

pc?,i (ξ)
)
i∈[N ]

∈ K++

and, according to Lemma 5.35,
lim

ξ→+∞
pc? (ξ) = 0.

The pair (pc? , c?) is a traveling wave solution indeed and this ends the proof.

5.7 Spreading speed
In this section, we assume λPF (L) > 0 and prove Theorem 5.6. In order to do so, we fix

u0 ∈ Cb
(
R,RN

)
of the form u0 = v1(−∞,x0) with x0 ∈ R and v nonnegative nonzero and we

define u as the unique classical solution of (EKPP ) set in (0,+∞)× R with initial data u0.
Remark. This type of spreading result, as well as its proof by means of super- and sub-solutions,
is quite classical (we refer to Aronson–Weinberger [8] and Berestycki–Hamel–Nadin [15] among
others). Still, we provide it to make clear that the lack of comparison principle for (EKPP ) is
not really an issue.
Of course, for the scalar KPP equation, much more precise spreading results exist (for instance

the celebrated articles by Bramson [30, 29] using probabilistic methods). Here, our aim is not to
give a complete description of the spreading properties of (EKPP ) but rather to illustrate that
it is, once more, very similar to the scalar situation and that further generalizations should be
possible.

5.7.1 Upper estimate
Proposition 5.40. Let c > c? and y ∈ R. We have(

lim
t→+∞

sup
x∈(y,+∞)

ui (t, x+ ct)
)
i∈[N ]

= 0.
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Proof. By definition of u0, there exists ξ1 ∈ R such that

p : ξ 7→ e−µc? (ξ−ξ1)nµc?
(which is a positive solution of (TW0 [c?]) by Lemma 5.25) satisfies p ≥ u0. Then, defining
u : (t, x) 7→ p (x− c?t), we obtain by the nonnegativity of c on K (H2)

∂tu−D∂xxu− Lu = 0
≥ −c [u] ◦ u
= ∂tu−D∂xxu− Lu

and then, applying the parabolic strong maximum principle to the operator ∂t −D∂xx − L, we
deduce that u− u is nonnegative in [0,+∞)×R. Consequently, for all x ∈ R, t > 0 and c > c?,

0 ≤ u (t, x+ ct) ≤ p (x+ (c− c?) t) ,

and by component-wise monotonicity of p, for all y ∈ R and all x ≥ y,

0 ≤ u (t, x+ ct) ≤ p (y + (c− c?) t) ,

which gives the result.

5.7.2 Lower estimate
Proposition 5.41. Let c ∈ [0, c?) and I ⊂ R be a bounded interval. We have(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)
)
i∈[N ]

∈ K++.

Proof. Recall Lemma 5.27 and define

λc = −max
µ≥0

(κµ + µc) > 0

(−λc being the generalized principal eigenvalue of −D d2

dx2 − c d
dx −L) and, using the fact that c

vanishes at 0 (H3),

αc = max
{
α > 0 | ∀v ∈ [0, α]N c (v) ≤ λc

2 1N,1
}
.

Let Rc be a sufficiently large radius satisfying

λ1,Dir

(
−D d2

dξ2 − c
d
dξ −

(
L− λc

2 I
)
, (−Rc, Rc)

)
< 0.

Let uc : (t, y) 7→ u (t, y + ct). It is a solution of

∂tuc −D∂yyuc − c∂yuc = Luc − c [uc] ◦ uc in (0,+∞)× R

with initial data u0. Just as in the proof of Proposition 5.20, we can use Rc, αc and Földes–
Poláčik’s Harnack inequality [73] to deduce the existence of νc > 0 such that(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)
)
i∈[N ]

≥ νc1N,1.

This ends the proof.

Remark. We point out that Rc → +∞ as c→ c?. Hence the proof above cannot be used directly
to obtain a lower bound uniform with respect to c. Although we expect indeed the existence of
such a bound, we do not know how to obtain it.

208



5.8 Estimates for the minimal wave speed

5.8 Estimates for the minimal wave speed
In this section, we assume λPF (L) > 0,

d1 ≤ d2 ≤ . . . ≤ dN ,

and prove the estimates provided by Theorem 5.7. Recall the equality

c? = min
µ>0

(
−κµ
µ

)
.

Recall as a preliminary that for all r > 0 and d > 0, the following equality holds:

2
√
rd = min

µ>0

(
µd+ r

µ

)
.

Proposition 5.42. We have

2
√
d1λPF (L) ≤ c? ≤ 2

√
dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are equalities.

Proof. Since d11N,1 ≤ d ≤ dN1N,1, we have, for all µ > 0,

µd1 + 1
µ
λPF (L) ≤ λPF

(
µD + 1

µ
L
)
≤ µdN + 1

µ
λPF (L) ,

whence we deduce
2
√
d1λPF (L) ≤ c? ≤ 2

√
dNλPF (L).

On one hand, it is well-known that if d1 < dN , then the above inequalities are strict. On the
other hand, if d1 = dN , we have

λPF

(
µD + 1

µ
L
)

= µd1 + 1
µ
λPF (L) ,

whence the equality.

Recall from Lemma 5.25 that nµc? = nPF
(
µ2
c?D + L

)
.

Proposition 5.43. For all i ∈ [N ] such that li,i > 0, we have

c? > 2
√
dili,i.

Proof. Let i ∈ [N ]. The characterization of c? (see Lemma 5.25) yields

µc?di + li,i
µc?

= c? − 1
µc?

∑
j∈[N ]\{i}

li,j
nµc? ,j
nµc? ,i

,

whence, if li,i > 0,
c? ≥ 2

√
dili,i + 1

µc?

∑
j∈[N ]\{i}

li,j
nµc? ,j
nµc? ,i

.

From the irreducibility and essential nonnegativity of L (H1), there exists j ∈ [N ] \ {i} such that
li,j > 0, whence c? > 2

√
dili,i.
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Recall the existence of a unique decomposition of L of the form

L = diagr + M with r ∈ RN and MT1N,1 = 0.

Remark. Regarding the Lotka–Volterra mutation–competition–diffusion ecological model, the
decomposition L = diagr + M is ecological meaningful: r is the vector of the growth rates of the
phenotypes whereas M describes the mutations between the phenotypes.

Proposition 5.44. Let (〈d〉 , 〈r〉) ∈ (0,+∞)× R be defined as
〈d〉 = dTnPF (µ2

c?D+L)
11,NnPF (µ2

c?
D+L) ,

〈r〉 = rTnPF (µ2
c?D+L)

11,NnPF (µ2
c?

D+L) .

If 〈r〉 ≥ 0, then
c? ≥ 2

√
〈d〉 〈r〉.

Proof. Using (r,M), the characterization of c? (see Lemma 5.25) is rewritten as(
µ2
c?D + diagr

)
nµc? + Mnµc? = µc?c

?nµc? .

Summing the lines of this system, dividing by
N∑
i=1

nµc? ,i and defining 〈d〉 and 〈r〉 as in the

statement, we find
µ2
c? 〈d〉+ 〈r〉 = µc?c

?.

The equation 〈d〉µ2−c?µ+〈r〉 = 0 admits a real positive solution µ if and only if (c?)2−4 〈d〉 〈r〉 ≥
0.
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5.A Extinction in the critical case
Adrian Lam pointed out after the publication of the preceding article that the argument used

to establish the upper estimates of Theorem 5.2 can actually be used again to solve the extinction
case. The proof is included here for the sake of completeness.

Theorem 5.45. [Extinction, critical case] Assume λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} .

Then all bounded nonnegative classical solutions of (EKPP ) set in (0,+∞)×R converge asymp-
totically in time and uniformly in space to 0.
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Proof. Let u be a bounded nonnegative classical solution. Using its boundedness, we can define
for all T > 0

CT = inf {C > 0 | CnPF (L) ≥ u (T, x) for all x ∈ R} .

Subsequently, fix temporarily T > 0 and let v = CTnPF (L)− u. Since λPF (L) = 0, v satisfies

v (T, x) ≥ 0 for all x ∈ R,

∂tv−D∂xxv− Lv = c [u] ◦ u in (0,+∞)× R.

Since the nonnegativity of c (H2) implies c [u] ◦ u ≥ 0, it follows from the maximum principle
that

v ≥ 0 in [T,+∞)× R,

that is
CTnPF (L) ≥ u in [T,+∞)× R,

whence CT ′ ≤ CT for all T ′ ≥ T . In other words, (CT )T>0 is a nonincreasing family.
Next, let us verify that it is in fact a decreasing family if and only if u is nonzero.
Of course, if u = 0, then CT = 0 for all T > 0.
Now, assume that there exist T > 0 and T ′ > T such that, for all t ∈ [T, T ′], Ct = CT . Let

v = CTnPF (L)− u. By optimality of CT ′ ,

min
i∈[N ]

inf
x∈R

vi (T ′, x) = 0.

If there exists x ∈ R such that

v (T ′, x) = CT ′nPF (L)− u (T ′, x) ∈ ∂K,

then by the strong maximum principle

v = 0 in [T, T ′]× R.

This leads to c [u] ◦ u = 0 on one hand and to u = CTnPF (L) on the other hand, whence by
assumption on c we deduce CT = 0. Therefore u = 0 in [T, T ′]× R and then in (0,+∞)× R.
On the contrary, if such an x ∈ R does not exist, then by optimality of CT ′ , there exists

w ∈ ∂K and (xn)n∈N such that, as n→ +∞,

xn → ±∞ and v (T ′, xn)→ w.

Defining the sequence
un : (t, x) 7→ u (t, x+ xn)

and using classical parabolic estimates to extract a locally uniform limit u∞, we find that v∞ =
CTnPF (L)− u∞ satisfies

∂tv∞ −D∂xxv∞ − Lv∞ ≥ 0 in [T, T ′]× R,

v∞ ≥ 0 in [T, T ′]× R,

v∞ (T ′, 0) = w ∈ ∂K,
and then again by the strong maximum principle we find v∞ = 0 and subsequently u = 0.
Hence either u = 0 or the family (CT )T>0 is decreasing. Let

C∞ = lim
T→+∞

CT ≥ 0.
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Assuming by contradiction that C∞ > 0, defining the sequence

un : (t, x) 7→ u (t+ n, x)

and its locally uniform limit u∞, we can repeat the argument and obtain that the family (DT )T>0,
where

DT = inf {D > 0 | DnPF (L) ≥ u∞ (T, x) for all x ∈ R} ,

is decreasing, which directly contradicts the fact that DT = C∞ for all T > 0. This ends the
proof.
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Chapitre 6

Systèmes de Fisher – KPP non-monotones :
comportement asymptotique des ondes

progressives

Résumé

Ce chapitre est la suite directe du précédent, dans lequel l’existence d’ondes progressives
connectant l’état nul à un compact de l’intérieur du cône positif pour les systèmes KPP non-
coopératifs persistants a été prouvée. L’objet de ce chapitre est la recherche d’une description
plus précise des profils de ces ondes.
Ce chapitre a fait l’objet d’une publication sous le titre Non-cooperative Fisher–KPP

systems : asymptotic behavior of traveling waves dans Mathematical Models and Methods in
Applied Sciences [Gir18a].
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6.1 Introduction
This paper is a sequel to a previous paper by the same author [Gir18b] where the so-called

KPP systems were investigated. The prototypical and, arguably, most famous KPP system is
the Lotka–Volterra mutation–competition–diffusion system:

∂u
∂t
− diag (d) ∆xu = diag (r) u + Mu− diag (u) Cu,

where u is a nonnegative vector containing phenotypical densities, d and r are positive vec-
tors containing respectively diffusion rates and growth rates, M is an essentially nonnegative
irreducible matrix with null Perron–Frobenius eigenvalue containing mutation rates (typically a
discrete Neumann Laplacian) and C is a positive matrix containing competition rates. Although
the Lotka–Volterra competition–diffusion system (without mutations) is a very classical research
subject, mutations can dramatically influence some of its properties and their overall effect is
still poorly understood.
More generally, KPP systems as defined in [Gir18b] are non-cooperative (or non-monotone, i.e.

they do not satisfy a comparison principle; see Protter–Weinberger [129, Chapter 3, Section 8])
and have started to attract attention relatively recently. Their study requires innovative ideas
and the literature is limited; a detailed bibliography can be found in [Gir18b].
By adapting proofs and methods well-known in the context of the scalar KPP equation,

∂u

∂t
− d∆xu = ru− cu2,

first studied by Fisher [72] and Kolmogorov, Petrovsky and Piskunov [104], various properties
of these systems were established in [Gir18b]. In particular, a KPP system equipped with a
reaction term sufficiently analogous to u − u2 admits traveling wave solutions with a half-line
of possible speeds and a positive minimal speed c?. These traveling waves are defined in a very
general way: it is merely required that they describe the invasion of 0 by a positive population
density. A very natural subsequent question is that of the evolution of the distribution u during
the invasion. Which components lead the invasion? Which components settle once the invasion
is over?
Having in mind that the waves traveling at speed c? should attract front-like and compactly

supported initial data (although this statement has yet to be proven, since [Gir18b] only estab-
lished the equality between c? and the spreading speed associated with such initial data, and
it is expected to be a very difficult problem), a more general question is then: given a class of
initial data, what is the long-time distribution of the solution?
In the rest of the introduction, we present more precisely the problem and state our main

results. Sections 2, 3 and 4 are dedicated to the proofs of these results. Finally, open questions,
interesting remarks and numerical experiments are discussed in Section 5.

6.1.1 The non-cooperative KPP system
From now on, an integer N ≥ 2 is fixed.
A positive vector d ∈ K++, a square matrix L ∈ M and a vector field c ∈ C 1 (RN ,RN) are

fixed. We denote for the sake of brevity D = diag (d).
We consider the following semilinear parabolic system:

∂tu−D∂xxu = Lu− c [u] ◦ u, (EKPP )
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with u : (t, x) ∈ R2 7→ u (t, x) ∈ RN as unknown. In order to ease the notations, we only
consider one-dimensional spaces, however all forthcoming results could be applied directly to
traveling plane waves in multidimensional spaces (these solutions being in fact one-dimensional).
When restricted to solutions u : R→ RN which are constant in space, (EKPP ) reduces to

u′ = Lu− c [u] ◦ u.
(
E0
KPP

)
When restricted to solutions u : R→ RN which are constant in time, (EKPP ) reduces to

−Du′′ = Lu− c [u] ◦ u. (SKPP )

When restricted to traveling solutions of the form u : (t, x) 7→ p (x− ct) with c ∈ R, (EKPP )
reduces to

−Dp′′ − cp′ = Lp− c [p] ◦ p. (TW [c])

6.1.1.1 Basic KPP assumptions

The basic assumptions introduced in [Gir18b] are the following ones.
(H1) L is essentially nonnegative and irreducible.
(H2) c (K) ⊂ K.
(H3) c (0) = 0.
(H4) There exists

(α, δ, c) ∈ [1,+∞)2 × K++

such that
N∑
j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn)

for all
(n, α, i) ∈ S+ (0, 1)× [α,+∞)× [N ] .

The assumption (H4) loosely means that c grows at least linearly at infinity. The precise con-
dition means, however, that in the set {v ∈ K | (Lv)i < 0} (which is nonempty if and only if
li,i < 0 and contains in such a case the open half-line span (ei) ∩ K+), the growth of ci is not
important. Anyway, (H4) includes the Lotka–Volterra form of competition (linear and positive
c) as well as more general forms (see for instance Gilpin–Ayala [81]).

Recall from the Perron–Frobenius theorem that if L is nonnegative and irreducible, its spectral
radius ρ (L) is also its dominant eigenvalue, called the Perron–Frobenius eigenvalue λPF (L),
and is the unique eigenvalue associated with a positive eigenvector. Recall also that if L is
essentially nonnegative and irreducible, the Perron–Frobenius theorem can still be applied. In
such a case, the unique eigenvalue of L associated with a positive eigenvector is λPF (L) =

ρ

(
L− min

i∈[N ]
(li,i) IN

)
+ min
i∈[N ]

(li,i). Any eigenvector associated with λPF (L) is referred to as a

Perron–Frobenius eigenvector and the unit one is denoted nPF (L).
In view of [Gir18b, Theorems 1.3, 1.4, 1.5], in order to study traveling waves and non-trivial

long-time behavior, the following assumption is also necessary.
(H5) λPF (L) > 0.
The collection (H1)–(H5) is always assumed from now on. Notice that, although this does
not bring any new result, the scalar KPP equation could be seen as a particular KPP system
(understanding the pair (H1) and (H5) as r > 0). Biological interpretations of these assumptions
can be found in [Gir18b, Section 1.5].
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6.1.1.2 Traveling waves

Traveling waves are defined in [Gir18b] as follows.

Definition. A traveling wave solution of (EKPP ) is a profile–speed pair

(p, c) ∈ C 2 (R,RN)× [0,+∞)

which satisfies:
— u : (t, x) 7→ p (x− ct) is a bounded positive classical solution of (EKPP );

—
(

lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

> 0;

— lim
ξ→+∞

p (ξ) = 0.

By construction, a traveling wave solution (p, c) solves (TW [c]).
The set of all profiles associated with some speed c is denoted Pc. By [Gir18b, Theorems 1.5,

1.7], Pc is empty if

c < c? = min
µ>0

λPF
(
µ2D + L

)
µ

.

The converse statement (existence of a profile if c ≥ c?) is likely false in general but is true
provided c is monotonic in the following sense:

Dc (v) ≥ 0 for all v ∈ K.

6.1.2 Results: at the edge of the fronts
The distribution of the profiles near +∞ follows the “rule of thumb” unfolded in [Gir18b]: for

several standard problems, KPP systems can be addressed exactly as KPP equations and the
results are analogous.
Recall from [Gir18b, Lemma 6.2] the notation nµ = nPF

(
µ2D + L

)
for all µ ∈ R. Recall also

that the equation
λPF

(
µ2D + L

)
µ

= c

admits no real solution if c < c?, exactly one real solution µc? > 0 if c = c? and exactly two real
solutions µ2,c > µ1,c > 0 if c > c?. Define subsequently for all c ≥ c? the quantity

µc = min
{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
=
{
µc? if c = c?,
µ1,c if c > c?.

Theorem 6.1. Let
kc =

{
0 if c > c?,
1 if c = c?.

For all traveling wave solutions (p, c), there exists A > 0 such that, as ξ → +∞,p (ξ) ∼ Aξkce−µcξnµc ,
p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .

In particular, if d = 1N,1,

p (ξ) ∼ Aξkce−
1
2

(
c−
√
c2−4λPF (L)

)
ξnPF (L) .
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This result is proved in Section 2.
Recall that up to a well-known change of variable x, we can always assume without loss of

generality max
i∈[N ]

di = 1.

If we have in mind the mutation–competition–diffusion system, then the ecological interpreta-
tion of this result is the following: at the leading edge of the invasion, the normalized distribution
in phenotypes is nµc and the total population is proportional to (x− ct)kc e−µc(x−ct).
In the special case c = c?, this theorem answers positively a conjecture of Morris, Börger and

Crooks [115, Section 4].
Recall that, for the scalar KPP equation, the analogous result on exponential decays has two

common proofs, one using ODE arguments and especially phase-plane analysis and the other
one using elliptic arguments and especially the comparison principle. Although we could prove
the above result by phase-plane analysis indeed, the proof we will provide uses a third technique
relying upon the monotonicity of the profiles near +∞, bilateral Laplace transforms and a Ikehara
theorem. In our opinion, this technique of proof has independent interest: on one hand, it does
not require the comparison principle and, on the other hand, it might be generalizable to non-
ODE settings (space-periodic media and pulsating fronts, for instance).

6.1.3 Results: at the back of the fronts
On the contrary, the distribution of the profiles near −∞ is a much more intricate question,

where the multidimensional and non-cooperative structure of the KPP system become prepon-
derant.
Given a positive classical solution u of (SKPP ), a traveling wave connecting 0 to u is a traveling

wave whose profile p converges to u as ξ → −∞. The general aim is to prove that all traveling
waves connect 0 to some positive classical solution of (SKPP ) and, when several solutions can be
connected to 0, to determine somehow which connection prevails. However, as will be explained
in Subsection 6.5.1 (and was first pointed out in Barles–Evans–Souganidis [10]), a general and
precise treatment of this problem is likely impossible. It is necessary to focus on special cases.
Looking at the literature, we find two frameworks commonly assumed to be mathematically
tractable:
— competition terms ci (v) with separated dependencies on i and on v (Coville–Fabre [40],

Dockery–Hutson–Mischaikow–Pernarowski [58], Griette–Raoul [82], Leman–Méléard–Mirrahimi
[106]),

— two-component systems with linear competition and vanishingly small mutations (Dockery–
Hutson–Mischaikow–Pernarowski [58], Griette–Raoul [82], Morris–Börger–Crooks [115]).

6.1.3.1 Separated competition

(H6) There exist a ∈ K++ and b : RN → R such that:
— c (v) = b (v) a for all v ∈ K;
— the function w 7→ b (wei + v) is increasing in (0,+∞) for all v ∈ K and all i ∈ [N ].

By monotonicity of c, supplementing (H1)–(H5) with (H6) implies the existence of a profile
p ∈Pc for all c ≥ c?. The decomposition c = ba is unique up to a multiplicative normalization
and we will assume for instance max

i∈[N ]
ai = 1. We denote A = diag (a) (so that c (v)◦v = b (v) Av).

An especially interesting subcase is the intersection between (H6) and the Lotka–Volterra
competition form, where b is a linear functional, that is where there exists b ∈ K++ such that

b (v) = bTv for all v ∈ K.
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The system (EKPP ) then reads

∂tu−D∂xxu = Lu−
(
bTu

)
Au.

The systems studied in Dockery–Hutson–Mischaikow–Pernarowski [58] and in Griette–Raoul [82]
correspond respectively to

a = b = 1N,1
and to

(a,b) =
((

K

r
, 1
)T

,
r

K
12,1

)
.

The matrix A−1L being essentially nonnegative and irreducible, the following eigenpair is
well-defined:

(λa,na) =
(
λPF

(
A−1L

)
,nPF

(
A−1L

))
.

Applying [Gir18b, Theorem 1.4] to the following two pairs of parameters (L, c):

(L,v 7→ (11,Nv) a) ,(
A−1L,v 7→ (11,Nv) 1N,1

)
,

it is easily deduced that λPF (L) > 0 if and only if λa > 0. By strict monotonicity of α 7→ b (αna),
we can define α? > 0 as the unique solution of b (αna) = λa. It follows easily that v? = α?na is
the unique positive constant solution of (SKPP ). In particular, if b is a linear functional, then

v? = λa

bTna
na.

Theorem 6.2. Assume (H6), d = 1N,1 and a = 1N,1.
For all c ∈ [c?,+∞), let pc ∈ C 2 (R) such that (pc, c) is the unique traveling wave solution of

the scalar equation
∂tu− ∂xxu = λPF (L)u− b (unPF (L))u

connecting 0 to α? and satisfying pc (0) = α?

2 .
Then all p ∈Pc have the form

p : ξ 7→ pc (ξ − ξ0) nPF (L) with ξ0 ∈ R.

Consequently, p ∈Pc is unique up to translation and connects 0 to v?.

This result is proved in Section 3.2.
This theorem establishes that the set of assumptions (H6), d = 1N,1, a = 1N,1 is so restrictive

that the multidimensional problem can in fact be reduced to the scalar one. This is really the
strongest result we could hope for.
Notice that it shows that the following two mutation–competition–diffusion systems:

∂tu− ∂xxu = ru + M1u−
(
bTu

)
u,

∂tu− ∂xxu = ru + M2u−
(
bTu

)
u,

with r > 0 and M1 and M2 essentially nonnegative irreducible with null Perron–Frobenius eigen-
values and equal Perron–Frobenius eigenvectors, have the exact same traveling wave solutions.
In other words, all else being equal (neutral internal structure), the mutation strategy does not
matter. In the absence of mutations, neutral genetic diversity has been studied recently in a
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collection of papers by Garnier, Hamel, Roques and others (for instance, we refer to [25, 78]). In
view of their results on pulled fronts, the preceding theorem indicates that the presence of mu-
tations is a necessary and sufficient condition to ensure the preservation of the genetic diversity
during the invasion.
As a side note (slightly off topic), we can use the reduction to the scalar problem to prove the

following generalization of a result due to Coville and Fabre [40, Theorem 1.1].

Theorem 6.3. Assume (H6) and a = 1N,1.
All positive classical solutions of

(
E0
KPP

)
set in (0,+∞) converge as t→ +∞ to v?.

Furthermore, if d = 1N,1, then, for all bounded intervals I ⊂ R, all bounded positive classical
solutions u of (EKPP ) set in (0,+∞)× R satisfy

lim
t→+∞

sup
x∈I
|u (t, x)− v?| = 0.

Consequently, if d = 1N,1, the set of bounded nonnegative classical solutions of (SKPP ) is
exactly {0,v?}.

This result is proved in Section 3.3.
We believe that the preceding two theorems are robust, in that they should remain true

in a neighborhood of (d,a) = (1N,1,1N,1). In particular, Theorem 6.2 could be extended by
showing with the implicit function theorem that no solution of (TW [c]) bifurcates from v? at
(d,a) = (1N,1,1N,1). Theorem 6.3 could be extended thanks to Conley index theory and a Morse
decomposition, exactly as in Dockery–Hutson–Mischaikow–Pernarowski [58, Section 4]. For the
sake of brevity, we do not address these questions.

6.1.3.2 Two-component systems with linear competition and small mutations

(H7) N = 2, there exists C� 0 such that

c (v) = Cv for all v ∈ K,

and the vector r ∈ RN given by the unique decomposition of L of the form

L = diag (r) + M with 11,NM = 0

is positive.
By monotonicity of c, supplementing (H1)–(H5) with (H7) implies the existence of a profile

p ∈Pc for all c ≥ c?.
When (H7) is satisfied, we denote R = diag (r) and define (η,m) ∈ (0,+∞)× S++ (0, 1) such

that
M = η

(
−1 1
1 −1

)
diag (m) .

The quantity η is unique and commonly referred to as the mutation rate.
In other words, we are considering the following system:{

∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1 + ηm1 (u2 − u1)
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2 + ηm2 (u1 − u2) .

The idea is to assume that η is small compared to r so that the mutation–competition–diffusion
system is close to the pure competition–diffusion system{

∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2

. (EKPP )0
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Indeed, two-component competition–diffusion systems being cooperative up to the change of
unknowns v = r2

c2,2
− u2, the maximum principle then simplifies noticeably the characterization

of the asymptotic behaviors. In particular, defining αi = ri
ci,i

for all i ∈ {1, 2} and, if det C 6= 0,

vm = 1
det C

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
,

the asymptotic behavior of the solutions of the spatially homogeneous competitive system

u′ = Ru− (Cu) ◦ u

is well-known.
1. [Extinction of u2] If r1

r2
≥ max

(
c1,1
c2,1

,
c1,2
c2,2

)
and r1

r2
> min

(
c1,1
c2,1

,
c1,2
c2,2

)
, then α1e1 is globally

asymptotically stable in K++ ∪ (span (e1) ∩ K+) and α2e2 is globally asymptotically stable
in span (e2) ∩ K+.

2. [Coexistence] If c1,2
c2,2

< r1
r2
<

c1,1
c2,1

, then vm ∈ K++, vm is globally asymptotically stable in
K++ and, for all i ∈ {1, 2}, αiei is globally asymptotically stable in span (ei) ∩ K+.

3. [Competitive exclusion] If c1,2
c2,2

> r1
r2
>

c1,1
c2,1

, then vm ∈ K++ and a one-dimensional curve
S, referred to as the separatrix, induces a partition

(
K+

1 ,S,K+
2
)
of K+ such that αiei is

globally asymptotically stable in K+
i for all i ∈ {1, 2} and vm is globally asymptotically

stable in S.
4. [Extinction of u1] If r1

r2
≤ min

(
c1,1
c2,1

,
c1,2
c2,2

)
and r1

r2
< max

(
c1,1
c2,1

,
c1,2
c2,2

)
, then α2e2 is globally

asymptotically stable in K++ ∪ (span (e2) ∩ K+) and α1e1 is globally asymptotically stable
in span (e1) ∩ K+.

The cases 1, 2 and 4 are monostable whereas the case 3 is bistable. The case r1
r2

= c1,1
c2,1

= c1,2
c2,2

is
degenerate and is usually discarded.
In the forthcoming statements, η is understood as a positive parameter which can be passed

to the limit η → 0 (notice that for all η > 0, (H1)–(H5) is satisfied indeed). The system (EKPP )
and the objects Pc and c? depend on η and might be denoted respectively (EKPP )η, Pc,η and
c?η. We define subsequently E as the set of all (η,p, c) ∈ (0,+∞) × C 2 (R,R2) × (0,+∞) such
that (p, c) is a traveling wave solution of (EKPP )η. Contrarily to the case η > 0, a traveling
wave solution of the limiting system (EKPP )0 has no prescribed asymptotic behaviors.
We point out that Morris–Börger–Crooks [115] showed that the limit c?0 of

(
c?η
)
η>0 as η → 0

is well-defined and satisfies as expected

c?0 ≥ 2
√

max
i∈{1,2}

(diri),

with, quite interestingly, strict inequality if

1 +
√

1 + αi
α3−i

<
2c3−i,3−i
ci,3−i

and di
d3−i

+ ri
r3−i

> 2 for all i ∈ {1, 2} .

However, they did not characterize the limiting profiles. This is what we intend to do here (but
will only partially achieve).
In the following conjecture, stability is to be understood as local asymptotic stability with

respect to
(
E0
KPP

)
.
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Conjecture 6.4. Assume (H7). Let (pη)η>0 and (cη)η≥0 such that{
(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη.

1. Assume that both α1e1 and α2e2 are stable and that cα1e1→α2e2 6= 0. Then there exists
(ξη)η>0 such that (ξ 7→ pη (ξ + ξη) , cη)η>0 converges in(

C 2
loc

(
R,R2) ∩L∞

(
R,R2))× R

as η → 0 to a semi-extinct traveling wave solution (p0ei, c0) of (EKPP )0 connecting 0 to
αiei with

i =
{

1 if cα1e1→α2e2 > 0,
2 if cα1e1→α2e2 < 0.

2. Assume that there is a unique stable state vs ∈ {α1e1, α2e2,vm}. Then one and only one
of the following two properties holds true.
a) There exists (ξη)η>0 such that (ξ 7→ pη (ξ + ξη) , cη)η>0 converges in(

C 2
loc

(
R,R2) ∩L∞

(
R,R2))× R

as η → 0 to a component-wise monotonic traveling wave solution (p0, c0) of (EKPP )0
connecting 0 to vs.

b) There exist
(
ξ1
η

)
η>0,

(
ξ2
η

)
η>0 and a unique i ∈ Iu such that, as η → 0:

— ξ2
η − ξ1

η → +∞;
—
(
ξ 7→ pη

(
ξ + ξ2

η

)
, cη
)
η>0 converges in C 2

loc

(
R,R2)×R to a semi-extinct traveling

wave solution (pfrontei, c0) of (EKPP )0 connecting 0 to αiei;
—
(
ξ 7→ pη

(
ξ + ξ1

η

)
, cη
)
η>0 converges in C 2

loc

(
R,R2)×R to a component-wise mono-

tonic traveling wave solution (pback, c0) of (EKPP )0 connecting αiei to vs.

We emphasize once more that traveling waves with minimal speed c?η do not, in general,
converge to a traveling wave with minimal speed. In particular, Figure 6.5.1 illustrates an
interesting case of invasion driven by the fast phenotype u2 but where the only settler is the
slow phenotype u1. This is reminiscent of Griette–Raoul [82], where an analogous result was
established analytically under a stronger scaling.
Conjecture 6.4, 1 is expected to be a very difficult problem and seems to be beyond our reach.

We leave it as an open problem.
On the contrary, regarding Conjecture 6.4, 2, a partial confirmation is within reach. On one

hand, we point out that the special case
c1,1
c2,1

= c1,2
c2,2

= 1 and d = 12,1

is somehow solved by Theorem 6.2 without any assumption on r. On the other hand, we also
have the following general theorem which concerns all monostable cases apart from

c1,1
c2,1

<
c1,2
c2,2

= r1

r2
,

r1

r2
= c1,1
c2,1

<
c1,2
c2,2

.
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Theorem 6.5. Assume (H7) and the existence of i ∈ {1, 2} such that

ri
r3−i

>
ci,3−i
c3−i,3−i

.

Let

vs =
{
αiei if ri

r3−i
≥ ci,i

c3−i,i
,

vm if ri
r3−i

<
ci,i
c3−i,i

.

For all (pη)η>0 and (cη)η≥0 such that{
(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη,

there exists (ζη)η>0 such that, as η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0 converges up to extraction in
C 2
loc

(
R,R2) × R to a traveling wave solution (p, c0) of (EKPP )0 achieving one of the following

connections:

1. 0 to vs,

2. α3−ie3−i to vs,

3. 0 to αiei with p semi-extinct.

This result is proved in Section 4.
Let us clarify how this result confirms partially Conjecture 6.4, 2 and what are the remaining

open questions.

— Assume vs = vm. Up to the component-wise monotonicity of the profile in the first and
second cases, the three connections above correspond exactly to the three possible limiting
profiles of Conjecture 6.4, 2. Moreover we can apply the theorem with i = 1 and i = 2
and obtain two limiting profiles. However, at this point, the normalizations

(
ζ1
η

)
η>0 and(

ζ2
η

)
η>0 are unrelated and nine possible pairs of profiles seem to exist. We do not know

how to prove that only the three following situations actually occur: 0 to vm and 0 to vm
with

(
ζ2
η − ζ1

η

)
η>0 bounded, semi-extinct 0 to α1e1 and α1e1 to vm with ζ2

η − ζ1
η → −∞,

semi-extinct 0 to α2e2 and α2e2 to vm with ζ2
η − ζ1

η → +∞.

— Assume vs = αiei. The third connection above is actually a subcase of the first one and
the normalization (ζη)η>0 is unable to track the semi-extinct limiting profile connecting 0
to α3−ie3−i. This is not a question of optimality of the proof: the normalization (ζη)η>0 is
precisely chosen so that pi is always non-zero. Hence (ζη)η>0 corresponds either to (ξη)η>0
or to

(
ξ1
η

)
η>0. The construction of the normalization

(
ξ2
η

)
η>0 of Conjecture 6.4, 2 is a

completely open problem. Of course, once this problem is solved, it remains to relate the
limiting profiles and the normalizations, as in the case vs = vm.

6.2 The edge of the fronts

In this section, we fix a traveling wave (p, c) and we prove Theorem 6.1.
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6.2.1 Preparatory lemmas and the Ikehara theorem
Lemma 6.6. For all i ∈ [N ],{

lim inf
+∞

−p′i
pi

, lim sup
+∞

−p′i
pi

}
⊂

{
µ ∈ (0,+∞) |

λPF
(
µ2D + L

)
µ

= c

}
,

{
lim inf

+∞

p′′i
pi
, lim sup

+∞

p′′i
pi

}
⊂

{
µ2 ∈ (0,+∞) |

λPF
(
µ2D + L

)
µ

= c

}
.

Consequently, there exists ξ̃ ∈ R such that p is component-wise strictly convex in [ξ̃,+∞).

Proof. The proof of

min
i∈[N ]

lim inf
+∞

−p′i
pi
∈

{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}

can be found in [Gir18b, Proposition 6.10]. The proof also directly yields that for any sequence
(ξn)n∈N such that ξn → +∞ and such that there exists j ∈ [N ] satisfying

lim
n→+∞

−p′j (ξn)
pj (ξn) = min

i∈[N ]
lim inf

+∞

−p′i
pi

,

convergence occurs in the following sense:

lim
n→+∞

(
−p′i (ξn)
pi (ξn)

)
i∈[N ]

=
(

min
i∈[N ]

lim inf
+∞

−p′i
pi

)
1N,1.

The proof of

max
i∈[N ]

lim sup
+∞

−p′i
pi
∈

{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
is a slight modification of the preceding proof, where the quantity

Λ = max
i∈[N ]

lim sup
ξ→+∞

p′i (ξ)
pi (ξ)

is replaced by

Λ = min
i∈[N ]

lim inf
ξ→+∞

p′i (ξ)
pi (ξ) .

Similarly, we also obtain directly that for any sequence (ξn)n∈N such that ξn → +∞ and such
that there exists j ∈ [N ] satisfying

lim
n→+∞

−p′j (ξn)
pj (ξn) = max

i∈[N ]
lim sup

+∞

−p′i
pi

,

convergence occurs in the following sense:

lim
n→+∞

(
−p′i (ξn)
pi (ξn)

)
i∈[N ]

=
(

max
i∈[N ]

lim sup
+∞

−p′i
pi

)
1N,1.
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The statements regarding
(
p′′i
pi

)
i∈[N ]

are again established very similarly. The quantity

Λ = max
i∈[N ]

lim sup
ξ→+∞

p′i (ξ)
pi (ξ)

is replaced by

Θ = min
i∈[N ]

lim inf
ξ→+∞

p′′i (ξ)
pi (ξ)

and
Θ = max

i∈[N ]
lim inf
ξ→+∞

p′′i (ξ)
pi (ξ)

respectively, and the function
wn = Λp̂n − p̂′n

is replaced by
wn = Θp̂n − p̂′′n

and
wn = Θp̂n − p̂′′n

respectively. Since p̂∞ is nonnegative nonzero and w∞ = 0, necessarily Θ > 0 and Θ > 0
and then, as in [Gir18b, Proposition 6.10], both quantities have the form µ2 with µ solution of
λPF (µ2D+L)

µ = c.
Finally, the strict convexity in a neighborhood of +∞ is deduced exactly as the monotonicity

in the proof of [Gir18b, Proposition 6.10].

We will also need the Ikehara theorem [34, Proposition 2.3], commonly used in such problems
(see for instance Guo–Wu [85]), as well as a lemma due to Volpert, Volpert and Volpert [139,
Chapter 5, Lemma 4.1].

Theorem 6.7. [Ikehara] Let f : (0,+∞)→ (0,+∞) be a decreasing function. Assume that there
exist λ ∈ (0,+∞), k ∈ (−1,+∞) and an analytic function

h :
(
0, λ
]

+ iR→ (0,+∞)

such that ∫ +∞

0
eλxf (x) dx = h (λ)(

λ− λ
)k+1 for all λ ∈

(
0, λ
)
.

Then

lim
x→+∞

f (x) e
λx

xk
=

h
(
λ
)

Γ
(
λ+ 1

) .
Lemma 6.8. [Volpert–Volpert–Volpert] Let A be an essentially nonnegative matrix and let z ∈
CN .
If {

spA ⊂ (−∞, 0) + iR,
(Re (zk))k∈[N ] ≤ 0,

then
sp (A + diag (z)) ⊂ (−∞, 0) + iR.
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6.2.2 Convergence at the edge
Let

kc =
{

0 if c > c?,
1 if c = c?.

Proposition 6.9. There exists A > 0 such that, as ξ → +∞,p (ξ) ∼ Aξkce−µcξnµc ,
p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .

Proof. Fix temporarily µ ∈ (0, µc) + iR. In view of Lemma 6.6 and of the Gronwall lemma,

ξ 7→ eµξp (ξ) ∈ L 1 (R,CN) ,
ξ 7→ eµξc (p (ξ)) ◦ p (ξ) ∈ L 1 (R,CN) .

Multiplying (TW [c]) by eµξ, integrating by parts over R and defining

f+ (µ) =
∫ +∞

0
eµξp (ξ) dξ,

f− (µ) =
∫ 0

−∞
eµξp (ξ) dξ,

fc (µ) =
∫
R
eµξc (p (ξ)) ◦ p (ξ) dξ,

we get easily (
µ2D− cµI + L

)
(f+ (µ) + f− (µ)) = fc (µ) ,

whence, denoting adj
(
µ2D− cµI + L

)
the adjugate matrix of µ2D− cµI + L, we find

det
(
µ2D− cµI + L

)
f+ (µ) = adj

(
µ2D− cµI + L

)
fc (µ)− det

(
µ2D− cµI + L

)
f− (µ) .

The functions f+, f− and fc defined above are respectively analytic in (0, µc)+iR, (0,+∞)+iR
and (0, 2µc) + iR (by local Lipschitz-continuity of c, (H2) and global boundedness of p).

The function
C → C
µ 7→ det

(
µ2D− cµI + L

)
is polynomial (whence analytic). Let Z ⊂ C be the finite set of its roots, counted with algebraic
multiplicity. In particular, µc ∈ Z with multiplicity kc + 1.
For all µ ∈ ((0, µc) + iR) \Z,

f+ (µ) =
(
µ2D− cµI + L

)−1 fc (µ)− f− (µ) .

The function
µ 7→

(
µ2D− cµI + L

)−1 fc (µ)
is well-defined and analytic in ((0, µc) + iR) \Z, where it coincides with f+ + f− which is analytic
in (0, µc) + iR.

Define the analytic function

h : (0, µc) + iR → RN

µ 7→ (µc − µ)kc+1 f+ (µ)
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so that
f+ (µ) = h (µ)

(µc − µ)kc+1 for all µ ∈ (0, µc) + iR.

Since, for all µ ∈ ((0, µc) + iR) \Z,

h (µ) = (µc − µ)kc+1

det (µ2D− cµI + L)adj
(
µ2D− cµI + L

)
fc (µ)− (µc − µ)kc+1 f− (µ)

the function h can be analytically extended on (0, µc] + iR if and only if

µ 7→ (µc − µ)kc+1

det (µ2D− cµI + L)

has no pole in {µc}+ iR.
Let θ ∈ R\ {0}. In view of

(µc + iθ)2 D− c (µc + iθ) I + L = µ2
cD− cµcI + L− θ2D + iθ (2µcD− cI)

and

λPF
(
µ2
cD− cµcI + L− θ2D

)
≤ λPF

(
µ2
cD− cµcI + L− θ2 min

k∈[N ]
dk

)
= λPF

(
µ2
cD− cµcI + L

)
− θ2 min

k∈[N ]
dk

= −θ2 min
k∈[N ]

dk

Lemma 6.8 yields that

sp
((
µ2
cD− cµcI + L− θ2D

)
+ diag (iθ (2µcdk − c))k∈[N ]

)
⊂ (−∞, 0) + iR.

Hence µ 7→ (µc−µ)kc+1

det(µ2D−cµI+L) has no pole in {µc}+ i (R\ {0}) and then it has no pole in {µc}+ iR
indeed.
We are now in position to apply the Ikehara theorem component-wise and to deduce from it

the existence of n ∈ S+ (0, 1) and A ≥ 0 such that

lim
ξ→+∞

p (ξ) e
µcξ

ξkc
= An.

In particular, for all k ∈ [N ] such that nk > 0,

lim
ζ→+∞

p (ξ + ζ)
pk (ζ) eµcξ = 1

nk
n.

However, back to the proof of Lemma 6.6, there exists k ∈ [N ] and a sequence (ξn)n∈N such that
ξn → +∞,

(
−p′k(ξn)
pk(ξn)

)
n∈N

converges to

µ = max
k∈[N ]

lim sup
+∞

−p′k
pk

,

and (
ξ 7→ p (ξ + ζn)

pk (ζn)

)
n∈N
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converges in C 2
loc to

ξ 7→ 1
nµ,k

e−µξnµ.

This clearly implies µ = µc and n = nµc .
Consequently, A > 0,

lim
ξ→+∞

p (ξ) e
µcξ

ξkc
= Anµc ,

and, by Lemma 6.6,

µc ≤ min
k∈[N ]

lim inf
+∞

−p′k
pk
≤ max
k∈[N ]

lim sup
+∞

−p′k
pk

= µc,

that is
lim
+∞

(
−p′k
pk

)
k∈[N ]

= µc.

Quite similarly, we also obtain

lim
+∞

(
p′′k
pk

)
k∈[N ]

= µ2
c .

If d = 1N,1, the quantities at hand are:

(µc,nµc) =
(
min

{
µ > 0 | λPF

(
µ2I + L

)
= cµ

}
,nPF

(
µ2
cI + L

))
=
(

1
2

(
c−

√
c2 − 4λPF (L)

)
,nPF (L)

)
and an obvious corollary follows.

6.3 The back of the fronts: separated competition
In this section, we assume (H6) and a = 1N,1 and prove Theorem 6.2 and Theorem 6.3.

6.3.1 Main tools: Jordan normal form and Perron–Frobenius projection
Let m ∈ [N ] be the number of pairwise distinct eigenvalues of L (λPF (L) being simple,

m ≥ 2) and let (λk)k∈[m] ∈ Cm be the pairwise distinct complex eigenvalues of L ordered so that
(Re (λk))k∈[m] is a nondecreasing family (in particular, λm = λPF (L) and Re (λm−1) < λPF (L)).
Let P ∈ GL (C) be such that J = PLP−1 is the Jordan normal form of L:

J =


λPF (L) 0 · · · 0

0 Jm−1
. . .

...
...

. . . . . . 0
0 · · · 0 J1

 ,

where, for all k ∈ [m− 1], Jk is the (upper triangular) Jordan block associated with the eigenvalue
λk.
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Noticing that
LP−1e1 = P−1Je1 = λPF (L) P−1e1,

eT1 PL = eT1 JP = λPF (L) eT1 P,

it follows that P−1e1 ∈ spannPF (L) and eT1 P ∈ spannPF
(
LT
)T . In particular, we can normal-

ize without loss of generality P so that P−1e1 = nPF (L) and then deduce from eT1 PnPF (L) = 1
that

eT1 P = 1
nPF (LT )T nPF (L)

nPF
(
LT
)T
.

From the preceding equality, it follows directly that the Perron–Frobenius projection, defined
as

ΠPF (L) =
nPF (L) nPF

(
LT
)T

nPF (LT )T nPF (L)
,

satisfies
PΠPF (L) P−1 = diag (e1) .

6.3.2 Uniqueness up to translation of the profile
In this subsection, we assume d = 1N,1, we fix c ≥ c? and we prove Theorem 6.2. The scalar

front pc is defined as in the statement of the theorem.

Proposition 6.10. All p ∈Pc have the form

p : ξ 7→ pc (ξ − ξ0) nPF (L) with ξ0 ∈ R.

Proof. Let p ∈Pc and
q = Pp ∈ C 2 (R,CN) ∩L∞

(
R,CN

)
.

Multiplying (TW [c]) on the left by P, we get

−q′′ − cq′ = Jq − b
[
P−1q

]
q in R,

and in particular
−q′′1 − cq′1 =

(
λPF (L)− b

[
P−1q

])
q1 in R.

Since

(ΠPF (L) p)T nPF (L) =
(
P−1diag (e1) q

)T nPF (L)

= q1
(
P−1e1

)T nPF (L)
= q1,

q1 is real-valued and in fact positive in R.
First, let us verify that qk

q1
is globally bounded in R for all k ∈ [N ] \ {1}. It is bounded in

(−∞, 0] since inf
(−∞,0]

q1 > 0 by [Gir18b, Theorem 1.5, iii)]. It is bounded in [0,+∞) since a

left-multiplication of the first equivalent of Theorem 6.1 by P yields

q (ξ) ∼ Aξke−
1
2

(
c−
√
c2−4λPF (L)

)
ξe1

whence
lim sup

+∞

∣∣∣∣qkq1

∣∣∣∣ = 0.

Next, let us show by induction that qN+1−k = 0 in R for all k ∈ [N − 1].
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— Basis: k = 1. Due to the special form of J, the equation satisfied by qN is
−q′′N − cq′N =

(
λ1 − b

[
P−1q

])
qN in R.

Define z = qN
q1

and w = |z|2. The function w is nonnegative and globally bounded. From

z′ = q′N
q1
− q′1
q1
z,

z′′ = q′′N
q1
− q′′1
q1
z − 2q′1

q1
z′,

it follows
−z′′ − q1c+ 2q′1

q1
z′ − q′′1 + cq′1

q1
z =

(
λ1 − b

[
P−1q

])
z in R.

Using the equality satisfied by q1, this equation reads:

−z′′ − q1c+ 2q′1
q1

z′ + (λPF (L)− λ1) z = 0 in R.

Now, multiplying by z, taking the real part, defining
γ = 2 (λPF (L)− Re (λ1)) > 0

and using the obvious equality
Re (z′′z) = Re (z)′′Re (z) + Im (z)′′ Im (z)

= 1
2w
′′ −

(
Re (z)′

)2 − (Im (z)′
)2
,

it follows
−w′′ − q1c+ 2q′1

q1
w′ + γw ≤ 0 in R.

This inequality implies the nonexistence of local maxima of w. Since w ∈ C 1 (R), there ex-
ists consequently ξ0 ∈ R such that w is decreasing on (−∞, ξ0) and increasing on (ξ0,+∞).
Therefore w has well-defined limits at ±∞ and since w ∈ L∞ (R), these limits are finite.
By classical elliptic regularity and the Harnack inequality (see Gilbarg–Trudinger [80]) ap-
plied to the equation satisfied by q1, q′1

q1
is bounded in R. By elliptic regularity again,

applied this time to the equation

−w′′ − q1c+ 2q′1
q1

w′ + γw = −2
(
Re (z)′

)2 − 2
(
Im (z)′

)2
,

the limits of w have to be null, whence w itself is null, and then qN is null.
— Inductive step: let k ∈ [N − 1] \ {1} and assume qN+1−k = 0. Defining

λ = jN−k,N−k ∈ spL\ {λPF (L)} ,
the equation satisfied by qN+1−(k+1) = qN−k is

−q′′N−k − cq′N−k =
(
λ− b

[
P−1q

])
qN−k in R.

Repeating the argument detailed in the previous step shows similarly that qN−k is null.
Hence the proof by induction is ended and yields indeed q = q1e1 in R. Now, back to the
equation satisfied by q1, we find

−q′′1 − cq′1 = (λPF (L)− b [q1nPF (L)]) q1 in R,

which implies in view of well-known results on the traveling wave equation for the scalar KPP
equation the existence of ξ0 ∈ R such that q1 coincides with ξ 7→ pc (ξ − ξ0).
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6.3.3 Global asymptotic stability
The auxiliary functions used in the proof of Proposition 6.10 can be used again to prove the

global asymptotic stability of v? as stated in Theorem 6.3. In particular, the following lemma
will be used repeatedly.

Lemma 6.11. There exists γ > 0 such that all bounded positive classical solutions u of (EKPP )
set in (0,+∞)× R satisfying

inf
(t,x)∈(0,+∞)×R

nPF (L)T ΠPF (L) u (t, x) > 0

satisfy also

lim
t→+∞

(
eγt sup

x∈R
|(I−ΠPF (L)) u (t, x)|

)
= 0.

Proof. The proof is very similar to the first part of that of Proposition 6.10. Defining v = Pu,
the equation satisfied by v1 is

∂tv1 − ∂xxv1 =
(
λPF (L)− b

[
P−1v

])
v1 in (0,+∞)× R.

For all k ∈ [N ] \ {1}, there exists γk > 0 such that vk satisfies
∂t

(∣∣∣ vkv1

∣∣∣2)− ∂xx(∣∣∣ vkv1

∣∣∣2)− 2∂xv1
v1

∂x

(∣∣∣ vkv1

∣∣∣2)+ γk

∣∣∣ vkv1

∣∣∣2 ≤ 0 in (0,+∞)× R(∣∣∣ vkv1

∣∣∣2)
|{0}×R

∈ L∞ (R, [0,+∞)) ,

that is such that zk : (t, x) 7→ e
γk
2 t
∣∣∣ vkv1

∣∣∣2 satisfies

{
∂tzk − ∂xxzk − 2∂xv1

v1
∂xzk + γk

2 zk ≤ 0 in (0,+∞)× R
(zk)|{0}×R ∈ L∞ (R, [0,+∞)) .

Since zk stays bounded locally in time, by a classical argument (detailed for instance in [Gir18b,
Proposition 3.4]), zk vanishes uniformly in space as t→ +∞. Consequently,

e
γk
4 t sup

x∈R
|vk| → 0 as t→ +∞.

The conclusion follows from γ = min
k∈[N ]

γk
4 and the following obvious algebraic equality:

(I−ΠPF (L)) u = P−1

(
N∑
k=2

vkek

)
.

We begin with the case of homogeneous initial data, which does not require d = 1N,1 since
(EKPP ) reduces to

(
E0
KPP

)
in this context.

Proposition 6.12. All positive classical solutions of
(
E0
KPP

)
set in (0,+∞) converge as t →

+∞ to v?.
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Proof. Once again, the proof is very similar to that of Proposition 6.10.
Fix a positive classical solution v of

(
E0
KPP

)
. By [Gir18b, Theorem 1.1], v (1) � 0. Hence

the function u : t 7→ v (t+ 1) is a classical solution of
(
E0
KPP

)
set in (0,+∞) which is positive

in [0,+∞) (whereas v (0) might have null components) and which converges to v? if and only if
v converges to v?.
The function u = nPF (L)T ΠPF (L) u satisfies

u′ = λPF (L)u− b [u]u.

In order to apply Lemma 6.11, it suffices to verify

inf
t∈(0,+∞)

u (t) > 0.

On one hand, since u is positive in [0,+∞), u is positive in [0,+∞) as well. Hence any t > 0
such that u′ (t) = 0 is such that b (u (t)) = λPF (L) and consequently any local minimum is
larger than some positive constant. On the other hand, lim inf

t→+∞
u > 0 is a direct consequence of

the persistence result [Gir18b, Theorem 1.3].
Since b is Lipschitz-continuous on the compact set {v ∈ K | v ≤ k}, there exists C1 > 0 such

that
|b [unPF (L)]− b [u]| ≤ C1 |(I−ΠPF (L)) u| in [0,+∞),

Now u satisfies

u′ = λPF (L)u− b [unPF (L)]u+ (b [unPF (L)]− b [u])u,

with, by Lemma 6.11,

(b [unPF (L)]− b [u])u = o (u) as t→ +∞.

It follows easily (see for instance [106]) that u converges to the unique constant α? > 0 such
that λPF (L) = b [α?nPF (L)], which precisely means

lim
t→+∞

u (t) = v?.

Finally, at the expense of assuming d = 1N,1, we extend the previous result to non-homogeneous
initial data.

Proposition 6.13. Assume d = 1N,1. Then, for all bounded intervals I ⊂ R, all bounded
positive classical solutions u of (EKPP ) set in (0,+∞)× R satisfy

lim
t→+∞

sup
x∈I
|u (t, x)− v?| = 0.

Consequently, if d = 1N,1, the set of bounded nonnegative classical solutions of (SKPP ) is
exactly {0,v?}.

Proof. Let (tn)n∈N ∈ (0,+∞)N such that lim
n→+∞

tn = +∞. Then, by classical parabolic estimates
(Lieberman [111]) and a diagonal extraction process, the sequence

(un)n∈N = ((t, x) 7→ u (t+ tn, x))n∈N
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converges up to extraction to an entire classical solution of (EKPP ) valued in
N∏
i=1

[ν, gi (0)] (see

[Gir18b, Theorems 1.2 and 1.3]).
Now let us prove that v? is the unique bounded entire classical solution ũ of (EKPP ) satisfying(

inf
R2
ũi

)
i∈[N ]

� 0.

Let ũ be such a solution. The function ũ = nPF (L)T ΠPF (L) ũ satisfies

∂tũ− ∂xxũ = λPF (L) ũ− b [ũnPF (L)] ũ+ (b [ũnPF (L)]− b [ũ]) ũ.

For all τ ∈ R,
inf

(t,x)∈(0,+∞)×R
ũ (t+ τ, x) > 0.

By Lemma 6.11, there exists C > 0 such that, for all t > 0 and all τ ∈ R,

sup
x∈R
|ũ (t+ τ, x) nPF (L)− ũ (t+ τ, x)| ≤ Ce−γt.

It follows that for all t > 0,

sup
(t′,x)∈R2

|ũ (t′, x) nPF (L)− ũ (t′, x)| ≤ Ce−γt

and then passing the right-hand side to the limit t→ +∞, we find

ũ (t′, x) nPF (L) = ũ (t′, x) for all (t′, x) ∈ R2.

Consequently, ũ satisfies

∂tũ− ∂xxũ = λPF (L) ũ− b [ũnPF (L)] ũ.

By standard results on the scalar KPP equation, ũ = α? in R2, that is ũ = v?.
A standard compactness argument ends the proof.

6.4 The back of the fronts: vanishingly small mutations in
monostable two-component systems

In this section, we assume (H7) and recall the existence and uniqueness of (r, η,m) ∈ K++ ×
(0,+∞)× S++ (0, 1) such that

L = R + η

(
−1 1
1 −1

)
M with (R,M) = (diag (r) ,diag (m)) .

The various objects and notations of the problem now depend a priori on η and a subscript η
might be added accordingly. The following definitions are recalled:

αi = ri
ci,i

for all i ∈ {1, 2} ,

vm = 1
det C

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
if det C 6= 0,

E =
{

(η,p, c) ∈ (0,+∞)2 × C 2 (R,R2) | p ∈Pc,η, c ≥ c?η
}
,

∂tu−D∂xxu = Ru− (Cu) ◦ u. (EKPP )0
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6.4.1 Preparatory lemmas
The proof of Theorem 6.5 will use the following lemmas which are of independent interest.

Lemma 6.14. Let i ∈ {1, 2}, j = 3− i and

η ∈
(

0, rici,j
mjci,i

]
.

Then for all traveling wave solutions (p, c) of (EKPP )η,

pi ≤ αi in R.

Remark. This lemma is straightforwardly generalizable to the case N > 2.

Proof. Having in mind the proof of [Gir18b, Theorem 1.5, ii)], it suffices to investigate the sign
of

ripi − ηmipi + ηmjpj − (ci,ipi + ci,jpj) pi = pi (ri − ηmi − ci,ipi) + pj (ηmj − ci,jpi) .

This quantity is nonpositive provided

pi ≥ max
(
ri − ηmi

ci,i
,
ηmj

ci,j

)
.

Since
ri
ci,i
≥ ri − ηmi

ci,i
for all η ≥ 0,

ri
ci,i
≥ ηmj

ci,j
for all η ≤ rici,j

mjci,i
,

we deduce indeed pi ≤ ri
ci,i

.

Lemma 6.15. Let i ∈ {1, 2}, j = 3− i and assume

ri
rj
>
ci,j
cj,j

.

Let
ηi = 1

2 min
(
rjcj,i
micj,j

,
rj
mi

(
ri
rj
− ci,j
cj,j

))
,

ρi = 1
2
rj
ci,i

(
ri
rj
− ci,j
cj,j

)
.

Then for all ρ ∈ (0, ρi], all η ∈ (0, ηi) and all traveling wave solutions (p, c) of (EKPP )η, there
exists a unique

ξρ ∈ p−1
i ({ρ}) .

Furthermore pi is decreasing in (ξρ,+∞) and pi − ρ is positive in (−∞, ξρ).

Remark. The following proof is mostly due to Griette–Raoul [82, Proposition 5.1].
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Proof. Let ζ ∈ R such that pi (ζ) is a local minimum of pi. Then

ripi (ζ)− ηmipi (ζ) + ηmjpj (ζ)− (ci,ipi (ζ) + ci,jpj (ζ)) pi (ζ) ≤ 0.

This implies
ripi (ζ)− ηmipi (ζ)− (ci,ipi (ζ) + ci,jpj (ζ)) pi (ζ) < 0,

whence
ri − ηmi < ci,ipi (ζ) + ci,jpj (ζ) ,

whence by Lemma 6.14
ri − ηmi < ci,ipi (ζ) + ci,j

rj
cj,j

,

and then

pi (ζ) > 1
ci,i

(
ri −

rjci,j
cj,j

)
− ηmi

ci,i

>
rj
ci,i

(
ri
rj
− ci,j
cj,j

)
− ηimi

ci,i

≥ 1
2
rj
ci,i

(
ri
rj
− ci,j
cj,j

)
= ρi.

Now let ρ ∈ (0, ρi] and ξρ ∈ p−1
i ({ρ}).

Since pi (ξρ) cannot be a local minimum, there exists a neighborhood of ξρ in which pi is strictly
monotonic. Assume it is increasing. Then by continuity of p′i and the previous estimate on local
minima, pi is increasing in (−∞, ξρ). By classical elliptic regularity, p converges as ξ → −∞ to
a solution of Lv = Cv ◦ v, and by [Gir18b, Theorem 1.5, iii)], this solution is positive. But in
view of the preceding estimates, necessarily

lim
ξ→−∞

pi (ξ) > ρi ≥ pi (ξρ) ,

which contradicts the monotonicity of pi in (−∞, ξρ). Hence pi is decreasing in a neighborhood
of ξρ and then in (ξρ,+∞). Consequently,

p−1
i ({ρ}) = {ξρ} .

This holds for all ρ ∈ (0, ρi] and therefore ends the proof.

6.4.2 Convergence at the back
Let i ∈ {1, 2}, j = 3− i, (cη)η≥0 and (pη)η>0 such that{

(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη,

and assume from now on that
ri
rj
>
ci,j
cj,j

so that the assumptions of Theorem 6.5 are satisfied. Define subsequently

vs =
{
αiei if ri

rj
≥ ci,i

cj,i
,

vm if ri
rj
<

ci,i
cj,i

.
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Proposition 6.16. There exists (ζη)η>0 such that, as η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0 converges
up to extraction in C 2

loc

(
R,R2)×R to a traveling wave solution (pback, c0) of (EKPP )0 achieving

one of the following connections:
1. 0 to vs,
2. αjej to vs,
3. 0 to αiei with p semi-extinct.

Proof. Let ρ = min (ρi, vs,i). By virtue of Lemma 6.15, for all η > 0, there exists a unique ζη
such that:
— pη,i is decreasing in (ζη,+∞),
— pη,i (ζη) = ρ,
— pη,i − ρ is positive in (−∞, ζη).

By Lemma 6.14, classical elliptic estimates (Gilbarg–Trudinger [80]) and a diagonal extraction
process, (ξ 7→ pη (ξ + ξη))η>0 converges in C 2

loc up to extraction. Let p be its limit. We have
directly 0 ≤ p ≤ α in R. In view of the normalization, we also have:

— pi is nonincreasing in (0,+∞),
— pi (0) = ρ,
— pi − ρ is nonnegative in (−∞, 0).

Let (ξn)n∈N such that ξn → −∞ as n→ +∞. Defining

p̂n : ξ 7→ p (ξ + ξn) for all n ∈ N,

by classical elliptic estimates and a diagonal extraction process again, (p̂n)n∈N converges up to
extraction in C 2

loc to a function p̂ satisfying

−Dp̂′′ − cp̂′ = Rp̂− (Cp̂) ◦ p̂

and such that
(ρ, 0) ≤ (p̂i, p̂j) ≤ (αi, αj) .

In particular, p̂ is a stationary solution of{
∂tu− ∂xxu− c0∂xu = Ru− (Cu) ◦ u in (0,+∞)× R

u (0, x) = p̂ (x) for all x ∈ R.

Applying the comparison principle for two-components competitive parabolic systems to p̂ and
to the solution of {

∂tu− ∂xxu− c0∂xu = Ru− (Cu) ◦ u in (0,+∞)× R
(ui, uj) (0, x) = (ρ, sup p̂j) for all x ∈ R,

which is homogeneous in space and is therefore the solution of{
∂tu = Ru− (Cu) ◦ u in (0,+∞)× R

(ui, uj) (0, x) = (ρ, sup p̂j) for all x ∈ R,

we directly obtain p̂ = vs if sup p̂j > 0 and p̂ = αiei if sup p̂j = 0. In other words, if vs = αiei,
p̂ = αiei, and if vs = vm, p̂ ∈ {vs, αiei}. Since vs and αiei are isolated steady states and p is
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continuous, the last diagonal extraction was not necessary and (p̂n)n∈N converges indeed to p̂,
that is

lim
−∞

p ∈ {vs, αiei} .

Since pi is nonincreasing in (0,+∞), it converges as ξ → +∞. By classical elliptic regularity,

lim
+∞

(−dip′′i − c0p′i) = 0,

whence either
lim
+∞

pi = 0

or pj converges as well, its limit being

lim
+∞

pj = 1
ci,j

(
ri − ci,i lim

+∞
pi

)
.

In the second case, using −djp′′j − c0p′j → 0, pi (0) = ρ and the monotonicity of pi in (0,+∞),
we find lim

+∞
p ∈ {αjej ,0}, which contradicts directly lim

+∞
pi > 0. Hence pi converges to 0.

Subsequently, since pj is positive, every local minimum of pj satisfies

rj ≤ cj,jpj (ξ) + cj,ipi (ξ) ,

which proves that for all sequences (ξn)n∈N such that ξn → +∞ and pj (ξn) is a local minimum of
pj , pj (ξn) converges to αj . But then, by C 1 regularity, either pj is monotonic in a neighborhood
of +∞ or there exists a sequence (ξn)n∈N such that ξn → +∞, pj (ξn) is a local minimum of pj
and (pj (ξn))n∈N converges to lim inf

+∞
pj . It turns out that in both cases pj converges, the possible

limits being 0 and αj .
Therefore p is a traveling wave achieving exactly one of the following connections:
1. 0 to vs,
2. αjej to vs,
3. 0 to αiei with αiei 6= vs,
4. αjej to αiei with αiei 6= vs.

It remains to show that the third case is semi-extinct and the fourth case is impossible. We will
actually prove both statements simultaneously by proving that lim

−∞
p = αiei 6= vs implies pj = 0

in R.
Assume lim

−∞
p = αiei and vs = vm. Assume also by contradiction that pj is positive in R.

Multiplying the equation

−djp′′j − c0p′j = (rj − cj,jpj − cj,ipi) pj ,

by the function
ϕ : ξ 7→ e

c0
dj
ξ
,

we find
−dj

(
ϕp′j
)′ = (rj − cj,jpj − cj,ipi)ϕpj .

Recall that vs = vm implies ri
rj
<

ci,i
cj,i

, that is rj − cj,iαi > 0. Therefore the quantity

ξ = sup {ξ ∈ R | ∀ζ ∈ (−∞, ξ) rj − cj,jpj (ζ)− cj,ipi (ζ) > 0}
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is well-defined in R∪{+∞}. In
(
−∞, ξ

)
, ϕp′j is decreasing. Since on one hand lim

−∞
ϕ = 0 and on

the other hand lim
−∞

p′j = 0 by classical elliptic regularity, the limit of ϕp′j itself is 0. Consequently,

ϕp′j is negative in
(
−∞, ξ

)
. It follows that pj itself is decreasing in

(
−∞, ξ

)
. But then lim

−∞
pj = 0

implies that pj is negative in
(
−∞, ξ

)
, which obviously contradicts the positivity of pj . This

ends the proof.

6.5 Discussion

6.5.1 Why is it likely hopeless to search for a general result on the behavior
at the back of the front?

First of all, the linearization of (SKPP ) at 0 being cooperative, it is natural to wonder whether
the dynamics of (EKPP ) near some constant positive solution u of (SKPP ) might be purely
competitive or cooperative. In general, neither is the case. The linearized reaction term at any
constant solution u of (SKPP ) is

Lu = L− diag (c (u))− (u11,N ) ◦Dc (u) .

In the Lotka–Volterra case where there exists C� 0 such that c (v) = Cv, it reads

Lu = L− diag (Cu)− (u11,N ) ◦C.

On one hand, it is clear that if there exists (i, j) ∈ [N ]2 such that li,j = 0, then lu,i,j < 0. On
the other hand, assuming that there exists i ∈ [N ] such that li,i ≤ 0, we find

−li,iui + uici,iui > 0.

Since Lu− (Cu) ◦ u = 0, it follows∑
j∈[N ]\{i}

(li,juj − uici,juj) > 0,

whence there exists j ∈ [N ] \ {i} such that li,juj − uici,juj > 0, that is such that

lu,i,j = li,j − uici,j > 0.

Hence the competitive dynamics and the cooperative dynamics are indeed intertwined near u.
Next, in view of the literature on non-cooperative KPP systems, it could be tempting to

conjecture the uniqueness and the local stability of the constant positive solution of (SKPP )
(see for instance Dockery–Hutson–Mischaikow–Pernarowski [58] or Morris–Börger–Crooks [115]).
However, if c is linear as before and if

(N,L,C) =
(

2, I2 + 1
5

(
−1 1
1 −1

)
,

1
10

(
1 9
9 1

))
,

then this property fails. Indeed, straightforward computations show that the set of constant
positive solutions of (SKPP ) is

3−
√

15
2

3 +
√

15
2

 ,12,1,

3 +
√

15
2

3−
√

15
2

 .
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From the associated linearizations, it is easily found that, with respect to
(
E0
KPP

)
, the symmetric

solution 12,1 is a saddle point whereas the other two solutions are stable nodes.
Last, we also point out that if d = 12,1 then the preceding counter-example admits a family of

traveling waves connecting 0 to the saddle point 12,1. Indeed, looking for profiles p of the form
ξ 7→ p (ξ) 12,1, (TW [c]) reduces to

−p′′ − cp′ = p− p2,

which, by virtue of well-known results on the scalar KPP equation, admits solutions connecting
0 to 1 if and only if c ≥ 2. Hence we cannot hope to prove that all traveling waves connect 0 to
a stable steady state.

6.5.2 What about the general separated competition case, with d and a
possibly different from 1N,1?

The general case might be more subtle than expected, even regarding the ODE system
(
E0
KPP

)
:

although the linearization at v?,

Lv? = L− λaA−Av?
(
∇b (v?)T

)
,

seems to be adequately described as a matrix of the form −P−Q with P = λaA−L a singular
M-matrix and Q = Av?

(
∇b (v?)T

)
a positive rank-one matrix, a recent paper by Bierkens

and Ran [23] highlights thanks to a counter-example that such matrices can have eigenvalues
with positive real part (and there is in addition a counter-example with irreducible −P, so that
irreducibility is not a sufficient condition to ensure all eigenvalues are negative). Therefore it is
unclear whether v? is always locally asymptotically stable with respect to

(
E0
KPP

)
. Actually,

the main purpose of the study of Bierkens and Ran is to establish several conditions sufficient to
guarantee that all eigenvalues have a negative real part (conditions among which we find N = 2
and, of course, a = 1N,1).
In the case N = 2, classical calculations show that the system (EKPP ) is not subjected to

Turing instabilities with respect to periodic perturbations. Therefore it might be fruitful to
investigate more thoroughly the two-component system. Nevertheless, to this day we do not
have any further result.

6.5.3 Where does Conjecture 6.4 come from?
Let us bring forth some insight into the limiting problem. What are the spreading properties of

(EKPP )0 with respect to front-like initial data? What are the propagating solutions of (EKPP )0
invading the null state?
Concerning the bistable case, we have at our disposal a recent result by Carrère [35] which

can be summed up as follows. Consider the Cauchy problem where (−∞, 0) is initially inhabited
mostly but not only (in a sense made rigorous by Carrère) by u1 and (0,+∞) is completely
uninhabited. Let cα1e1→α2e2 be the speed of the bistable front equal to α1e1 at −∞ and to α2e2
at +∞, as given by Kan-On [100] and Gardner [77]. Recall that the following bounds hold true:

−2
√
d2r2 < cα1e1→α2e2 < 2

√
d1r1.

Carrère’s theorem is then:
1. if 2

√
d1r1 > 2

√
d2r2 and cα1e1→α2e2 > 0, then asymptotically in time, u2 is extinct and u1

spreads at speed 2
√
d1r1;
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2. if 2
√
d1r1 < 2

√
d2r2 and cα1e1→α2e2 > 0, then asymptotically in time, u2 spreads on the

right at speed 2
√
d2r2 but is then replaced by u1 at speed cα1e1→α2e2 ;

3. if 2
√
d1r1 < 2

√
d2r2 and cα1e1→α2e2 < 0, then asymptotically in time, u2 chases u1 on the

left at speed cα1e1→α2e2 and spreads on the right at speed 2
√
d2r2.

This result was long-awaited but, as far as we know, Carrère’s proof is the first one.
Up to the sign of cα1e1→α2e2 , the second and the third cases above are identical. Recall that

the sign of cα1e1→α2e2 is in general a tough problem, although recently some particular cases
have been successfully solved (strong competition in Girardin–Nadin [GN15], special choices of
parameter values in Guo–Lin [83], perturbation of the standing wave in Risler [130]).
A natural conjecture in view of Carrère’s result is the long-time convergence, in the first case,

to a traveling wave connecting 0 to α1e1 at speed 2
√
d1r1 and with a semi-extinct profile p = pe1.

However, in the second and third cases, a more complex limit seems to arise.
The entire solutions connecting three or more stationary states with decreasingly ordered

speeds were first described in the scalar setting by Fife and McLeod [71] and are referred to as
propagating terraces, or simply terraces, since the work of Ducrot, Giletti and Matano [62]. A
terrace with n−1 intermediate states is defined as a finite family of traveling waves ((pi, ci))i∈[n]
such that pi (−∞) = pi+1 (+∞) for all i ∈ [n− 1] and such that (ci)i∈[n] is decreasing. Provided
the uniqueness (up to translation of the profile) of the traveling wave connecting vi = pi (+∞) to
vi+1 = pi (−∞) at speed ci, the terrace is equivalently defined as the family

(
(vi, ci)i∈[n] ,vn+1

)
.

However, in general, this family only defines a family of terraces that will be denoted hereafter
T
(

(vi, ci)i∈[n] ,vn+1

)
.

In terms of this definition, the expected limits in the second and third cases studied by Carrère
are terraces belonging to

T
(
0, 2
√
d2r2, α2e2, cα1e1→α2e2 , α1e1

)
with a semi-extinct first profile.
The obvious conjecture is then that all propagating solutions invading 0 apart from semi-

extinct monostable traveling waves belong to⋃
i∈{1,2}

⋃
c≥2
√
diri

T
(
0, c, αiei, cα3−ie3−i→αiei , α3−ie3−i

)
and have a semi-extinct first profile.
The bistable case being more or less understood, we now turn our attention to the monostable

case. Let vs ∈ {α1e1, α2e2,vm} be the unique stable state, vu ∈ {0, α1e1, α2e2} be an unstable
state and consider the Cauchy problem with compactly supported perturbations of vu as initial
data. Although the case vu = αiei with

i ∈ Iu = {j ∈ {1, 2} | αjej 6= vs} .

is well understood (Lewis, Li and Weinberger proved the uniqueness of the spreading speed
c?vs→αiei [108, 142]), the case vu = 0 is much more intricate: in particular, for vs = vm, a recent
theorem analogous to that of Carrère and due to Lin and Li [112] shows that if d2r2 > d1r1,
then u2 will invade first at speed 2

√
d2r2 and then be chased by u. Although straightforward

comparisons show that the replacement occurs somewhere in
[
c?vm→α2e2

t, 2
√
d1r1t

]
, the exact

speed of u is a delicate question, unsettled in the paper of Lin and Li.
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Tang and Fife [137] established by phase-plane analysis that traveling waves connecting 0 to
vs exist if and only if the speed c satisfies c ≥ cTWvs→0, where

cTWvs→0 = 2
√

max
i∈{1,2}

diri

is linearly determinate.
Terraces connecting 0 to vs through an intermediate unstable state αiei with i ∈ Iu should

involve semi-extinct monostable traveling waves connecting 0 to αiei and monostable traveling
waves connecting αiei to vs. Again, there exists a minimal wave speed cTWvs→αiei , as proved for
instance by Kan–On [101] or Lewis–Li–Weinberger [110]. Recall that cTWvs→αiei is not linearly
determinate in general, however it is bounded from below by the linear speed:

cTWvs→αiei ≥ 2

√
d3−ir3−i

(
1− c3−i,iri

ci,ir3−i

)
.

In any case, it is natural to expect that for all i ∈ Iu, terraces belonging to T (0, c, αiei, c′,vs)
with a semi-extinct first profile exist if and only if

cvs→αiei ≤ c′
2
√
diri ≤ c
c′ < c.

Consequently, the conjecture is that all propagating solutions invading 0 apart from (possibly
semi-extinct) monostable traveling waves belong to⋃

i∈Iu

⋃
c≥2
√
diri

⋃
c′≥cvs→αiei

T (0, c, αiei, c′,vs)

and have a semi-extinct first profile.
Having these conjectures in mind, we introduce small mutations and wonder how they affect

the outcome. An heuristic answer due to Elliott and Cornell [65] suggests that “the only role
of mutations is to ensure that both morphs travel at the same speed”. Therefore, there might
exist functions u0 : R → K such that the solutions (uη)η≥0 of the Cauchy problem associated
with (EKPP )η with initial data u0 admit as long-time asymptotic a traveling wave if η > 0
and a terrace of T (0, c, αiei, c′,v) if η = 0. We refer hereafter to such traveling waves as
quasi-T (0, c, αiei, c′,v) traveling waves.
In order to study these special traveling waves, we resort to numerical simulations. We find

two completely different behaviors.

— In the bistable case (Figure 6.5.1), quasi-T
(
0, 2
√
diri, αiei, cαjej→αiei , αjej

)
traveling

waves (with i ∈ {1, 2} and j = 3 − i) converge as η → 0 to a semi-extinct traveling
wave connecting 0 to αjej if cαjej→αiei > 0 and to αiei if cαjej→αiei < 0.

— In the monostable case (Figure 6.5.2), for all i ∈ Iu, quasi-T
(
0, 2
√
diri, αiei, c′,vs

)
travel-

ing waves connect 0 to vs through an intermediate bump of ui. As η → 0, the amplitude of
this bump tends to αi while its length tends slowly to +∞ (seemingly like ln η). Therefore,
depending on the normalization, the limit of the profiles as η → 0 is either a semi-extinct
connection between 0 and αiei or a monostable connection between αiei and vs.
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Figure 6.5.1 – Numerical simulation of the bistable case with initial data corresponding to a
competition–diffusion terrace (u1 dashed line, u2 dotted line, x as horizontal axis).
Parameter values: d = (1, 1.5125)T , r = 12,1, m = 12,1, η = 0.025, c1,1 = c2,2 = 1,
c1,2 = 20, c2,1 = 110, so that [GN15] cα1e1→α2e2 > 0.
The traveling wave which is on the right at t = 100, driven by a very small bump
of u2 but dominated at the back by u1, is the long-time asymptotic. Indeed
the u2-dominated area in the middle shrinks from both sides at a speed close to
|cα1e1→α2e2 | and will ultimately disappear.

241



Chapitre 6 Systèmes de Fisher – KPP non-monotones : comportement asymptotique des ondes
progressives

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(a) t = 0

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(b) t = 5

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(c) t = 40

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(d) t = 0

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(e) t = 5

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(f) t = 40

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(g) t = 0

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(h) t = 5

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

(i) t = 40

Figure 6.5.2 – Numerical simulations of the monostable case with initial data corresponding to
a competition–diffusion terrace (u1 dashed line, u2 dotted line, x as horizontal
axis).
Parameter values: d =

(
1, 1

3
)T , r = (1, 6)T , m = 12,1, c1,1 = 1, c2,2 = 6,

c1,2 = 0.2, c2,1 = 0.5, η = 2.5×10−1 on the first line, η = 2.5×10−6 on the second
line, η = 2.5× 10−11 on the third line.
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6.5.4 Why is Conjecture 6.4 silent about the bistable case with
cα1e1→α2e2 = 0?

In this very special case, additional asymmetry assumptions on the coefficients are necessary
in order to exclude connections between 0 and the saddle-point vm, as indicated by the following
immediate proposition, built on a counter-example given in Subsection 6.5.1.

Proposition 6.17. Assume (H7), d = 12,1, r = 12,1, m = 1√
212,1 and the existence of a ∈

(1,+∞) such that

C =
(

1 a
a 1

)
.

Then vm = 1
λPF (C)12,1 ∈ K++ is a saddle-point and, for all η ≥ 0 and all c ≥ 2, there exists a

unique pc,η ∈ C 2 (R) such that 
pc,η12,1 ∈Pc,η

pc,η (0) = 1
2λPF (C)

lim
ξ→−∞

pc,η (ξ) = 1
λPF (C) .

In particular, (pc,η12,1, c) connects 0 to vm.
Furthermore,

(c, η) 7→ pc,η ∈ C
(
[2,+∞)× [0,+∞),W 2,∞ (R,R)

)
.
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Notation Definition

[n] [1, n] ∩ N
(en,i)i∈[n] canonical basis of Rn

|•|n Euclidean norm of Rn

Bn (v, r), Sn (v, r) open ball and sphere of center v ∈ Rn and radius r > 0
≥n, >n, �n vi ≥ v̂i for all i ∈ [n], v ≥n v̂ and v 6= v̂, vi > v̂i for all i ∈ [n]

nonnegative, nonneg. nonzero, positive v ∈ Rn v ≥n 0, v >n 0, v�n 0
Kn, K+

n , K++
n sets of all nonnegative, nonneg. nonzero, positive vectors

S+
n (0, 1), S++

n (0, 1) K+
n ∩ Sn (0, 1), K++

n ∩ Sn (0, 1)
Mn,n′ , Mn sets of all real matrices of dimension n× n′, n× n
In, 1n,n′ identity matrix, matrix whose every entry is equal to 1
diag (v) diagonal matrix whose i-th diagonal entry is vi

essentially nonnegative matrix matrix A such that A− min
i∈[n]

(ai,i) In is nonnegative

A ◦B Hadamard (entry-by-entry) product (ai,jbi,j)(i,j)∈[n]×[n′]
f
[
f̂
]

composition of the functions f and f̂

Table 6.1 – General notations (the subscripts depending only on 1 or N are omitted when the
context is unambiguous)
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Systèmes de compétition – diffusion
monostables à deux espèces

« Tel est pris qui croyait prendre. »

(Dicton populaire français)





Chapitre 7

Invasion d’un territoire inoccupé par deux
compétiteurs : propriétés de propagation de

systèmes de compétition – diffusion
monostables à deux espèces

Résumé

Dans ce chapitre, on se tourne vers des propriétés de propagation de systèmes de com-
pétition – diffusion de Lotka – Volterra à deux espèces et monostables dont les conditions
initiales sont nulles ou exponentiellement décroissantes dans une demi-droite tournée vers la
droite. Grâce à une construction délicate de sur-solutions et de sous-solutions, on améliore
des résultats précédemment établis et on résout des questions ouvertes. En particulier, on
montre que si le compétiteur le plus faible est aussi le plus mobile, il est alors susceptible
d’échapper au compétiteur fort et moins mobile en envahissant en premier un territoire in-
occupé. La paire de vitesse dépend des conditions initiales. Si celles-ci sont nulles dans une
demi-droite tournée vers la droite, alors la première vitesse est la vitesse KPP du compé-
titeur le plus mobile et la seconde vitesse est donnée par une formule exacte dépendent
de la première vitesse et de la vitesse minimale des ondes progressives connectant les deux
équilibres semi-triviaux. De plus, l’ensemble non-borné de paires de vitesses atteignables
avec des conditions initiales exponentiellement décroissantes est caractérisé, à un ensemble
négligeable près.
Ce chapitre, co-écrit avec Adrian Lam, a fait l’objet d’une soumission sous le titre Invasion

of an empty habitat by two competitors : spreading properties of monostable two-species
competition–diffusion systems dans Proceedings of the London Mathematical Society [GL18].
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Chapitre 7 Invasion d’un territoire inoccupé par deux compétiteurs : propriétés de propagation
de systèmes de compétition – diffusion monostables à deux espèces

7.1 Introduction
In this paper, we are interested in some spreading properties of the classical monostable Lotka–

Volterra two-species competition–diffusion system
∂tu− ∂xxu = u (1− u− av) in (0,+∞)× R
∂tv − d∂xxv = rv (1− v − bu) in (0,+∞)× R

u (0, x) = u0 (x) for all x ∈ R
v (0, x) = v0 (x) for all x ∈ R

(7.1.1)

with d > 0, a ∈ (0, 1), b > 1, r > 0 and u0, v0 ∈ C (R, [0, 1]) \ {0}. The assumptions on a and b
mean that u and v are respectively the stronger and the weaker competitor.
Recall from the classical literature [8, 72, 104] that the scalar Fisher-KPP equation{

∂tw − δ∂xxw = ρw (1− w) in (0,+∞)× R
w (0, x) = w0 (x) for all x ∈ R

with δ, ρ > 0 and w0 ∈ Cb (R) with nonempty support included in (−∞, 0] has the following
spreading property: there exists a unique cKPP > 0 satisfying

lim
t→+∞

sup
|x|<ct

|w (t, x)− 1| = 0 for each c < cKPP

lim
t→+∞

sup
ct<x
|w (t, x)| = 0 for each c > cKPP

.

These asymptotics describe the invasion of the unstable state 0 by the stable state 1 and cKPP
is consequently referred to as the spreading speed of this invasion. Furthermore, cKPP coincides
with the minimal speed of the traveling wave solutions, which are particular entire solutions of
the form w : (t, x) 7→ ϕ (x− ct) with ϕ ≥ 0, ϕ (−∞) = 1 and ϕ (+∞) = 0. A striking result is
the so-called linear determinacy property: there exists such a pair (ϕ, c) if and only if the linear
equation

−δϕ′′ − cϕ′ = ρϕ,

namely, the linearization at ϕ = 0 of the semilinear equation satisfied by ϕ, admits a positive
solution in R. Consequently, cKPP = 2

√
ρδ. As far as the system (7.1.1) is concerned, this result

shows that in the absence of the competitor, u and v respectively spread at speed 2 and 2
√
rd.

Recall also from the collection of works due to Lewis, Li and Weinberger [108, 110] that the
competition–diffusion system

∂tu− ∂xxu = u (1− u− av) in (0,+∞)× R
∂tv − d∂xxv = rv (1− v − bu) in (0,+∞)× R

u (0, x) = ũ0 (x) for all x ∈ R
v (0, x) = 1− ṽ0 (x) for all x ∈ R

(7.1.2)

with ũ0 and ṽ0 compactly supported and ũ0 nonnegative nonzero, has an analogous spreading
property: there exists a unique cLLW > 0 satisfying

lim
t→+∞

sup
|x|<ct

(|u (t, x)− 1|+ |v (t, x)|) = 0 for each c < cLLW

lim
t→+∞

sup
ct<|x|

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each c > cLLW

and describing the invasion of the unstable state (0, 1) by the stable state (1, 0). As in the
KPP case, the spreading speed cLLW is the minimal speed of the monotonic traveling wave
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solutions; linearizing at (0, 1), it is easily deduced that the linear speed is 2
√

1− a and that
cLLW ≥ 2

√
1− a. However, contrarily to the KPP case, the converse inequality cLLW ≤ 2

√
1− a

is only sometimes true. More precisely,
— on one hand, according to Lewis–Li–Weinberger [108], linear determinacy holds if

d ≤ 2 and ab− 1
1− a ≤

1
r

(2− d) ,

a result which was later on improved by Huang [93] who established that the weaker
condition

(2− d) (1− a) + r

rb
≥ max

(
a,

d− 2
2 |d− 1|

)
is sufficient;

— but on the other hand, Huang–Han [94] constructed explicit counter-examples where cLLW >
2
√

1− a.
Anyways, a rough upper estimate of cLLW can be obtained by comparison with the KPP equation
satisfied by u in the absence of v: cLLW ≤ 2 (the competition always slows down the invasion
of u). The strict inequality cLLW < 2 is expected but, as far as we know, cannot be established
easily. Of course, it automatically holds in case of linear determinacy.
We focus now on the system (7.1.1) and observe that, when u0 and v0 are both null or

exponentially decaying in [0,+∞), the long-time behavior in (0,+∞) is unclear. It is the purpose
of this paper to address this question.
If rd > 1 and u0 and v0 are compactly supported, then for all small ε > 0, one expects the

following statements to hold:

lim
t→+∞

sup
|x|<(cLLW−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0,

lim
t→+∞

sup
(2+ε)t<|x|<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0,

lim
t→+∞

sup
(2
√
rd+ε)t<|x|

(|u (t, x)|+ |v (t, x)|) = 0.

This fact, which we are going to prove in the forthcoming pages (see Proposition 7.13) by adapting
very slightly arguments from the related literature and is therefore not really new, basically means
the following: the empty space is first invaded by the faster competitor v at speed 2

√
rd and then

the replacement of v by the stronger competitor u occurs somewhere in the area cLLW ≤ x
t ≤ 2.

In particular, as far as spreading speeds are concerned, the first invasion ((0, 0) by (0, 1)) is not
influenced by the second invasion ((0, 1) by (1, 0)): the competition exerted by the exponential
tail of u in the area 2 < x

t is negligible.
It is then natural to investigate whether the converse statement is true: is the second invasion

influenced by the first one? Is it possible to show that the speed c2 of the second invasion is
exactly cLLW , or is there on the contrary a possibility of acceleration, namely c2 > cLLW ?
Previous works on the spreading properties of the system (7.1.1) with u0 and v0 supported in

(−∞, 0] are due to Carrère [35] and Lin and Li [112]. Carrère studied the bistable case (a > 1,
b > 1). She proved that the second invasion admits a single spreading speed which is the speed
of the unique bistable traveling wave connecting (0, 1) to (1, 0): the two invasions are indeed
independent. We point out that the bistable case is easier to handle (based on the uniqueness
of traveling wave speed and profile in the bistable case, the arguments used on the left of the
second transition can be used again on its right). As a matter of fact, Lin and Li investigated the
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monostable case with stable coexistence (a < 1, b < 1) and compactly supported initial data but
were unable to determine the second speed. All three monostable cases (stable coexistence, stable
(1, 0), stable (0, 1)) being handled quite similarly (see Lewis–Li–Weinberger [108] for instance),
the technical obstacles they encountered should not depend on the sign of b− 1.

In the present paper, we adopt a different point of view: we aim directly for the construction of
(almost) optimal pairs of super-solutions and sub-solutions. This point of view is highly fruitful.
On one hand, it brings forth a complete spreading result when the support of u0 is included
in a left half-line (namely, u0 is Heavyside-like or compactly supported) and v0 is compactly
supported. This result shows that, surprisingly, acceleration of the second front does indeed
occur in some cases.
Heuristically, there are three spreading mechanisms involved:
1. u invading a hostile environment where v = 1 at speed 2

√
1− a;

2. u chasing the competitor v at speed cLLW ;
3. u invading an environment where v = 1{x≤2

√
rdt} at some speed c.

While both cLLW and c are greater than or equal to 2
√

1− a (by the comparison principle), the
sign of c− cLLW can vary. One of our main results (Theorem 7.1) states that the actual invasion
speed of u is the maximum of cLLW and c.
The problem we consider in this paper was in fact already considered by Shigesada and

Kawasaki in 1997 [133], where they illustrated numerically the hair-trigger effect (the fact that a
small number of the weaker competitor eventually reaches the range front of the other species and
establishes a KPP-type wave into the open space). They also gave practical estimates of the re-
spective spreading speeds of the species, based on linearizations. Our work takes into account the
possibility of failure of linear determinacy, and discovers additionally the possibility of a further
accelerated invasion. Therefore, we have completely settled the mathematical questions raised
by their study. Let us also point out here that, inspired by the study of Shigesada and Kawasaki,
Li [109] very recently addressed similar questions in the framework of integro-difference systems.
Our approach also delivers a general existence and nonexistence result related to propagat-

ing terraces (succession of compatible traveling waves with decreasingly ordered speeds, first
described by Fife and McLeod [71]) having the unstable steady state (0, 1) as intermediate
steady state and corresponding to exponentially decaying initial data. As far as scalar terraces
for reaction–diffusion equations are concerned, Ducrot, Giletti and Matano [62] showed quite
generically that all intermediate states are stable from below (see also Poláčik [126] for a com-
plete account in the general setting). In more sophisticated contexts (reaction–diffusion systems,
nonlocal equations, etc.), propagating terraces with unstable intermediate states are observed
numerically (see Nadin–Perthame–Tang [119] for the nonlocal KPP equation, Faye–Holzer [70]
for a different two-component reaction–diffusion system). Rigorous analytical studies are how-
ever very difficult and have only been carried out in simple cases. For instance, a closely related
paper due to Iida, Lui and Ninomiya [97] studied a monostable system of cooperatively coupled
KPP equations. The comparison with that paper shows well the value of the present paper:
Iida–Lui–Ninomiya only considered Heavyside-like or compactly supported initial data and ob-
tained that all spreading speeds are in fact scalar KPP speeds (independent invasions). In this
regard, the present paper is, to the best of our knowledge, unprecedented.
Our approach relies heavily upon the comparison principle. Therefore it might be appro-

priate for cooperative systems of arbitrary size with couplings more sophisticated than the
Lotka–Volterra one considered in Iida–Lui–Ninomiya [97]. Let us point out right now that a
fully coupled cooperative system, namely a cooperative system where the positivity of any one
component implies the positivity of all the others, cannot admit propagating terrace solutions.
Unfortunately, our approach cannot be adapted to settings devoid of comparison principle.
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Finally, let us point out that our forthcoming results would still hold true if u (1− u) and
rv (1− v) were replaced by more general KPP reaction terms. In order to ease the reading,
however, we focus on the traditional logistic form.

7.1.1 Main results
Define the auxiliary function

f :
[
2
√

1− a,+∞
)
→

(
2
√
a, 2

(√
1− a+

√
a
)]

c 7→ c−
√
c2 − 4 (1− a) + 2

√
a
. (7.1.3)

This function is decreasing and bijective and satisfies in particular

f (2) = 2,

f−1 : c̃ 7→ c̃

2 −
√
a+ 2 (1− a)

c̃− 2
√
a
.

7.1.1.1 Spreading properties of initially localized solutions

Theorem 7.1. Let u0 ∈ C (R, [0, 1]) \ {0} with support included in a left half-line and v0 ∈
C (R, [0, 1]) \ {0} with compact support. Let (u, v) be the solution of (7.1.1).

1. Assume 2
√
rd < 2. Then

lim
t→+∞

sup
x≥0
|v (t, x)| = 0,

lim
t→+∞

sup
0≤x<(2−ε)t

|u (t, x)− 1| = 0 for each ε ∈ (0, 2) ,

lim
t→+∞

sup
(2+ε)t<x

|u (t, x)| = 0 for each ε > 0.

2. Assume 2
√
rd ∈ (2, f (cLLW )) and define

cacc = f−1
(

2
√
rd
)

=
√
rd−

√
a+ 1− a√

rd−
√
a
∈ (cLLW , 2) .

Then
lim

t→+∞
sup

0≤x<(cacc−ε)t
(|u (t, x)− 1|+ |v (t, x)|) = 0 for each ε ∈ (0, cacc) ,

lim
t→+∞

sup
(cacc+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each ε ∈
(

0, 2
√
rd− cacc

2

)
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for each ε > 0.

3. Assume 2
√
rd ≥ f (cLLW ). Then

lim
t→+∞

sup
0≤x<(cLLW−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for each ε ∈ (0, cLLW ) ,

lim
t→+∞

sup
(cLLW+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each ε ∈
(

0, 2
√
rd− cLLW

2

)
,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for each ε > 0.
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In the first case, v goes extinct. In the second case, v invades first at speed 2
√
rd and is then

replaced by u at speed cacc > cLLW . In the third case, v invades first at speed 2
√
rd and is then

replaced by u at speed cLLW .
Notice that the limits above are chiefly concerned with x ≥ 0. This is intentional, for the

sake of brevity and clarity. In (−∞, 0), two behaviors are possible, depending on whether u0
is compactly supported or Heavyside-like. In the former case, all inequalities above hold with
x replaced by |x| (and this claim is proved simply by symmetry). In the latter case, (u, v)
converges uniformly to (1, 0) in (−∞, 0) (and this claim can be proved by a standard comparison
argument).

7.1.1.2 The set of admissible pairs of speeds for more general initial data

Define the auxiliary function

λv :
[
2
√
rd,+∞

)
→

(
0,
√

r
d

]
c 7→ 1

2d
(
c−
√
c2 − 4rd

).
Theorem 7.2. Let c1 ∈

[
2
√
rd,+∞

)
and c2 ∈ [cLLW , c1]. Let (u, v) be a solution of (7.1.1)

such that
c2 = sup

{
c > 0 | lim

t→+∞
sup

0≤x≤ct
(|u (t, x)− 1|+ |v (t, x)|) = 0

}
and such that at least one of the following two properties holds true:

1. x 7→ v (0, x) eλv(c1)x is bounded in R; or
2. c1 satisfies

c1 ≥ inf
{
c > 0 | lim

t→+∞
sup
x≥ct
|v (t, x)| = 0

}
.

Then c2 ≥ f−1(c1).

The assumption on c2 basically means that u spreads at speed c2. However, in general, the
spreading speed is ill-defined: the minimal spreading speed of u,

sup
{
c > 0 | lim

t→+∞
sup

0≤x≤ct
|u (t, x)− 1| = 0

}
,

might very well be smaller than its maximal spreading speed,

inf
{
c > 0 | lim

t→+∞
sup

0≤x≤ct
|u (t, x)| = 0

}
.

On this problem, we refer to Hamel –Nadin [89].
The properties (1) and (2) above are more or less equivalent. Indeed, on one hand, (1) directly

implies (2) by standard comparison; on the other hand, if (2) holds, then for all λ ∈ (0, λv (c1)),
there exists Tλ such that x 7→ v (Tλ, x) eλx is bounded in R. However the proof of the latter
implication is difficult. In fact, instead of establishing it, we will directly prove the result in each
case. We emphasize that although (2) might be easier to understand in that it directly relates
c1 to the spreading of v, (1) has the advantage of being easier to apply since it only requires
knowledge of the initial condition.
In short, this theorem means that if v spreads no faster than c1 and if u spreads at speed c2,

then c2 ≥ f−1 (c1). The next theorem shows the sharpness of this threshold: any c2 > f−1(c1)
can actually be achieved.
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Theorem 7.3. Let c1 ∈
(

2
√
rd,+∞

)
and c2 ∈ (cLLW , c1).Assume c1 > f (c2). Then there

exists (uc1,c2 , vc1,c2) ∈ C
(
R, [0, 1]2

)
such that the solution (u, v) of (7.1.1) with initial value

(u0, v0) = (uc1,c2 , vc1,c2) satisfies

lim
t→+∞

sup
x<(c2−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for each ε ∈ (0, c2) ,

lim
t→+∞

sup
(c2+ε)t<x<(c1−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for each ε ∈
(

0, c1 − c22

)
,

lim
t→+∞

sup
(c1+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for each ε > 0.

2
√

1− a.(1, 1)

2

2

2(
√

1− a+
√
a)

c2

c1 c1 = c2

f(c2)

2
√
rd

cacc

Figure 7.1.1 – Example of set of admissible pairs of speeds (c1, c2): cLLW = 2
√

1− a, 2
√
rd <

f (cLLW ).
In this case Theorem 7.1(2) applies with (c1, c2) = (2

√
rd, cacc), where cacc >

cLLW .

Let us point out that this solution (u, v) is not a proper propagating terrace in the sense of
Ducrot–Giletti–Matano [62]: the locally uniform convergence of the profiles is missing (as in
Carrère [35]).
The fact that the set of admissible speeds is not always the maximal set{

(c1, c2) ∈
[
2
√
rd,+∞

)
× [cLLW ,+∞) | c1 > c2

}
.

settles completely a question raised by the first author [Gir18a].
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2
√

1− a.(1, 1)

2

2

2(
√

1− a+
√
a)

c2

c1 c1 = c2

f(c2)

cLLW

f(cLLW )

2
√
rd

Figure 7.1.2 – Example of set of admissible pairs of speeds (c1, c2): cLLW > 2
√

1− a, 2
√
rd >

f (cLLW ).
In this case Theorem 7.1(3) applies with (c1, c2) = (2

√
rd, cLLW ).

7.1.1.3 The super-solutions and sub-solutions

The preceding theorems will be proved thanks to the following three propositions, which are
of independent interest and concern existence results for super-solutions and sub-solutions (the
precise definition of these will be recalled in the next section).
Let

λ :
[
2
√

1− a,+∞
)
→

(
0,
√

1− a
]

c 7→ 1
2

(
c−

√
c2 − 4 (1− a)

)
,

Λ : (c, c̃) 7→ 1
2

(
c̃−

√
c̃2 − 4 (λ (c) (c̃− c) + 1)

)
.

The domain of Λ is the set of all (c, c̃) such that c ≥ 2
√

1− a and c̃ ≥ max (c, f (c)).
For all c ≥ cLLW and c̃ ≥ max (c, f (c)), wc,c̃ denotes the function

wc,c̃ : (t, x) 7→ e−λ(c)(c̃−c)te−Λ(c,c̃)(x−c̃t).

Proposition 7.4. Let c1 ≥ 2
√
rd, c2 ≥ cLLW and assume c2 < c1 < f (c2).

There exist c > c2, c̃ ∈ (c1, f (c)), L > 0 and δ? > 0 such that, for all δ ∈ (0, δ?), all
κ ∈

(
0,min

( 1−a
2 , δ2

))
and all ζ > L, there exists Rδ > 0 and a sub-solution

(
uδ,ζ,κ, vδ,ζ

)
of

(7.1.1) satisfying the following properties:
1. uδ,ζ,κ (0, x) ≤ 1− a for all x ∈ R;
2. the support of x 7→ uδ,ζ,κ (0, x) is included in [0, L+ ζ + 2Rδ];
3. uδ,ζ,κ (0, x) ≤ κ for all x ∈ [L,L+ ζ + 2Rδ];
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4. there exists X > 0 such that uδ,ζ,κ satisfies

∂tuδ,ζ,κ − ∂xxuδ,ζ,κ ≤ (1− δ)uδ,ζ,κ in {(t, x) ∈ [0,+∞)× R | x > X + c̃t} .

5. there exists Cδ > 0 depending only on δ such that

vδ,ζ (0, x) ≥ min
(

1, Cδe−λv(c̃)(x−ζ)
)

for all x ∈ R;

6. the following spreading property holds true:

lim
t→+∞

sup
L≤x<(c−ε)t

∣∣∣∣uδ,ζ,κ (t, x)− 1− a
2

∣∣∣∣ = 0 for all ε ∈ (0, c) .

Proposition 7.5. Let c2 ∈
(

max
(
cLLW , f

−1
(

2
√
rd
))

, 2
)
.

There exists δ? > 0 and
(
cδ1, c

δ
2
)
δ∈(0,δ?) such that

c2 < cδ2 < cδ1 < 2
√
rd for all δ ∈ (0, δ?) ,

lim
δ→0

(
cδ1, c

δ
2
)

=
(

2
√
rd, c2

)
,

and, for all δ ∈ (0, δ?), there exists a super-solution
(
uδ, vδ

)
of (7.1.1) satisfying the following

properties:
1. there exists y0 ∈ R such that, for all y ≥ y0 and t ≥ 0,

uδ

0, x− y −

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) t

 ≥ min
(

1, wc2,2
√
rd (t, x)

)
for all x ∈ R;

2. x 7→ vδ (0, x) is compactly supported;
3. vδ (0, x) ≤ 1− δ for all x ∈ R;
4. the following spreading property holds true:

lim
t→+∞

sup
(cδ2+ε)t<x<(cδ1−ε)t

(
|uδ (t, x)|+

∣∣vδ (t, x)− (1− 2δ)
∣∣) = 0 for all ε ∈

(
0, c

δ
1 − cδ2

2

)
.

Proposition 7.6. Let c1 > 2
√
rd, c2 > cLLW and assume c1 > max (c2, f (c2)).

There exists δ? > 0 and
(
cδ2
)
δ∈(0,δ?) such that

cδ2 > c2 for all δ ∈ (0, δ?) ,

lim
δ→0

cδ2 = c2,

and, for all δ ∈ (0, δ?), there exists a super-solution of (7.1.1)
(
uδ, vδ

)
and a sub-solution of

(7.1.1)
(
uδ, vδ

)
satisfying the following properties:

1. there exists y0 ∈ R such that, for all y ≥ y0 and t ≥ 0,

uδ

(
0, x− y − (Λ (c2, c1))2 + 1

Λ (c2, c1) t

)
≥ min (1, wc2,c1 (t, x)) for all x ∈ R;
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2. the support of vδ is a right half-line and there exists (y, z) ∈ R2 such that

1
2 ≤ eλv(c1)(x−c1t)vδ (0, x− y) ≤ 1 for all t ≥ 0 and x ≥ z;

3. uδ (0, x) ≤ uδ (0, x) and vδ (0, x) ≤ vδ (0, x) for all x ∈ R;
4. the following spreading properties hold true:

lim
t→+∞

sup
x<(c2−ε)t

∣∣uδ (t, x)− (1− a)
∣∣ = 0 for all ε ∈ (0, c2) ,

lim
t→+∞

sup
(cδ2+ε)t<x<(c1−ε)t

(
|uδ (t, x)|+

∣∣vδ (t, x)− (1− 2δ)
∣∣) = 0 for all ε ∈

(
0, c1 − c

δ
2

2

)
.

lim
t→+∞

sup
(c1+ε)t<x

(|uδ (t, x)|+ |vδ (t, x)|) = 0 for all ε > 0,

The forms of the super- and sub-solutions of Proposition 7.4 and Proposition 7.5 are illus-
trated in Figure 7.4.4 and Figure 7.4.3 respectively. Those of Proposition 7.6 are illustrated in
Figure 7.4.1 and Figure 7.4.2.

7.1.2 The quantities f (c2), λ (c2), Λ (c2, c1)
Let us explain by a heuristic argument how these three quantities come out naturally in the

problem and what is their ecological meaning.
Assume that v invades the uninhabited territory at some speed c1 ≥ 2

√
rd and that u chases

v at some speed c2 ∈ [cLLW , c1). In the area where v ' 1, u looks like the exponential tail of the
monostable traveling wave connecting (0, 1) to (1, 0) at speed c2, that is

u (t, x) ' e−λ(c2)(x−c2t).

Accordingly, in a neighborhood of x = c̃t with c̃ ∈ (c2, c1), we can observe non-negligible quan-
tities only if we consider the rescaled function

w : (t, x) 7→ u (t, x) eλ(c2)(x−c2t)

instead of u itself.
Yet, in a neighborhood of x = c̃t with c̃ > c1, where (u, v) ' (0, 0), w satisfies at the first order

∂tw − ∂xxw = (1 + λ (c2) (c̃− c2))w

whence the exponential ansatz w (t, x) = e−Λ(x−c̃t) leads to the equation

Λ2 − c̃Λ + (1 + λ (c2) (c̃− c2)) = 0.

The minimal zero of this equation being precisely

Λ (c2, c̃) = 1
2

(
c̃−

√
c̃2 − 4 (λ (c2) (c̃− c2) + 1)

)
,

we deduce then that c̃ has to satisfy

c̃2 − 4 (λ (c2) (c̃− c2) + 1) ≥ 0

that is c̃ ≥ f (c2). Passing to the limit c̃→ c1, we find indeed c1 ≥ f (c2).
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7.1.3 Organization of the paper
In Section 2, we recall the comparison principle for (7.1.1) and define super-solutions and

sub-solutions.
In Section 3, we prove Theorem 7.1, Theorem 7.2 and Theorem 7.3 assuming Proposition 7.4,

Proposition 7.5 and Proposition 7.6 are true.
In Section 4, we prove Proposition 7.4, Proposition 7.5 and Proposition 7.6. These construc-

tions are rather delicate and require several objects and preliminary lemmas, which we summarize
in a table at the beginning of Subsection 7.4.1.
In Section 5, we comment on the results and provide some future perspectives.

7.2 Competitive comparison principle

7.2.1 Competitive comparison principle
In what follows, vectors in R2 are always understood as column vectors.
We define the competitive ordering � in R2 as follows: for all (u1, v1) ∈ R2, (u2, v2) ∈ R2,

(u1, v1) � (u2, v2) if u1 ≤ u2 and v1 ≥ v2.

The strict competitive ordering ≺ is defined by

(u1, v1) ≺ (u2, v2) if u1 < u2 and v1 > v2.

We define also the operators

P : (u, v) 7→ ∂t (u, v)− diag (1, d) ∂xx (u, v) ,

F : (u, v) 7→
(
u (1− u− av)
rv (1− v − bu)

)
.

With these notations, (7.1.1) can be written as{
P (u, v) = F (u, v) in (0,+∞)× R

(u, v) (0, x) = (u0, v0) (x) for all x ∈ R .

Definition 7.7. A classical super-solution of (7.1.1) is a pair

(u, v) ∈ C 1
(

(0,+∞) ,C 2
(
R, [0, 1]2

))
∩ C

(
[0,+∞)× R, [0, 1]2

)
satisfying

P (u, v) � F (u, v) in (0,+∞)× R.

A classical sub-solution of (7.1.1) is a pair

(u, v) ∈ C 1
(

(0,+∞) ,C 2
(
R, [0, 1]2

))
∩ C

(
[0,+∞)× R, [0, 1]2

)
satisfying

P (u, v) � F (u, v) in (0,+∞)× R.

The unbounded domain (0,+∞) × R can be replaced in the above definition by a bounded
parabolic cylinder (0, T )×(−R,R). In such a case, the required regularity is C 1

(
(0, T ) ,C 2

(
(−R,R) , [0, 1]2

))
∩

C
(

[0, T ]× [−R,R] , [0, 1]2
)
.
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We also recall that it is possible to extend the theory of super- and sub-solutions to Sobolev
spaces. The full extension is outside of the scope of this reminder, however a very partial
extension will be necessary later on. More precisely, we will use the following definition and
theorem. In what follows, ◦ denotes the Hadamard product (u1, v1) ◦ (u2, v2) = (u1u2, v1v2).

Definition 7.8. A generalized super-solution of (7.1.1) is a pair

(u, v) ∈ C 0,1
(

(0,+∞)× R, [0, 1]2
)

satisfying, for all (U, V ) ∈ D
(

(0,+∞)× R, [0, 1]2
)
,∫

∂t (u, v) ◦ (U, V ) + diag (1, d) ∂x (u, v) ◦ ∂x (U, V ) �
∫
F (u, v) ◦ (U, V ) .

A generalized sub-solution of (7.1.1) is a pair

(u, v) ∈ C 0,1
(

(0,+∞)× R, [0, 1]2
)

satisfying, for all (U, V ) ∈ D
(

(0,+∞)× R, [0, 1]2
)
,∫

∂t (u, v) ◦ (U, V ) + diag (1, d) ∂x (u, v) ◦ ∂x (U, V ) �
∫
F (u, v) ◦ (U, V ) .

Again, the unbounded domain (0,+∞)× R can be replaced by a bounded parabolic cylinder
(0, T ) × (−R,R). The following important theorem, that will be used many times thereafter,
actually uses the local definition.

Theorem 7.9. Let R > 0, T > 0, Q = (0, T )× (−R,R) and

(u1, u2, v1, v2) ∈ C 1
(

[0, T ] ,C 2
(

[−R,R] , [0, 1]4
))
∩ C

(
[0, T ]× [−R,R] , [0, 1]4

)
.

1. Assume that (u1, v1) and (u1, v2) are both classical super-solutions in Q. Then (u1,max (v1, v2))
is a generalized super-solution in Q.

2. Assume that (u1, v1) and (u2, v1) are both classical super-solutions in Q. Then (min (u1, u2) , v1)
is a generalized super-solution in Q.

Remark. We state this theorem in a bounded parabolic cylinder in order to be able to construct
later on more complex super- and sub-solutions, for instance super-solutions (u, v) with u of the
form

u (t, x) =

u1 (t, x) if x < x (t)
u2 (t, x) if x ∈ [x (t) , y (t)]
u3 (t, x) if x > y (t)

,

where x (t) < y (t) and u1, u2 and u3 are such that u1 (t, x) ≤ u2 (t, x) if x < x (t), u2 (t, x) ≤
u1 (t, x) in a right-sided neighborhood of x (t), u2 (t, x) ≤ u3 (t, x) in a left-sided neighborhood
of y (t) and u3 (t, x) ≤ u2 (t, x) if x > y (t). Although we do not have any global information on
u1 − u2, u1 − u3 and u2 − u3, the local theorem shows that the construction is still valid.

Proof. Since the second statement is proved similarly, we only prove the first one.
For simplicity, we only consider the special case where Γ = (v1 − v2)−1 ({0}) is a smooth

hypersurface, which is always satisfied for our purposes. A proof that does not require such a
regularity assumption can be found for instance in [132].
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7.2 Competitive comparison principle

Define v = max (v1, v2) and let (U, V ) ∈ D
(
Q, [0, 1]2

)
. On one hand,

∂tu1 − ∂xxu1 ≥ F1 (u1, v)

is satisfied in the classical sense (using for instance −au1v1 ≥ −au1v). On the other hand, we
have assumed that Γ = (v1 − v2)−1 ({0}) is a smooth hypersurface, so that we may integrate by
parts. Denoting Q1 = (v1 − v2)−1 ([0, 1]), Q2 = (v2 − v1)−1 ([0, 1]), ν the outward unit normal
to Q1, we find Γ = ∂Q1\∂Q = ∂Q2\∂Q and (∂xv1 − ∂xv2) ν ≤ 0 on Γ, whence∫

Q

∂tvV + d∂xv∂xV

=
∫
Q1

∂tv1V + d∂xv1∂xV +
∫
Q2

∂tv2V + d∂xv2∂xV

=
∫
Q1

(∂tv1 − d∂xxv1)V +
∫
∂Q1

∂xv1V ν +
∫
Q2

(∂tv2 − d∂xxv2)V +
∫
∂Q2

∂xv1V (−ν)

≤
∫
Q1

F2 (u1, v1)V +
∫
Q2

F2 (u1, v2)V +
∫

Γ
(∂xv1 − ∂xv2)V ν

≤
∫
Q

F2 (u1, v)V.

This completes the proof.

An inversion of the roles yields a similar statement on sub-solutions.

Theorem 7.10. Let R > 0, T > 0, Q = (0, T )× (−R,R) and

(u1, u2, v1, v2) ∈ C 1
(

[0, T ] ,C 2
(

[−R,R] , [0, 1]4
))
∩ C

(
[0, T ]× [−R,R] , [0, 1]4

)
.

1. Assume that (u1, v1) and (u1, v2) are both classical sub-solutions in Q. Then (u1,min (v1, v2))
is a generalized sub-solution in Q.

2. Assume that (u1, v1) and (u2, v1) are both classical sub-solutions in Q. Then (max (u1, u2) , v1)
is a generalized sub-solution in Q.

Since a classical super- or sub-solution is a fortiori a generalized super- or sub-solution respec-
tively, from now on, we omit the adjectives classical and generalized and always have in mind
the generalized notion.
The comparison principle for (7.1.1), directly derived from the comparison principle for co-

operative systems (see Protter–Weinberger [129]) via the transformation w = 1 − v, reads as
follows.

Theorem 7.11. Let (u, v) and (v, u) be respectively a super-solution and a sub-solution of
(7.1.1). Assume that

(u, v) (0, x) � (u, v) (0, x) for all x ∈ R.

Then
(u, v) � (u, v) in [0,+∞)× R.

Furthermore, if there exists (T, x) ∈ (0,+∞) × R such that u (T, x) = u (T, x) or v (T, x) =
v (T, x), then

(u, v) = (u, v) in [0, T ]× R.
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In other words, (u, v) � (u, v) holds at t = 0 if and only if it holds at all t ≥ 0.
Finally, we recall an important existence result that will be used later on.

Theorem 7.12. Let (u, v) and (v, u) be respectively a super-solution and a sub-solution of
(7.1.1). Assume that for some (u0, v0) ∈ C(R, [0, 1]2) we have

(u, v)(0, x) � (u0, v0)(x) � (u, v)(0, x) for all x ∈ R,

then the solution (u, v) of (7.1.1) with initial data (u0, v0) satisfies

(u, v) � (u, v) � (u, v) in [0,+∞)× R.

7.3 Proofs of Theorem 7.1, Theorem 7.2 and Theorem 7.3
In this section, we assume Proposition 7.4, Proposition 7.5 and Proposition 7.6 are true.

7.3.1 Proof of Theorem 7.2

Proof. Let c1 ≥ 2
√
rd and c2 ≥ cLLW such that c1 ≥ c2 and c1 < f (c2).

First, we consider the case where x 7→ v0 (x) eλv(c1)x is globally bounded. By contradiction,
assume the existence of a solution (u, v) such that both the boundedness of x 7→ v0 (x) eλv(c1)x

and the equality

c2 = sup
{
c > 0 | lim

t→+∞
sup

0≤x≤ct
(|u (t, x)− 1|+ |v (t, x)|) = 0

}
are true.
Define c, c̃, δ?, δ = δ?

2 , Rδ, L, uδ,ζ,κ, vδ,η as in Proposition 7.4. Note that c > c2, c̃ > c1.
In view of the equality satisfied by c2, there exists T ≥ 2L

c2
such that, for all x ∈

[
0, c2

2 T
]
,

u (T, x) ≥ 1− a
2 .

We claim that (t, x) 7→ v (t, x) eλv(c1)(x−c1t) is globally bounded in [0,+∞)×R. To see this, it
suffices to observe that, by definition of λv(c1), Ce−λv(c1)(x−c1t) is a supersolution of the equation
of v for any constant C > 0. Hence standard comparison implies that

v(t, x) ≤
(

sup
x∈R

v(0, x)eλv(c1)x
)
e−λv(c1)(x−c1t).

Since c1 < c̃ and λv is decreasing, we have λv (c1) > λv (c̃). Hence, there exists ζ > L such
that

v (T, x) ≤ vδ,ζ (0, x) for all x ∈ R.

Now, we fix

κ = 1
2 min

(
min

(
1− a

2 ,
δ

2

)
, min
x∈[L,L+ζ+2Rδ]

u (T, x)
)
.

It follows that

u(T, x) ≥

 1− a for x ∈ [0, L],
κ for x ∈ (L,L+ ζ + 2Rδ],
0 for x ∈ R \ [0, L+ ζ + 2Rδ],

whence u(T, x) ≥ uδ,ζ,κ (0, x) for x ∈ R. Then

(u, v) : (t, x) 7→
(
uδ,ζ,κ (t− T, x) , v (t− T, x)

)
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is a sub-solution of (7.1.1) which satisfies (u, v) � (u, v) at t = T , whence by the comparison
principle of Theorem 7.11 it satisfies the same inequality at any time t ≥ T .
Now, due to the spreading property satisfied by u, for all ε ∈ (0, c), there exists Tε ≥ T such

that, for all t ≥ Tε,
inf

L≤x<(c−ε)t
u (t, x) ≥ 1− a

4 .

Thus, by comparison of (u, v) with the spatially homogeneous sub-solution
(
U, V

)
satisfying the

system 
U ′ (t) = U (t)

(
1− U (t)− aV (t)

)
for all t ∈ (Tε,+∞)

V
′ (t) = rV (t)

(
1− V (t)− bU (t)

)
for all t ∈ (Tε,+∞)

U (Tε) = 1−a
4

V (Tε) = 1

,

whose convergence to (1, 0) is well-known, we find

lim
t→+∞

sup
0≤x<(c−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for all ε ∈ (0, c) .

This means c2 ≥ c, and directly contradicts the chose of c > c2 made at the beginning of the
proof.
Next, we consider the case where

c1 ≥ inf
{
c > 0 | lim

t→+∞
sup
x≥ct
|v (t, x)| = 0

}
.

Since the proof is mostly the same, we only sketch it. Again, we argue by contradiction and
use Proposition 7.4. Using the assumption on the spreading of v, we can establish the following
estimate:

v (t, x− ĉt) ≤ 1y≤y0 (x− ĉt) + δ

2a1y≥y0 (x− ĉt) ,

for some y0 ∈ R and with ĉ = c̃+c1
2 . Thanks to this, we can directly use ηuδ,ζ,κ, for some small

η > 0, as sub-solution for u and deduce a contradiction. We point out that in this case, we do
not use the competitive comparison principle but instead use the scalar one.

7.3.2 Proof of Theorem 7.1
7.3.2.1 Hair-trigger effect and extinction

Proposition 7.13. Let u0 ∈ C (R, [0, 1]) \ {0} with support included in a left half-line and
v0 ∈ C (R, [0, 1]) \ {0} with compact support. Let (u, v) be the solution of 7.1.1.

1. If 2
√
rd > 2, then

lim
t→+∞

sup
0≤x<(cLLW−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for all ε ∈ (0, cLLW ) ,

lim
t→+∞

sup
(2
√
rd+ε)t<x

(|u (t, x)|+ |v (t, x)|) = 0 for all ε > 0,

lim
t→+∞

sup
(2+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0 for all ε ∈
(

0, 2
√
rd− cLLW

2

)
.
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2. If 2
√
rd < 2, then

lim
t→+∞

sup
x∈R
|v (t, x)| = 0,

lim
t→+∞

sup
0≤x<(2−ε)t

|u (t, x)− 1| = 0 for all ε ∈ (0, 2) ,

lim
t→+∞

sup
(2+ε)t<x

|u (t, x)| = 0 for all ε > 0.

Remark. The inequality regarding (2 + ε) t < x <
(

2
√
rd− εt

)
is by far the more interesting

and the less trivial. It basically means that u does not exert any competition far ahead of its own
territory. It was first proved by Ducrot, Giletti and Matano [61] in the case of predator–prey
interactions (the conclusion being then that no predation occurs far ahead of the territory of the
predator), and by Lin and Li [112] in case of two-species competition (the conclusion being that
the region of coexistence falls behind the territory where the faster diffuser dominates). The
proof of Ducrot et al. was sufficiently robust and generic to be reused by Carrère [35] in the
bistable competitive case and to be reused again here, in the monostable case. Although it would
certainly be interesting to write the result of Ducrot et al. in the most general form possible
(with more than two species and minimal assumptions on the interactions), this is far beyond
the scope of this paper. Therefore we simply adapt the main idea of their proof.

Proof. First, applying the comparison principle with the solution of{
∂tuKPP − ∂xxuKPP = uKPP (1− uKPP ) in (0,+∞)× R

uKPP (0, x) = u0 (x) for all x ∈ R ,

we find directly u ≤ uKPP , whence

lim
t→+∞

sup
x>(2+ε)t

u (t, x) = 0 for all ε > 0.

Similarly,
lim

t→+∞
sup

x>(2
√
rd+ε)t

v (t, x) = 0 for all ε > 0.

Furthermore, (u, v) satisfies also (u, v) � (uLLW , vLLW ), where (uLLW , vLLW ) is the solution of
(7.1.1) with initial data (u0, 1), and by Lewis–Li–Weinberger [108], this yields

lim
t→+∞

sup
0≤x<(cLLW−ε)t

|u (t, x)− 1|+ |v (t, x)| = 0 for all ε ∈ (0, cLLW ) .

Next, let us prove that if 2
√
rd < 2 and provided

lim
t→+∞

sup
(2
√
rd+ε)t<x<(2−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for all ε ∈
(

0, 2− 2
√
rd

2

)
,

then in fact the above limit can be reinforced as

lim
t→+∞

sup
0≤x<(2−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0 for all ε ∈ (0, 2) .

Let ε ∈
(

0, 2−2
√
rd

3

)
. It is well-known (see Du–Lin [59, 60]) that there exists a unique solution

of 
−ϕ′′ = ϕ

(
1− a− ϕ

)
in (0,+∞)

ϕ (0) = 0
ϕ (x) > 0 for all x > 0

.
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Furthermore, this solution is increasing in (0,+∞) and converges to 1−a at +∞. In view of the
assumption on the limit of (u, v) in

(
2
√
rd+ ε

)
t < x < (2− ε) t, there exists T ≥ 0 and x0 > 0

such that

u (t, y + (2− 2ε) t) > 1− a > ϕ(y + (2− 2ε)t− x0) for (y, t) ∈ {0} × [T,+∞),

u(t, y + (2− 2ε)t) ≥ ϕ(y + (2− 2ε)t− x0) for (y, t) ∈ (−∞, 0]× {T},
ϕ(y + (2− 2ε)t− x0) > 0 when (y, t) = (0, T ).

Let ũ(t, y) = u(t, y + (2 − 2ε)t) and ũ(t, y) = ϕ(y + (2 − 2ε)t − x0). Then they satisfy for all
(t, y) ∈ (0,+∞)× R,

∂tũ− ∂xxũ− (2− 2ε)∂xũ− ũ(1− ũ− av) ≤ 0 = ∂xxũ− (2− 2ε)∂xũ− ũ(1− ũ− av),

it follows by virtue of the scalar comparison principle and of a change of variable y = x−(2− 2ε) t
that

u (t, x) ≤ u (t, x) for all t ≥ T and x ≤ (2− 2ε) t.
Consequently,

lim inf
t→+∞

inf
εt<x<(2−2ε)t

u (t, x) ≥ 1− a,

whence there exists T ′ ≥ 0 such that

inf
εt<x<(2−2ε)t

u (t, x) ≥ 1− a
2 > 0 for all t ≥ T ′.

By virtue of Theorem 7.11, the solution (U, V ) of (7.1.1) with constant initial values
( 1−a

2 , 1
)

satisfies
(U, V ) (t− T ′, x) � (u, v) (t, x) for all t ≥ T ′ and εt < x < (2− 2ε) t.

Since (U, V ) coincides with the solution of the ODE systemU ′ = U (1− U − aV )
V ′ = rV (1− V − bU)
(U, V ) (0) =

( 1−a
2 , 1

) ,

standard theory on such systems shows that (U, V ) converges to (1, 0), whence (u, v) itself con-
verges to (1, 0) uniformly in εt < x < (2− 2ε) t. Recalling that we also have the estimate

lim
t→+∞

sup
0≤x<(cLLW−ε)t

|u (t, x)− 1|+ |v (t, x)| = 0 for all ε ∈ (0, cLLW ) ,

the claim is proved.
It now remains to prove the most difficult part, namely

lim
t→+∞

sup
(2+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0, if 2
√
rd > 2,

and
lim

t→+∞
sup

(2
√
rd+ε)t<x<(2−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0, if 2
√
rd < 2.

Since this is a symmetric statement and since the forthcoming proof does not rely upon the
assumptions a < 1 and b > 1, we only do the case 2

√
rd > 2 (when v spreads faster than u) and

the proof will be valid for the other case (when u spreads faster than v) as well.
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Step 1: Let ū : (t, x) 7→ min
(
1, e−(x−2t−x1)), where x1 is chosen such that ū (0, x) ≥ u (0, x)

for all x ∈ R. Then, by standard scalar comparison,

u (t, x) ≤ ū (t, x) for all t ≥ 0 and x ∈ R.

Step 2: We show that for each c ∈ (2, 2
√
rd), there exist positive constants δ, x2, η1, R such

that

v (t′, x+ x2 + ct) ≥ η1 for all t ≥ 1, x ∈ (−2R, 2R) and t′ ∈ [(1− δ) t, (1 + δ) t] . (7.3.1)

To show (7.3.1), fix c ∈
(

2, 2
√
dr
)
and fix δ so small that

2 < c

1 + δ
<

c

1− δ < 2
√
dr.

Let η > 0, R > 0, x2 ∈ R, c̃ ∈
[

c
1+δ ,

c
1−δ

]
and define

vc̃ : (t, x) 7→ ηe− c̃
2d (x−c̃t)ψ4R (x− c̃t− x2) ,

where (λ4R, ψ4R) is the Dirichlet principal eigenpair defined by
−dψ′′4R = λ4Rψ4R in (−4R, 4R)
ψ4R (±4R) = 0
ψ4R (x) > 0 for all x ∈ (−4R, 4R)
maxψ4R = 1

.

The principal eigenvalue λ4R is positive, vanishes as R → +∞ and ψ4R is extended into R by
setting ψ4R (x) = 0 if |x| > 4R.
Obviously,

∂tv
c̃ − d∂xxvc̃ − rvc̃

(
1− vc̃ − bu

)
≤ ∂tvc̃ − d∂xxvc̃ − rvc̃

(
1− vc̃ − bu

)
,

whence the right-hand side above divided by ηe− c̃
2d (x−c̃t) is a fortiori smaller than or equal to

c̃2

2dψ4R − c̃ψ′4R − d
(
ψ′′4R + c̃2

4d2ψ4R −
c̃

d
ψ′4R

)
− rψ4R

(
1− vc̃ − bu

)
≤
(
c̃2

4d + λ4R − r + r
(
vc̃ + bu

))
ψ4R

≤
(
λ4R + r

(
vc̃ + bu− γ

))
ψ4R,

where the last inequality holds provided we choose the constant γ > 0 so small that

2
√
r(1− γ)d > c

1− δ ≥ c̃.

Therefore, by choosing R so large that λ4R < r γ4 , x2 so large that

ū (t, x) ≤ γ

4b for all t ≥ 0 and x ≥ 2t+ x2 − 4R

(which is possible by Step 1), and η so small that

η sup
ĉ∈[ c

1+δ ,
c

1−δ ]
sup

ξ∈(−4R+x2,4R+x2)

(
e− c̃

2d ξψ4R (ξ − x2)
)
≤ γ

4 ,
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η sup
ĉ∈[ c

1+δ ,
c

1−δ ]

(
e− ĉ

2d (x−ĉ)ψ4R (x− ĉ− x2)
)
≤ v (1, x) for all x ∈ R

we deduce that vc̃ is a sub-solution for the single parabolic equation satisfied by v.
By scalar comparison, v(t, x) ≥ vc̃(t, x) for all t ≥ 1 and x ∈ R. It follows then that

v
(c
c̃
t, x+ x2 + ct

)
≥ vc̃

(c
c̃
t, x+ x2 + ct

)
= ηe−

c̃
2d (x+x2)ψ4R(x)

≥ ηe− c̃
2dx2e−

c̃
dR min

[−2R,2R]
ψ4R

for all t ≥ 1 and x ∈ [−2R, 2R]. Noticing that the last expression on the right-hand side above
is constant and denoting

η1 = η min
[−2R,2R]

ψ4R inf
ĉ∈[ c

1+δ ,
c

1−δ ]

(
e−

ĉ
2dx2e−

ĉ
dR
)
,

we may take the infimum over all c̃ ∈
[

c
1+δ ,

c
1−δ

]
and obtain indeed (7.3.1).

Step 3: We are now in position to show that, for any small ε > 0,

lim
t→+∞

sup
(2+ε)t<x<(2

√
rd−ε)t

|v (t, x)− 1| = 0.

Assume by contradiction the existence of sequences (tn)n∈N, (xn)n∈N and of c ∈ (2, 2
√
rd) such

that, as n→ +∞, tn → +∞, xntn → c and lim sup v (tn, xn) < 1.
Denote (cn)n∈N =

(
xn
tn

)
n∈N

, assume without loss of generality that
∣∣∣ ccn − 1

∣∣∣ < δ/2, where
δ = δ(c) is specified in Step 2.
For all n ∈ N, define τn = cn

c tn = xn
c and

vn : (t, x) 7→ v

(
t+ c

cn
τn, x+ x2 + cτn

)
.

By Step 2 (with t′ = t+ c
cn
τn and t = τn), we deduce that

vn(t, x) ≥ η1 if |x| ≤ 2R and
∣∣∣∣t+

(
c

cn
− 1
)
τn

∣∣∣∣ < δτn,

and hence (using
∣∣∣ ccn − 1

∣∣∣ < δ
2 ) if |x− x2| ≤ 2R and |t| < δ

2τn.
By classical parabolic estimates (see Lieberman [111]), (vn)n∈N converges up to a diagonal

extraction in Cloc
(
R2, [0, 1]

)
to a limit v∞ which satisfies (using the fact that u(t+ c

cn
τn, x+cτn)→

0 in Cloc
(
R2, [0, 1]

)
by Step 1, since (cτn)/( c

cn
τn) = cn ≥ c

1+δ > 2 for all n)

∂tv∞ − d∂xxv∞ − rv∞ (1− v∞) = 0 in R2

and, in view of the above estimates,

v∞ (t, x+ x2) ≥ η1 for all t ∈ R and x ∈ [−2R, 2R] .

By standard classification of the entire solutions of the KPP equation, this implies v∞ ≡ 1. In
particular,

v(tn, xn) = v

(
c

cn
τn, cτn

)
= vn(0,−x2)→ 1.

This directly contradicts lim sup v(tn, xn) < 1.
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In view of Proposition 7.13, in order to prove Theorem 7.1, we only have to prove that for
each sufficiently small ε > 0,

lim
t→+∞

sup
x<(c?−ε)t

(|u (t, x)− 1|+ |v (t, x)|) = 0,

lim
t→+∞

sup
(c?+ε)t<x<(2

√
rd−ε)t

(|u (t, x)|+ |v (t, x)− 1|) = 0,

where
c? = max

(
cLLW , f

−1
(

2
√
rd
))

.

7.3.2.2 Proof of Theorem 7.1

We begin with an algebraic lemma.

Lemma 7.14. Let c2 ≥ 2
√

1− a and c1 > c2 such that c1 ≥ f (c2). Then

(Λ (c2, c1))2 + 1
Λ (c2, c1) < c1.

Proof. First, Λ(c2, c1) is well-defined as c1 ≥ max{c2, f(c2)}. Noticing that

(Λ (c2, c1))2 − c1Λ (c2, c1) + λ (c2) (c1 − c2) + 1 = 0,

we find that the claimed inequality is equivalent to −λ (c2) (c1 − c2) < 0.

Now we prove the remaining part of Theorem 7.1. Assume 2
√
rd > 2, define c? as above, fix

u0 ∈ C (R, [0, 1]) \ {0} with support included in a left half-line and v0 ∈ C (R, [0, 1]) \ {0} with
compact support and let (u, v) be the solution of equation (7.1.1).

Proof. By virtue of Theorem 7.2 and Proposition 7.13,

sup
{
c > 0 | lim

t→+∞
sup
x≤ct

(|u (t, x)− 1|+ |v (t, x)|) = 0
}
≥ c?.

It remains to verify that the quantity

c = inf

0 < c < 2
√
rd | lim

t→+∞
sup

ct≤x≤ 2
√
rd+c
2 t

(|u (t, x)|+ |v (t, x)− 1|) = 0


satisfies c ≤ c?. Notice that by Proposition 7.13, c ≤ 2.
Assume by contradiction c ∈ (c?, 2] and let c2 ∈ (c?, c). Define δ? as in Proposition 7.5, let

δ ∈ (0, δ?) so small that cδ2 < c and define subsequently (uδ, vδ).
By standard comparison,

u (t, x) ≤ min
(

1, wc2,2
√
rd (t, x)

)
for all (t, x) ∈ (0,+∞)× R.

By virtue of Proposition 7.5, there exists y0 ∈ R such that, for all y ≥ y0 and t ≥ 0,

uδ

0, x− y −

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) t

 ≥ min
(

1, wc2,2
√
rd (t, x)

)
for all x ∈ R,
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Since
c2 < c ≤ 2 < 2

√
rd,

c2 > c? = max
(
cLLW , f

−1
(

2
√
rd
))
≥ max

(
2
√

1− a, f−1
(

2
√
rd
))

,

Lemma 7.14 yields (
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) < 2

√
rd.

Choose c > 0 such that

max

1
2

2
√
rd+

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
)

 , 2

 < c < 2
√
rd.

By virtue of Proposition 7.5, x 7→ vδ

(
0, x− y − (Λ(c2,2

√
rd))2+1

Λ(c2,2
√
rd) t

)
is compactly supported for

all y ≥ y0 and t ≥ 0. Since also 2 < c < 2
√
rd, by virtue of Proposition 7.13, there exists T0 ≥ 0

such that, for all T ≥ T0,

vδ (0, x− cT ) ≤ v (T, x) for all x ∈ R.

Now, relating the parameters y and T as follows,

cT = y +

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) T, where we have c >

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) ,

we find the existence of y ≥ y0 and T ≥ T0 such that

vδ

0, x− y −

(
Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) T

 ≤ v (T, x) for all x ∈ R.

Then

(u, v) : (t, x) 7→
(
uδ, vδ

)t− T, x− y −
(

Λ
(
c2, 2
√
rd
))2

+ 1

Λ
(
c2, 2
√
rd
) T


is a super-solution of (7.1.1) which satisfies (u, v) � (u, v) at t = T , whence by the comparison
principle of Theorem 7.11 it satisfies the same inequality at any time t ≥ T .
A contradiction follows from Proposition 7.5 and cδ2 < c, as in the proof of Theorem 7.2.

7.3.3 Proof of Theorem 7.3

Let c1 > 2
√
rd, c2 > cLLW and assume c1 > max (c2, f (c2)).
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Proof. Fix δ?, δ = δ?

2 and cδ2, and define the super- and sub-solutions (uδ, vδ) and (uδ, vδ) as in
Proposition 7.6.
First, let (u0, v0) ∈ C

(
R, [0, 1]2

)
be a pair such that

(
uδ, vδ

)
(0, x) � (u0, v0) (x) �

(
uδ, vδ

)
(0, x) for all x ∈ R

and satisfying also
u0 (x) ≤ wc2,c1 (0, x) for all x ∈ R.

By virtue of Theorem 7.12, there exists a (unique) solution (u, v) of (7.1.1) such that

(u, v) (0, x) = (u0, v0) (x) for all x ∈ R,(
uδ, vδ

)
(t, x) � (u, v) (t, x) �

(
uδ, vδ

)
(t, x) for all t ∈ (0,+∞) and x ∈ R,

u (t, x) ≤ min (1, wc2,c1 (t, x)) for all t ∈ (0,+∞) and x ∈ R.

Next, in view of the spreading properties of the super-solution and the sub-solution and thanks
to the comparison argument with the ODE system detailed in the proof of Theorem 7.2, it only
remains to show that the quantity

c̄ = inf
{
c > 0 | lim

t→+∞
sup

ct≤x≤ c1+c
2 t

(|u (t, x)|+ |v (t, x)− 1|) = 0
}

satisfies c̄ ≤ c2.
Now, the choice of super- and sub-solutions above proves that c̄ ∈ [c2, cδ2]. Suppose to the

contrary that c̄ > c2. Then we can fix a sufficiently small δ′ ∈ (0, δ) such that cδ′2 ∈ (c2, c̄). (This
is possible since cδ′2 ↘ c2 as δ′ ↘ 0, by Proposition 7.6.) Then, thanks to

— the estimate u ≤ min (1, wc2,c1),

— Lemma 7.14 which controls from above the speed of wc2,c1 ,
— the control from below of the exponential tail of v,

Proof. we can use the super-solution
(
uδ′ , vδ′

)
associated with a sufficiently small δ′ ∈ (0, δ) as

barrier after some large time Tδ′ to slow down the invasion of u in an impossible way. More
precisely, just as in the proof of Theorem 7.1, there exist large T ′ and y0 such that, for all x ∈ R,

u(T ′, x) ≤ min (1, wc2,c1(T ′, x)) ≤ uδ′(0, x− y0)

and
v(T ′, x) ≥ vδ′(0, x− y0).

This implies that

(u (t, x) , v (t, x)) �
(
uδ′ (t− T ′, x− y0) , vδ′ (t− T ′, x− y0)

)
for all t ≥ T ′ and x ∈ R

and c̄ ≤ cδ′2 , which is a contradiction. This ends the proof.
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7.4 Proofs of Proposition 7.4, Proposition 7.5 and
Proposition 7.6

7.4.1 Several useful objects

In this subjection, we will define components which will be used for our later constructions.
For ease of reading, we suggest the readers to skip Subsection 7.4.1 and only refer to it when a
specific object is being used.

List of Objects
Object(s) Defined in Used in Property
f(c) Sect. 7.1.1, (7.1.3) f(c) = c+ 2

√
a−

√
c2 − 4(1− a)

cacc Theorem 7.1(2) cacc > cLLW

λ(c) Sect. 7.1.1.3 λ(c) = λδ(c)
∣∣
δ=0

Λ(c, c̃) Sect. 7.1.1.3; Lemma 7.14 Λ(c, c̃) = Λδ(c, c̃)
∣∣
δ=0

wc,c̃ Sect. 7.1.1.3
uδ,ζ,κ, vδ,ζ Proposition 7.4 Sect. 7.3.1 Fig. 7.4.4
uδ, vδ Proposition 7.5 Sect. 7.3.2.2 Fig. 7.4.3

(uδ, vδ), (uδ, vδ) Proposition 7.6 Sect. 7.3.3 Fig. 7.4.1 and Fig. 7.4.2
λv(c) Sect. 7.4.1.1 Sect. 7.4.3.2 and 7.4.5.1 dλ2 − cλ+ r = 0
aδ Sect. 7.4.1.2 aδ → a as δ → 0
λδ(c) Sect. 7.4.1.3 λ2 − cλ+ (1− aδ) = 0
cδLLW Sect. 7.4.1.4; Lemma 7.16 Minimal speed for P (u, v) = Fδ(u, v)
Fδ Sect. 7.4.1.4

(ϕδ,c, ψδ,c) Sect. 7.4.1.5 Sect. 7.4.3.1 and 7.4.4.1 Monotone profile for P (u, v) = Fδ(u, v)
θδ,c,A Sect. 7.4.1.6; Lemma 7.24 Sect. 7.4.3.1 and 7.4.4.1 (7.4.9)

ωδ,R, Rωδ , xδ,R Sect. 7.4.1.7; Lemma 7.17 Sect. 7.4.4.1 (7.4.1)
πδ,c,h, h? Sect. 7.4.1.8; Lemma 7.23 Sect. 7.4.3.1 (7.4.2)

βc,B,η, ξβ ,Kβ Sect. 7.4.1.9; Lemma 7.22 Sect. 7.4.3.1 Exp. decay of v at +∞
αl, Lα, xl Sect. 7.4.1.10; Lemma 7.18 Sect. 7.4.5.1 (7.4.3)

χc Sect. 7.4.1.11 Sect. 7.4.3.2 and 7.4.5.1 (7.4.4)
fδ(c), Λδ(c, c̃) Sect. 7.4.1.12 Beginning, Sect. 7.4.4 (7.4.5)

wδ,c,c̃ Sect. 7.4.1.13; Lemma 7.19 Sect. 7.4.3.1 and 7.4.4.1 (7.4.6)
wc,c̃,A,η, Xw Sect. 7.4.1.14; Lemma 7.21 Sect. 7.4.3.2 (7.4.8)
zδ,c,c̃, Rz Sect. 7.4.1.15; Lemma 7.20 Sect. 7.4.5.1 (7.4.7)
λ−∞(c) Lemma 7.15

List of Intersection Points
Symbol Defined in Used in Relation
x0(t), ζ0 Lemma 7.25 Sect. 7.4.3.2 χc(x0(t)− ct+ ζ0) = wc,c̃,A,η(t, x0(t))

ξ1,κ, ζ1,κ, Aκ Lemma 7.26 Sect. 7.4.3.1 and 7.4.4.1 θδ,c,Aκ(ξ1,κ) = ψδ,c(ξ1,κ − ζ1,κ)
x2(t), ζ2 Lemma 7.27 Sect. 7.4.3.1 and 7.4.4.1 ϕδ,c(x2(t)− ct) = wδ,c,c̃(t, x2(t)− ζ2)
x3(t), ζ3 Lemma 7.28 Sect. 7.4.4.1 ψδ,c(x̂3(t)− ct) = ωδ,Rδ (x̂3(t)− (2

√
r(1− 2δ)d− δ)t− ζ̂3)

Lemma 7.29 Sect. 7.4.3.1 ψδ,c(x3(t)− ct) = πδ,c̃,h(x3(t)− c̃t− ζ3)
ξ4, ζ4 Lemma 7.30 Sect. 7.4.3.1 πδ,c,h(ξ4) = βc,B,η(ξ4 − ζ4)

x0,κ(t), ζ0 Lemma 7.31 Sect. 7.4.5.1 αL(x0,κ(t)) = χc(x0,κ(t)− ct− ζ0)
x1(t) Lemma 7.32 Sect. 7.4.5.1 χc(x1(t)− ct) = χc(ζ)

zc,c̃,δ(0,Xz)zc,c̃,δ(t, x1(t)− ζ)
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7.4.1.1 The function λv

The function λv is defined as

λv :
[
2
√
rd,+∞

)
→

(
0,
√

r
d

]
c 7→ 1

2d
(
c−
√
c2 − 4rd

).
7.4.1.2 The real aδ

For all δ ∈
[
0, 1

2
)
, we denote

aδ = (1− 2δ) a
1 + δ

.

Notice that a0 = a and that δ 7→ aδ is decreasing.

7.4.1.3 The function λδ

For all δ ∈
[
0, 1

2
]
, the function λδ is defined as

λδ :
[
2
√

1− aδ,+∞
)
→

(
0,
√

1− aδ
]

c 7→ 1
2

(
c−

√
c2 − 4 (1− aδ)

)
.

The family (λδ)δ∈[0, 1
2 ] is continuous and increasing in δ. Note that λ0 = λ, the latter being

introduced in Subsection 7.1.1.3.

7.4.1.4 The real cδLLW

For all δ ∈
[
0, 1

2
)
, cδLLW denotes the minimal wave speed of the problem P (u, v) = Fδ (u, v),

where

Fδ : (u, v) 7→
(
u (1 + δ − u− av)
rv (1− 2δ − v − bu)

)
.

Notice that (u, v) is a solution of P (u, v) = Fδ (u, v) if and only if

(U, V ) : (t, x) 7→
(

u

1 + δ
,

v

1− 2δ

)(
t

1 + δ
,

x√
1 + δ

)
is a solution of

P (U, V ) =

 U
(

1− U − (1−2δ)a
1+δ V

)
(1−2δ)r

1+δ V
(

1− V − (1+δ)b
1−2δ U

) .

Therefore
cδLLW =

√
1 + δĉδLLW ,

where ĉδLLW is the minimal wave speed of equation (7.1.2) where (r, a, b) is replaced by
(

(1−2δ)r
1+δ , aδ,

(1+δ)b
1−2δ

)
.

As such, cδLLW satisfies
2
√

(1− aδ) (1 + δ) ≤ cδLLW ≤ 2
√

1 + δ.
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7.4.1.5 The functions ϕδ,c and ψδ,c

For all δ ∈
[
0, 1

2
)
and c ≥ cδLLW ,

(
ϕδ,c, ψδ,c

)
denotes a component-wise monotonic profile

of traveling wave with speed c for the problem P (u, v) = Fδ (u, v), connecting (1 + δ, 0) to
(0, 1− 2δ) and satisfying the normalization ψδ,c (0) = 1−2δ

2 .
The existence of such a profile is well-known (and proved for instance in [110]). In fact, in

the appendix, we will prove that any profile of traveling wave is component-wise monotonic and
show that the condition

c+
√
c2 + 4rd
2d ≥

c−
√
c2 − 4 (1− a)

2
implies the uniqueness, up to translation, of the profile associated with a particular speed c ≥
cLLW . However these results are not actually required here. What is required indeed is the
forthcoming Lemma 7.15.

7.4.1.6 The function θδ,c,A

For all δ ∈
[
0, 1

2
)
, c ≥ cδLLW and A > 0, define the function

θδ,c,A : ξ 7→ Ae
1

2d

(√
c2+4rd(b−1+δ)−c

)
(ξ−ξθ) − e

1
2d

(
−
√
c2+4rd(b−1+δ)−c

)
(ξ−ξθ)

where the constant
ξθ = d lnA√

c2 + 4rd (b− 1 + δ)

is fixed so that θδ,c,A (0) = 0. This function is increasing in R.

7.4.1.7 The function ωδ,R and the real Rωδ
For all δ ∈ [0, 1) and all R > 0 large enough, ωδ,R : [−R,R] → [0,+∞) denotes the unique

nonnegative nonzero solution of{
−dω′′ −

(
2
√
r (1− δ) d− δ

)
ω′ = rω (1− δ − ω) in (−R,R)

ω (±R) = 0
. (7.4.1)

It is well-known that this problem admits a solution if and only if R is larger than or equal to
some Rωδ > 0.
We extend the definition of ωδ,R into the whole real line by setting ωδ,R (ξ) = 0 if |ξ| > R.

7.4.1.8 The function πδ,c,h

For all δ ∈ [0, 1), c ≥ 2
√
rd and all h ∈ R, πδ,c,h denotes

πδ,c,h : (ξ) 7→ πδ,c(ξ) + hξ, (7.4.2)

where πδ,c denotes the unique (decreasing) profile of traveling wave solution of

∂tv − d∂xxv = rv (1− δ − v)

connecting 0 to 1− δ at speed c and satisfying πδ,c (0) = 1−δ
2 .
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7.4.1.9 The function βc,B,η

For all c > 2
√
rd, η ∈

(
0, 1

d

√
c2 − 4rd

)
and B > 0, βc,B,η denotes

βc,B,η : ξ 7→ max
(

0, e−λv(c)(ξ+ξβ) −Kβe−(λv(c)+η)(ξ+ξβ)
)
,

where the constants
Kβ = r (1 + bB)

η
(√
c2 − 4rd− dη

)
and ξβ = lnKβ

η are fixed so that βc,B,η is positive in (0,+∞) and null elsewhere.

7.4.1.10 The function αl and the real Lα
Similarly to the construction of ωδ,R and Rωδ , we define αl : R → [0,+∞) and Lα > 0 such

that, for all l ≥ Lα, 
−αl′′ = αl

(
1− a− αl

)
in (0, l)

αl (0) = αl (l) = 0
αl (x) = 0 if

∣∣x− l
2
∣∣ > l

2

. (7.4.3)

7.4.1.11 The function χc

For all c ≥ 2
√

1−a
2 , χc denotes the unique (decreasing) profile of traveling wave solution of

∂tu− ∂xxu = u

(
1− a

2 − u
)

(7.4.4)

connecting 0 to 1−a
2 at speed c and satisfying χc (0) = 1−a

4 .

7.4.1.12 The functions fδ (c) and Λδ (c, c̃)

For all δ ∈
[
0, 1

2
)
, fδ denotes the function

fδ :
[
2
√

1− aδ,+∞
)
→

(
0, 2

(√
1− aδ +√aδ

)]
c 7→ c−

√
c2 − 4 (1− aδ) + 2√aδ

.

Notice right now that provided c̃ − fδ (c) > −4√aδ, c̃ − fδ (c) has exactly the sign of c̃2 −
4 (λδ (c) (c̃− c) + 1). Indeed, by the fact that (λδ (c))2 − cλδ (c) + 1− aδ = 0,

c̃2 − 4 (λδ (c) (c̃− c) + 1) = (c̃− 2λδ (c))2 − 4
(

1− λδ (c) c+ (λδ (c))2
)

=
(
c̃− c+

√
c2 − 4 (1− aδ)

)2
− 4aδ

= (c̃− fδ (c) + 2
√
aδ)2 − (2

√
aδ)2

= (c̃− fδ (c)) (c̃− fδ (c) + 4
√
aδ) .

For all δ ∈
[
0, 1

2
)
, Λδ denotes the function

Λδ : (c, c̃) 7→ 1
2

(
c̃−

√
c̃2 − 4 (λδ (c) (c̃− c) + 1)

)
.
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Its domain is the set of all (c, c̃) such that c ≥ 2
√

1− aδ and c̃ ≥ max (c, fδ (c)) and it is
decreasing with respect to both c and c̃. As a function of c only, with a fixed c̃, it bijectively
maps

[
2
√

1− aδ,+∞
)
onto(

1
2

(
c̃−

√
c̃2 − 4 (aδ + 1)

)
,

1
2

(
c̃−

√
c̃2 − 4

(
c̃
√

1− aδ + 2aδ − 1
))]

.

The family (Λδ)δ∈[0, 1
2 ) is increasing. Recalling the earlier definition of Λ, we find Λ0 = Λ.

Finally, by construction, for all (c, c̃) such that c ≥ 2
√

1− aδ and c̃ ≥ max (c, fδ (c)), Λδ (c, c̃)
satisfies

(Λδ (c, c̃))2 − c̃Λδ (c, c̃) + λδ (c) (c̃− c) + 1 = 0. (7.4.5)

7.4.1.13 The function wδ,c,c̃

For all δ ∈
[
0, 1

2
)
, c ≥ cδLLW and c̃ ≥ max (c, fδ (c)), wδ,c,c̃ denotes the function

wδ,c,c̃ : (t, x) 7→ e−λδ(c)(c̃−c)te−Λδ(c,c̃)(x−c̃t).

In view of (7.4.5),

wδ,c,c̃ (t, x) = e((Λδ(c,c̃))2+1)te−Λδ(c,c̃)x for all (t, x) ∈ [0,+∞)× R.

Recalling the earlier definition of wc,c̃, we find wc,c̃ = w0,c,c̃.

7.4.1.14 The function wc,c̃,A,η

For all c ≥ cLLW , c̃ ≥ c such that c̃ > f (c), η ∈
(

0,min
(

Λ (c, c̃) ,
√
c̃2 − 4 (λ (c) (c̃− c) + 1)

))
and A > 0, wc,c̃,A,η denotes

wc,c̃,A,η : (t, x) 7→ e−λ(c)(c̃−c)t max
(

0, e−Λ(c,c̃)(x−c̃t+xw) −Kwe−(Λ(c,c̃)+η)(x−c̃t+xw)
)
,

where

Kw = max

1, 1 + aA

η
(√

c̃2 − 4 (λ (c) (c̃− c) + 1)− η
)
 = max

(
1, 1 + aA

η (c̃− η − 2Λ0 (c, c̃))

)

and xw = lnKw
η is fixed so that, for all t ≥ 0, x 7→ wc,c̃,A,η (t, x) is positive in (c̃t,+∞), null else-

where, increasing in
(
c̃t, ln(Λ(c,c̃)+η)−ln(Λ(c,c̃))

η + c̃t
)
and decreasing in

(
ln(Λ(c,c̃)+η)−ln(Λ(c,c̃))

η + c̃t,+∞
)
.

Hereafter, the point where the global maximum is attained at t = 0 is denoted Xw.

7.4.1.15 The function zδ,c,c̃

For all c ≥ cLLW , c̃ ∈ (f (c)− 4
√
a, f (c)) and δ ∈

[
0, 1

4
(
−c̃2 + 4 (λ (c) (c̃− c) + 1)

))
, zc,c̃,δ

denotes the function defined by

zδ,c,c̃ (t, x) =
{
e−λ(c)(c̃−c)te− c̃2 (x−c̃t) sin

(
π

2Rz (x− c̃t)
)

if x− c̃t ∈ [0, 2Rz]
0 otherwise

.

where
Rz = π√

−c̃2 + 4 (λ (c) (c̃− c) + 1− δ)
.

Hereafter, the point where the global maximum is attained at t = 0 is denoted Xz.
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7.4.2 Several useful lemmas
Lemma 7.15. Let c > cLLW and (ϕ,ψ) be a profile of traveling wave solution of (7.1.1) with
speed c.
Then there exist A > 0 and B > 0 such that

ϕ (ξ) = Ae−λ(c)ξ + h.o.t. as ξ → +∞

and
ψ (ξ) = Beλ

−∞(c)ξ + h.o.t. as ξ → −∞

where
λ−∞ (c) = 1

2d

(√
c2 + 4rd (b− 1)− c

)
,

The proof of this lemma is quite lengthy. Therefore it is postponed to the appendix (see
Corollary 7.35 and Corollary 7.38).

Lemma 7.16. The function δ 7→ cδLLW is continuous and nondecreasing in
[
0, 1

2
)
.

Proof. Recalling that
cδLLW =

√
1 + δĉδLLW ,

where ĉδLLW is the minimal wave speed of the system (7.1.2) where (r, a, b) is replaced by(
(1−2δ)r

1+δ , aδ,
(1+δ)b
1−2δ

)
, the continuity of δ 7→ cδLLW follows directly from the theorem due to

Kan-on [101] establishing the continuity of the spreading speed of (7.1.2) with respect to the
parameters (r, a, b).
The monotonicity follows from the comparison principle.

Lemma 7.17. Let δ ∈ [0, 1). Then for all R ≥ Rωδ ,

max
[−R,R]

ωδ,R < 1− δ.

Furthermore, if δ > 0, then there exists Rδ ≥ Rωδ such that, for all R ≥ Rδ,

max
[−R,R]

ωδ,R ≥ 1− 2δ,

and there exists a unique xδ,R ∈ (−R,R) such that ωδ,R is increasing in [−R, xδ,R], decreasing
in [xδ,R, R] and maximal at xδ,R.

Proof. The first inequality follows very classically from the first and second order conditions at
any local maximum and from the strong maximum principle.
The second inequality comes from the locally uniform convergence of ωδ,R to 1−δ as R→ +∞.

This fact is also well-known and its proof is not detailed here.
Finally, the piecewise strict monotonicity comes from the inequality

−dωδ,R′′ −
(

2
√
r (1− δ) d− δ

)
ωδ,R

′ > 0 in (−R,R) ,

which implies the nonexistence of local minima.

The function αl satisfies of course a similar property.
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Lemma 7.18. For all l ≥ Lα,
max
[0,l]

αl < 1− a.

Furthermore, there exists L ≥ Lα such that, for all l ≥ L,

max
[0,l]

αl ≥
1− a

2 ,

and there exists a unique xl ∈ (−l, l) such that αl is increasing in [0, xl], decreasing in [xl, l] and
maximal at xl.

Lemma 7.19. For all δ ∈
[
0, 1

2
)
, c ≥ cδLLW and c̃ ≥ max (c, fδ (c)), wδ,c,c̃ satisfies

∂twδ,c,c̃ − ∂xxwδ,c,c̃ = wδ,c,c̃ in [0,+∞)× R.

Proof. The following equality being straightforward,

∂twδ,c,c̃ − ∂xxwδ,c,c̃ − wδ,c,c̃ =
(
−λδ (c) (c̃− c) + c̃Λδ (c, c̃)− (Λδ (c, c̃))2 − 1

)
wδ,c, (7.4.6)

the conclusion follows from (7.4.5).

Quite similarly, we have the following lemma.

Lemma 7.20. For all c ≥ cLLW , c̃ ∈ (f (c)− 4
√
a, f (c)) and δ ∈

[
0, 1

4
(
−c̃2 + 4 (λ (c) (c̃− c) + 1)

))
,

zδ,c,c̃ satisfies
∂tzδ,c,c̃ − ∂xxzδ,c,c̃ = (1− δ) zδ,c,c̃ in [0,+∞)× R. (7.4.7)

Proof. It suffices to verify

−λ (c) (c̃− c) + c̃2

4 +
(

π

2Rz

)2
− (1− δ) = 0,

which, in view of the definition of Rz, is equivalent to

−λ (c) (c̃− c) + c̃2

4 +
(
−c̃2 + 4λ (c) (c̃− c) + 4 (1− δ)

4

)
− (1− δ) = 0.

The last statement obviously holds.

Lemma 7.21. For all c ≥ cLLW , c̃ ≥ c such that c̃ > f (c), η ∈
(

0,min
(

Λ (c, c̃) ,
√
c̃2 − 4 (λ (c) (c̃− c) + 1)

))
and A > 0, the function wc,c̃,A,η satisfies, for all σ ≥ η,

∂twc,c̃,A,η − ∂xxwc,c̃,A,η ≤ wc,c̃,A,η
(

1− wc,c̃,A,η − aAe−σ(x−c̃t+xw)
)
. (7.4.8)

Remark. The above inequality is to be understood in the weak sense associated with generalized
sub-solutions.

Proof. For x− c̃t < 0, wc,c̃,A,η is trivial and the inequality obviously holds. We focus on the case
x− c̃t > 0, where wc,c̃,A,η reduces to

(t, x) 7→ e−λ(c)(c̃−c)t
(
e−Λ(c,c̃)(x−c̃t+xw) −Kwe−(Λ(c,c̃)+η)(x−c̃t+xw)

)
.

275



Chapitre 7 Invasion d’un territoire inoccupé par deux compétiteurs : propriétés de propagation
de systèmes de compétition – diffusion monostables à deux espèces

First, differentiating, we find:

∂twc,c̃,A,η (t, x) = −λ (c) (c̃− c)wc,c̃,A,η (t, x)

+ c̃Λ (c, c̃) e−λ(c)(c̃−c)te−Λ(c,c̃)(x−c̃t+xw)

−Kw (c̃ (Λ (c, c̃) + η)) e−λ(c)(c̃−c)te−(Λ(c,c̃)+η)(x−c̃t+xw),

∂xxwc,c̃,A,η = e−λ(c)(c̃−c)t
(

(Λ (c, c̃))2 e−Λ(c,c̃)(x−c̃t+xw) −Kw (Λ (c, c̃) + η)2 e−(Λ(c,c̃)+η)(x−c̃t+xw)
)
,

so that the auxiliary function

Q : (t, x) 7→ eλ(c)(c̃−c)t
(
−∂twc,c̃,A,η + ∂xxwc,c̃,A,η + wc,c̃,A,η

)
(t, x)

satisfies

Q (t, x) =
(
λ (c) (c̃− c)− c̃Λ (c, c̃) + (Λ (c, c̃))2 + 1

)
e−Λ(c,c̃)(x−c̃t+xw)

−Kw

(
λ (c) (c̃− c)− c̃ (Λ (c, c̃) + η) + (Λ (c, c̃) + η)2 + 1

)
e−(Λ(c,c̃)+η)(x−c̃t+xw).

Using (7.4.5), it follows

Q (t, x) = Kwη (c̃− η − 2Λ (c, c̃)) e−(Λ(c,c̃)+η)(x−c̃t+xw),

that is, recalling the definition of Λδ (c, c̃) as well as that of Kw,

Q (t, x) ≥ (1 + aA) e−(Λ(c,c̃)+η)(x−c̃t+xw).

Next, getting rid of all the negative terms and using e−λ(c)(c̃−c)t ≤ 1, we find

eλ(c)(c̃−c)twc,c̃,A,η

(
wc,c̃,A,η + aAe−σ(x−c̃t+xw)

)
≤ e−Λ(c,c̃)(x−c̃t+xw)

(
e−Λ(c,c̃)(x−c̃t+xw) + aAe−σ(x−c̃t+xw)

)
Finally, using x > c̃t, xw = 1

η lnKw ≥ 0 as well as the assumption 0 < η ≤ min{Λ(c, c̃), σ}, we
find

eη(x−c̃t+xw)
(
e−Λ(c,c̃)(x−c̃t+xw) + aAe−σ(x−c̃t+xw)

)
≤ e−(Λ(c,c̃)−η)xw + aAe−(σ−η)xw

≤ 1 + aA

and the proof is therefore ended.

With an analogous proof, we obtain directly the following lemma.
Lemma 7.22. For all c > 2

√
rd, η ∈

(
0,min

(
λv (c) , 1

d

√
c2 − 4rd

))
and B > 0, βc,B,η satisfies,

for all σ ≥ η,

−dβc,B,η ′′ − cβc,B,η ′ ≤ rβc,B,η
(

1− βc,B,η − bBe−σ(ξ+ξβ)
)

in (R\ {0}) .

Lemma 7.23. For all δ ∈ (0, 1), c > 2
√
rd and h > 0, πδ,c,h satisfies

−dπδ,c,h′′ − cπδ,c,h′ ≤ rπδ,c,h
(

1− δ − πδ,c,h
)

in
[
−
√

c

rh
,

√
c

rh

]
.

Furthermore, there exists h? > 0 such that, for all h ∈ (0, h?],

max
[−
√

c
rh ,0]

πδ,c,h ≥ 1− 2δ,

max
[−
√

c
rh ,0]

πδ,c,h > max
(
πδ,c,h (0) , πδ,c,h

(
−
√

c

rh

))
.
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Remark. It should be achievable to prove that the global maximum of πδ,c,h in
(
−
√

c
rh , 0

)
is

actually unique and that πδ,c,h is increasing in (−∞, ξ?) and decreasing in (ξ?, 0) but this is
really unnecessary for our purpose.

Proof. Recalling that πδ,c,h(ξ) = πδ,c(ξ) + hξ (see Subsection 7.4.1.8), we have

− dπδ,c,h′′ (ξ)− cπδ,c,h′ (ξ)

= rπδ,c (ξ)
(

1− δ − πδ,c (ξ)
)
− ch

= rπδ,c,h (ξ)
(

1− δ − πδ,c,h (ξ)
)
− hr

(
ξ
(

1− δ − πδ,c (ξ)
)

+ c

r
− πδ,c,h (ξ) ξ

)
= rπδ,c,h (ξ)

(
1− δ − πδ,c,h (ξ)

)
− hr

(
−hξ2 +

(
1− δ − 2πδ,c (ξ)

)
ξ + c

r

)
.

It is easily verified that, in
[
−
√

c
rh ,
√

c
rh

]
,

−hξ2 +
(

1− δ − 2πδ,c (ξ)
)
ξ + c

r
> −hξ2 + c

r
≥ 0,

where we used the facts

πδ,c,h >
1− δ

2 for ξ < 0, and πδ,c,h <
1− δ

2 for ξ > 0.

And the stated differential inequality is established.
The maximum of πδ,c,h in

[
−
√

c
rh , 0

]
is larger than or equal to

πδ,c,h

(
−
√

c

rh

)
= πδ,c

(
−
√

c

rh

)
−
√
ch

r
,

which is itself larger than or equal to 1− 2δ if h is small enough.
Finally, since π′δ,c

(
−
√

c
rh

)
vanishes exponentially as h→ 0,

π′δ,c,h

(
−
√

c

rh

)
= π′δ,c

(
−
√

c

rh

)
+ h > 0, and πδ,c,h

′(0) = πδ,c
′(0) + h < 0,

for all sufficiently small h. This implies that the values at ξ = 0 and −
√

c
rh are smaller than the

aforementioned maximum.

Lemma 7.24. For all δ ∈
[
0, 1

2
)
, c ≥ cδLLW and A > 0, θδ,c,A satisfies

− dθδ,c,A′′ − cθδ,c,A′ − rθδ,c,A (1− δ − b) = 0 in R. (7.4.9)

Proof. Note that θδ,c,A is a linear combination of

ξ 7→ exp
(

1
2d

(
±
√
c2 + 4rd(b− 1 + δ)− c

)
ξ

)
,

where 1
2d

(
±
√
c2 + 4rd(b− 1 + δ)− c

)
are the two distinct roots of the characteristic polynomial

associated with the above linear ODE (7.4.9).
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Lemma 7.25. For all c > 2
√

1− a, c̃ ≥ c such that

c̃ > f (c) , η ∈
(

0,min
(√

c̃2 − 4 (λ (c) (c̃− c) + 1)
)
, λv (c̃)

)
, and A > 0,

there exists ζ0 ∈ R such that the equation

χc (x− ct+ ζ0) = wc,c̃,A,η (t, x)

admits for all t ≥ 0 an isolated solution x0 (t) ∈ R such that
1. χc (x− ct+ ζ0) > wc,c̃,A,η (t, x) in a left-sided neighborhood of x0 (t);
2. χc (x− ct+ ζ0) < wc,c̃,A,η (t, x) in a right-sided neighborhood of x0 (t);
3. c̃t < x0 (t) < Xw + c̃t.

Furthermore, x0 ∈ C 1 ([0,+∞) , (0,+∞)).

Proof. Recall from standard results on the KPP equation that, since c > 2
√

1− a, there exists
ζ0,1 ∈ R such that

χc (x+ ζ0,1) ∼ e−λ(c)x as x→ +∞.

Hence there exists ζ0 ∈ R such that, for all x ≥ 0,

χc (x+ ζ0) ≤ 1
2e
−λ(c)x max

y∈R
wc,c̃,A,η (0, y) ≤ 1

2 max
y∈R

wc,c̃,A,η (0, y)

with max
y∈R

wc,c̃,A,η (0, y) uniquely attained at Xw.
From the intermediate value theorem and the respective strict monotonicities of χc in R and

x 7→ wc,c̃,A,η (0, x) in [0, Xw], it clearly follows that χc (x+ ζ0) = wc,c̃,A,η (0, x) admits a unique
solution x0 (0) in (0, Xw).
Next, to define in the same way x0 (t), it suffices to verify that for all t > 0,

wc,c̃,A,η (t,Xw + c̃t) > χc (Xw + (c̃− c) t+ ζ0) .

Since Xw + c̃t ≥ 0, it is a fortiori sufficient to verify that for all t ≥ 0,

e−λ(c)(c̃−c)t max
x∈R

wc,c̃,A,η (0, x) > 1
2 max
x∈R

wc,c̃,A,η (0, x) e−λ(c)(Xw+(c̃−c)t).

This inequality reduces in fact to 2 > e−λ(c)Xw , which holds as λ (c) and Xw are both positive.
The existence of x0 (t) for all t > 0 follows.
Finally, the regularity of x0 follows from the aforementioned monotonicities and the implicit

function theorem.

Lemma 7.26. For all δ ∈
[
0, 1

2
)
, c ≥ cδLLW and κ ∈ (0, δ], there exists ζ1,κ ∈ R and Aκ > 0

such that the equation
θδ,c,Aκ (ξ) = ψδ,c (ξ − ζ1,κ)

admits an isolated solution ξ1,κ ∈ R such that
1. θδ,c,Aκ (ξ) > ψδ,c (ξ − ζ1,κ) for ξ in a left-sided neighborhood of ξ1,κ;
2. θδ,c,Aκ (ξ) < ψδ,c (ξ − ζ1,κ) for ξ in a right-sided neighborhood of ξ1,κ;
3. ψδ,c (ξ1,κ − ζ1,κ) ≤ κ;
4. ζ1,κ − ξ1,κ → +∞ as κ→ 0.
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Proof. Let δ, c and κ be given as in the statement, define

λ−∞ = 1
2d

(√
c2 + 4rd (b− 1 + (b+ 2) δ)− c

)
,

λ+
θ = 1

2d

(√
c2 + 4rd (b− 1 + δ)− c

)
,

λ−θ = 1
2d

(
−
√
c2 + 4rd (b− 1 + δ)− c

)
,

ξθ = d lnA√
c2 + 4rd (b− 1 + δ)

= lnA
λ+
θ − λ

−
θ

,

and notice that
λ−θ < 0 < λ+

θ < λ−∞.

Let κ̃ ∈ (0, κ] such that (1− κ̃)λ−∞ > λ+
θ .

In view of Lemma 7.15,

lim
ξ→−∞

(
ψδ,c

′ (ξ)
ψδ,c (ξ)

)
= λ−∞.

Therefore, by monotonicity of ψδ,c, there exists ζκ ∈ R such that for all ξ ≤ 0,

ψδ,c (ξ − ζκ) ≤ κ,

(
1− κ̃

2

)
λ−∞ ≤

ψδ,c
′ (ξ − ζκ)

ψδ,c (ξ − ζκ) ≤
(

1 + κ̃

2

)
λ−∞.

Note that ζκ → +∞ as κ → 0. It remains to find A > 0, ζ1 > ζκ and ξ1 ∈ (0, ζ1 − ζκ] such
that

θδ,c,A (ξ1) = ψδ,c (ξ1 − ζ1) ,

θδ,c,A
′ (ξ1)

θδ,c,A (ξ1) ≤ (1− κ̃)λ−∞.

For all ξ ∈ R,
θδ,c,A

′ (ξ) = Aλ+
θ e

λ+
θ

(ξ−ξθ) − λ−θ e
λ−
θ

(ξ−ξθ) > 0,

whence for all ξ > 0 the condition

θδ,c,A
′ (ξ)

θδ,c,A (ξ) < (1− κ̃)λ−∞

holds true if and only if

(1− κ̃)λ−∞ > λ+
θ +

λ+
θ − λ

−
θ

Ae(λ
+
θ
−λ−

θ )(ξ−ξθ) − 1
,

that is if and only if

Ae(λ
+
θ
−λ−

θ )(ξ−ξθ) − 1 >
λ+
θ − λ

−
θ

(1− κ̃)λ−∞ − λ+
θ

,
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that is if and only if ξ > ξ1 where

ξ1 = max
(

0, ξθ + 1
λ+
θ − λ

−
θ

(
ln
(

1 +
λ+
θ − λ

−
θ

(1− κ̃)λ−∞ − λ+
θ

)
− lnA

))
.

In view of the definition of ξθ,

ξ1 = max
(

0, 1
λ+
θ − λ

−
θ

ln
(

1 +
λ+
θ − λ

−
θ

(1− κ̃)λ−∞ − λ+
θ

))
= 1
λ+
θ − λ

−
θ

ln
(

1 +
λ+
θ − λ

−
θ

(1− κ̃)λ−∞ − λ+
θ

)
.

In particular, ξ1 > 0 does not depend on A and, by construction, we have

θδ,c,A
′ (ξ)

θδ,c,A (ξ) < (1− κ̃)λ−∞ for all ξ > ξ1,

θδ,c,A
′ (ξ1)

θδ,c,A (ξ1) = (1− κ̃)λ−∞.

Now, the function θδ,c,A is increasing with θδ,c,A (0) = 0 and

θδ,c,A (ξ1) = Aeλ
+
θ

(ξ1−ξθ) − eλ
−
θ

(ξ1−ξθ)

= A
1−

λ
+
θ

λ
+
θ
−λ−

θ eλ
+
θ
ξ1 −A

−
λ
−
θ

λ
+
θ
−λ−

θ eλ
−
θ
ξ1

= A

−λ−
θ

λ
+
θ
−λ−

θ

(
eλ

+
θ
ξ1 − eλ

−
θ
ξ1
)
.

As a function of A, this quantity is increasing (recall λ−θ < 0) and vanishes as A → 0. We fix
now A such that

θδ,c,A (ξ1) = ψδ,c (−ζκ) ≤ κ.
Defining ζ1 = ξ1 + ζκ > ζκ, we obtain indeed

θδ,c,A (ξ1) = ψδ,c (ξ1 − ζ1) ≤ κ,

θδ,c,A
′ (ξ1) = (1− κ̃)λ−∞θδ,c,A (ξ1)

= (1− κ̃)λ−∞ψδ,c (ξ1 − ζ1)

< ψδ,c
′ (ξ1 − ζ1) ,

as well as the limit
lim
κ→0

(ζ1 − ξ1) = lim
κ→0

ζκ = +∞.

This completes the proof.

Lemma 7.27. There exists δ0 ∈
(
0, 1

2
)
such that, for all δ ∈ [0, δ0), c > cδLLW and c̃ ≥

max (c, fδ (c)), there exists ζ2 ∈ R such that the equation

ϕδ,c (x− ct) = wδ,c,c̃ (t, x− ζ2)

admits for all t ≥ 0 an isolated solution x2 (t) ∈ R such that
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1. ϕδ,c (x− ct) > wδ,c,c̃ (t, x− ζ2) for all x ∈ (x2 (t) ,+∞);
2. ϕδ,c (x− ct) < wδ,c,c̃ (t, x− ζ2) for all x ∈ (−∞, x2 (t));
3. ϕδ,c,c̃ (x2 (t)− ct) ≤ δ

b .
Furthermore,

1. x2 ∈ C 1 ([0,+∞) , (ζ2,+∞));
2. x2 (t) = c̃t+O (1) as t→ +∞.

Remark. As δ → 0, fδ (c)→ f (c). It can be verified that (fδ (c))δ∈[0, 1
2 ) is increasing, so that the

convergence occurs from above.

Proof. Recall from Lemma 7.15 that there exists ζ ∈ R such that,

ϕδ,c (ξ − ζ) ∼ e−λδ(c)ξ as ξ → +∞.

Hence, by the intermediate value theorem, for each t ≥ 0 and each ζ2 ∈ R, the equation

ϕδ,c (x− ct) = wδ,c,c̃ (t, x− ζ2)
= e−λδ(c)(c̃−c)te−Λδ(c,c̃)(x−ζ2−c̃t)

admits at least one solution x (t) provided Λδ (c, c̃) > λδ (c). This inequality is true indeed, since
it is equivalent to

c̃−
√
c̃2 − 4 (λδ (c) (c̃− c) + 1) > 2λδ (c) ,

that is to
c̃2 − 4λδ (c) c̃+ 4 (λδ (c))2

> c̃2 − 4 (λδ (c) (c̃− c) + 1) ,

that is to
(λδ (c))2 − cλδ (c) + 1 > 0,

that is (recalling that λδ (c) is characterized by (λδ (c))2 − cλδ (c) + 1− aδ = 0) to the obviously
true following inequality,

aδ > 0.

Since ϕδ,c (ξ) < 1 + δ for all ξ ∈ R, any such solution satisfies

− ln (1 + δ) < λδ (c) (c̃− c) t+ Λδ (c, c̃) (x (t)− ζ2 − c̃t) ,

that is
x (t) > ζ2 +

(
c̃− λδ (c) (c̃− c) + ln (1 + δ) /t

Λδ (c, c̃)

)
t.

By

lim
δ′→0

(
c̃− λδ′ (c) (c̃− c) + ln (1 + δ′) /t

Λδ′ (c, c̃)

)
= c̃− λ (c) (c̃− c)

Λ (c, c̃)
uniformly for t ≥ 1, and, due to the preceding observation,

λ (c) (c̃− c)
Λ (c, c̃) < c̃− c,

we deduce that x(t) > ζ2 + ct provided δ is small enough. Therefore the set of solutions is
bounded from below and admit an infimum I (t) > ζ2 + ct. Back to the exponential estimates,
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it is also clear that the set of solutions is bounded from above and admits therefore a supremum
S (t).
Recall that the asymptotic estimate for ϕδ,c can be differentiated. Setting g : (t, x) 7→

ϕδ,c (x− ct)− wδ,c,c̃ (t, x− ζ2), we find that for any t ≥ 0 and any solution x (t) ∈ [I (t) , S (t)],

∂xg (t, x (t)) = ϕδ,c (x (t)− ct)
((

ϕδ,c
′

ϕδ,c

)
(x (t)− ct) + Λδ (c, c̃)

)
.

Since
lim

ξ→+∞

(
ϕδ,c

′

ϕδ,c

)
(ξ) + Λδ (c, c̃) = −λδ (c) + Λδ (c, c̃) < 0,

we can choose ζ2 large enough so that
(
ϕδ,c

′

ϕδ,c

)
(ξ) < 0 for all ξ ≥ ζ2. Since x (t)− ct > ζ2 for all

t ≥ 0, we deduce (
ϕδ,c

′

ϕδ,c

)
(x (t)− ct) + Λδ (c, c̃) < 0,

whence g is decreasing with respect to x in a neighborhood of x (t). This implies directly the
uniqueness of x (t), namely I (t) = S (t). From now on, we denote this unique solution x2 (t). Of
course, the regularity of x2 follows directly from the implicit function theorem. The above yields
that x2(t)− ct ≥ ζ2 for all t ≥ 0.
Provided ζ2 is large enough, for all ξ ≥ ζ + ζ2,

(1− δ) e−λδ(c)ξ ≤ ϕδ,c (ξ − ζ) ≤ (1 + δ) e−λδ(c)ξ.

At ξ = x2 (t)− ct+ ζ ≥ ζ + ζ2, this reads

(1− δ) e−λδ(c)(x2(t)−ct+ζ) ≤ wδ,c,c̃ (t, x2 (t)− ζ2) ≤ (1 + δ) e−λδ(c)(x2(t)−ct+ζ),

that is

ln (1− δ)− λδ (c) (x2 (t)− ct+ ζ) ≤ −λδ (c) (c̃− c) t− Λδ (c, c̃) (x2 (t)− ζ2 − c̃t)
≤ ln (1 + δ)− λδ (c) (x2 (t)− ct+ ζ) .

The first inequality yields

x2 (t) ≤ c̃ (Λδ (c, c̃)− λδ (c)) t− ln (1− δ) + λδ (c) ζ + Λδ (c, c̃) ζ2
Λδ (c, c̃)− λδ (c)

and the second inequality yields

x2 (t) ≥ c̃ (Λδ (c, c̃)− λδ (c)) t− ln (1 + δ) + λδ (c) ζ + Λδ (c, c̃) ζ2
Λδ (c, c̃)− λδ (c) .

Together these two estimates give that the asymptotic speed of x2 is exactly c̃.
Finally, using once again x2 (t)− ct ≥ ζ2, we find

ϕδ,c (x2 (t)− ct) ≤ (1 + δ) e−λδ(c)(x2(t)−ct+ζ) ≤ (1 + δ) e−λδ(c)(ζ+ζ2),

and the inequality
ϕδ,c (x2 (t)− ct) ≤ δ

b
for all t ≥ 0

is indeed satisfied provided ζ2 is large enough.
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Thanks again to the intermediate value theorem and the implicit function theorem, we can
similarly establish the following lemmas. Since they involve the quantities L, xL and h?, we
recall that these are defined in Lemma 7.18 and Lemma 7.23 respectively.

Lemma 7.28. There exists δ1 ∈
(
0, 1

2
)
such that, for all δ ∈ (0, δ1), c ∈

[
cδLLW , 2

)
and ζ3 ∈ R,

the equation
ψδ,c (x− ct) = ωδ,Rδ

(
x−

(
2
√
r (1− 2δ) d− δ

)
t− ζ3

)
admits for all t ≥ 0 an isolated solution x3 (t) ∈ R such that

1. ψδ,c (x− ct) > ωδ,Rδ

(
x−

(
2
√
r (1− 2δ) d− δ

)
t− ζ3

)
for x in a left-sided neighborhood

of x3 (t);

2. ψδ,c (x− ct) < ωδ,Rδ

(
x−

(
2
√
r (1− 2δ) d− δ

)
t− ζ3

)
for x in a right-sided neighborhood

of x3 (t);
3. for all t ≥ 0,

−Rδ < x3 (t)−
(

2
√
r (1− 2δ) d− δ

)
t− ζ3 < xδ,Rδ .

Furthermore, x3 ∈ C 1 ([0,+∞) ,R).

Lemma 7.29. For all δ ∈
(
0, 1

2
)
, c ≥ cδLLW , c̃ > 2

√
rd such that c̃ ≥ c and h ∈ (0, h?), there

exists ζ0
3 ∈ R such that, for all ζ3 ≥ ζ0

3 , the equation

ψδ,c (x− ct) = πδ,c̃,h (x− c̃t− ζ3)

admits for all t ≥ 0 an isolated solution x3 (t) ∈ R such that
1. ψδ,c (x− ct) > πδ,c̃,h (x− c̃t− ζ3) for x in a left-sided neighborhood of x3 (t);

2. ψδ,c (x− ct) < πδ,c̃,h (x− c̃t− ζ3) for x in a right-sided neighborhood of x3 (t);
3. for all t ≥ 0,

−
√

c

rh
< x3 (t)− c̃t− ζ3 < 0.

Furthermore, x3 ∈ C 1 ([0,+∞) ,R).

Remark. We have to point out here that the preceding two lemmas defining x3 will never be used
concurrently and no conflict of notation will occur. Lemma 7.28 will be used only in the proof of
Proposition 7.5 whereas Lemma 7.29 will be used only in the proof of Proposition 7.6. In other
words, going back to Theorem 7.1 and Theorem 7.3, they corresponds to different values of c1:
Lemma 7.28 corresponds to c1 = 2

√
rd whereas Lemma 7.29 corresponds to c1 > 2

√
rd.

Lemma 7.30. For all δ ∈
[
0, 1

2
)
, c > 2

√
rd, η ∈

(
0, 1

d

√
c2 − 4rd

)
, B > 0, there exists ζ4 ∈ R

such that the equation
πδ,c,h (ξ) = βc,B,η (ξ − ζ4)

admits an isolated solution ξ4 ∈ R such that
1. πδ,c,h (ξ + ζ4) > βc,B,η (ξ) for ξ in a left-sided neighborhood of ξ4;

2. πδ,c,h (ξ + ζ4) < βc,B,η (ξ) for ξ in a right-sided neighborhood of ξ4;
3. ξ4 > 0.
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Lemma 7.31. For all c > 2
√

1− a, there exists ζ0 ∈ R such that, for all κ ∈
(
0, 1−a

2
)
, the

equation
αL (x) = χc (x− ct− ζ0)

admits for all t ≥ 0 a minimal solution x0,κ (t) ∈ R such that
1. αL (x) > χc (x− ct− ζ0) for x in a left-sided neighborhood of x0,κ (t);
2. χc (x0,κ (0)− ζ0) = κ;
3. xL < x0,κ (t) < L.

Furthermore, x0,κ ∈ C 1 ([0,+∞) , (xL, L)).

Notice that in the above lemma, x0,κ (0) =
(
χc
)−1 (κ) + ζ0.

Lemma 7.32. For all c > 2
√

1− a, c̃ ≥ c such that c̃ ∈ (f (c)− 4
√
a, f (c)), δ ∈

[
0, 1

4
(
−c̃2 + 4 (λ (c) (c̃− c) + 1)

))
and ζ >

(
χc
)−1 ( δ

2
)
, the equation

χc (x− ct) =
χc (ζ)

zc,c̃,δ (0, Xz)
zc,c̃,δ (t, x− ζ)

admits for all t ≥ 0 an isolated solution x1 (t) ∈ R such that

1. χc (x− ct) > χc(ζ)
zc,c̃,δ(0,Xz)zc,c̃,δ (t, x− ζ) for x in a left-sided neighborhood of x1 (t);

2. χc (x− ct) < χc(ζ)
zc,c̃,δ(0,Xz)zc,c̃,δ (t, x− ζ) for x in a right-sided neighborhood of x1 (t);

3. c̃t+ ζ < x1 (t) < Xz + c̃t+ ζ.
Furthermore, x1 ∈ C 1 ([0,+∞) , (ζ,+∞)).

Remark. Similarly to the third interface x3 which is defined in two separate lemmas, the zeroth
interface is defined concurrently by Lemma 7.25 and Lemma 7.31 and the first interface is defined
concurrently by Lemma 7.26 and Lemma 7.32. Lemma 7.25 will be used only in the proof of
Proposition 7.6, Lemma 7.26 will be used only in the proof of Proposition 7.6 and in that of
Proposition 7.5, Lemma 7.31 and Lemma 7.32 will be used only in the proof of Proposition 7.4.
There exists a small δ? ∈

(
0, 1

2
)
such that all the lemmas of this subsection involving a

parameter δ can be applied in the range δ ∈ (0, δ?). By construction, all the objects depending
on δ defined in the preceding subsection are also well-defined in this range.

7.4.3 Construction of the super-solutions and sub-solutions for Theorem 7.3
In this subsection, we prove Proposition 7.6.
Let c1 > 2

√
rd and c2 > cLLW such that c1 > c2 and c1 > f (c2). In order to construct a

satisfying approximated speed cδ2 ' c2, we need to find cδ2 such that:
1. cδ2 > cδLLW ;
2. cδ2 → c2 as δ → 0;
3. c2 < cδ2 < c1;
4. fδ

(
cδ2
)
< c1

5. Λδ
(
cδ2, c1

)
is well-defined;

6. Λδ
(
cδ2, c1

)
≤ Λ (c2, c1).
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The condition (6) above is equivalent to λδ
(
cδ2
) (
c1 − cδ2

)
≤ λ (c2) (c1 − c2), that is to

λδ
(
cδ2
)

λ (c2) ≤
(c1 − c2)(
c1 − cδ2

) ,
with a right-hand side necessarily larger than 1 provided (3) above is satisfied. Since the function
(δ, c) 7→ λδ (c) is increasing with respect to c and decreasing with respect to δ, the sign of
λδ
(
cδ2
)
− λ (c2) is unclear if we only assume cδ2 > c2. Hence some care is needed and we cannot

simply take a rough approximation like cδ2 = c2 + δ.
In fact, since aδ < a and λ(c2) <

√
1− a, we can choose δ ∈ (0, δ?) such that

λ (c2) <
√

1− aδ.

Consequently, the following quantity is well-defined:

cδ2 =
(
λ−1
δ ◦ λ

)
(c2) .

Since λ and λδ are both decreasing functions and λ (c2) < λδ (c2), it follows that cδ2 > c2, whence

4
(
λδ
(
cδ2
) (
c1 − cδ2

)
+ 1
)

= 4
(
λ (c2)

(
c1 − cδ2

)
+ 1
)

< 4 (λ (c2) (c1 − c2) + 1)
< c21,

where the last inequality is due to c1 − f (c2) > 0 (see also Subsection 7.4.1.12). By continuity,
we can further assume that δ is so small that cLLW ≤ cδLLW < cδ2

c2 < cδ2 < c1
−4√aδ < c1 − fδ

(
cδ2
) .

It follows then, from Subsection 7.4.1.12, that

fδ
(
cδ2
)
< f (c2) < c1,

whence the quantity Λδ
(
cδ2, c1

)
is well-defined. By definition, it satisfies

Λδ
(
cδ2, c1

)
= 1

2

(
c1 −

√
c21 − 4

(
λδ
(
cδ2
) (
c1 − cδ2

)
+ 1
))

= 1
2

(
c1 −

√
c21 − 4

(
λ (c2)

(
c1 − cδ2

)
+ 1
))

<
1
2

(
c1 −

√
c21 − 4 (λ (c2) (c1 − c2) + 1)

)
,

so that Λδ
(
cδ2, c1

)
< Λ (c2, c1).

7.4.3.1 Super-solution

The pair
(
uδ, vδ

)
is defined by (see Figure 7.4.2)

uδ (t, x) =
{

min
(

1, ϕδ,cδ2
(
x− cδ2t− ζ1,κ

))
if x < x2 (t) + ζ1,κ

wδ,cδ2,c1 (t, x− ζ1,κ − ζ2) if x ≥ x2 (t) + ζ1,κ
,
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vδ (t, x) =


max

(
0, θδ,cδ2,Aκ

(
x− cδ2t

))
if x < ξ1,κ + cδ2t

ψδ,cδ2

(
x− cδ2t− ζ1,κ

)
if x ∈

[
ξ1,κ + cδ2t, x3 (t) + ζ1,κ

)
πδ,c1,h (x− c1t− ζ1,κ − ζ3) if x ∈ [x3 (t) + ζ1,κ, ξ4 + c1t+ ζ1,κ + ζ3)

βc1,B,ηβ (x− c1t− ζ1,κ − ζ3 − ζ4) if x ≥ ξ4 + c1t+ ζ1,κ + ζ3

,

where
— κ ∈ (0, δ] is fixed so small that ζ1,κ − ξ1,κ + x2 (0) is large enough so that for all t ≥ 0,

ξ1,κ+ cδ2t < x2 (t)+ ζ1,κ (see Lemma 7.26(4) and Lemma 7.27 and use x2(t) ≥ c1t+O(1) ≥
cδ2t+O(1));

— ζ3 is fixed so large that, for all t ≥ 0, x2 (t) < x3 (t) (by Lemma 7.27 and Lemma 7.29,
x2(t)− c1t and x3(t)− c1t are both bounded uniformly in t ≥ 0, whence we can translate
x3(t) to the right by increasing ζ3);

— h = h?

2 ;

— ηβ = 1
2 min

(
1
d

√
c21 − 4rd,Λδ

(
cδ2, c1

))
;

— B = eΛδ(cδ2,c1)ξβ2uδ (0, ζ1,κ + ζ3 + ζ4).
The inequality

x3 (t) + ζ1,κ < ξ4 + c1t+ ζ1,κ + ζ3

is guaranteed by Lemma 7.29 and Lemma 7.30 which respectively show that x3 (t) < c1t + ζ3
and ξ4 > 0. In conclusion, we have

ξ1,κ + cδ2t < x2 (t) + ζ1,κ < x3 (t) + ζ1,κ < ξ4 + c1t+ ζ1,κ + ζ3 for all t ≥ 0,

i.e. vδ is well-defined for all t ≥ 0.

7.4.3.2 Sub-solution

First define the pair (u, v) by (see Figure 7.4.1)

u (t, x) =
{
χc2 (x− c2t+ ζ0) if x < x0 (t)
wc2,c1,A,ηw (t, x) if x ≥ x0 (t) ,

v (t, x) = min
(

1, e−λv(c1)(x−c1t)
)
,

where ηw = 1
2 min

(√
c21 − 4 (λ (c2) (c1 − c2) + 1), λv (c1)

)
.

The function u depends on a constant A > 0 which will be fixed later on.

7.4.3.3 Up to some translations, the sub-solution (u, v) is initially smaller than the
super-solution (uδ, vδ)

First, let V : R→ [0, 1] be the smallest nonincreasing continuous function such that

vδ (0, x) ≤ V (x) for all x ∈ R

and let ζ5 ∈ R such that, for all t ≥ 0, x 7→ vδ (t, x+ c1t) is C 1 and nonincreasing in (ζ5,+∞).
The existence of ζ5 follows from the fact that the last discontinuity of ∂xvδ and the last local
maximum of vδ move both at most at speed c1. The limit of V at −∞ is smaller than 1 and
V (x) = vδ (0, x) if x > ζ5 . Therefore, since v and vδ have the same exponential decay at +∞,
there exists ζ6 ≥ ζ5 such that:
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1. for all t ≥ 0, x 7→ vδ (t, x+ c1t) is C 1 and nonincreasing in (ζ6,+∞);
2. for all x ∈ R, vδ (0, x) ≤ V (x) ≤ v (0, x− ζ6).

Notice that with this definition of ζ5 and ζ6, the irregularity of v is initially on the right of the
last irregularity of vδ. Since the distance between these two points is nondecreasing with respect
to t, it is bounded from below by the initial distance.
Next, quite similarly, we define ζ7 ∈ R such that

u (0, x+ ζ7) ≤ uδ (0, x) for all x ∈ R.

The irregularity of u moves faster than the first irregularity of uδ (as c1 > cδ2), whence it is
impossible to guarantee that they stay ordered. This is not a major issue but some additional
care will be required later on. Still, without loss of generality, we assume that ζ7 is so large that
the irregularity of u and the second (last) irregularity of uδ, which both move at speed c1, stay
ordered.

7.4.3.4 Cleansing

Now that all required translations are done, we fix

A = 2eλv(c1)xweλv(c1)(ζ6+ζ7),

and thus there remains only one parameter: δ.
From now on, all the subscripts referring to fixed parameters are omitted. Furthermore, since

all the properties of the functions χ, w, wδ,
(
ϕδ, ψδ

)
, θδ, ωδ, πδ, β we are interested in are invariant

by translation, we assume that these functions were correctly normalized from the beginning, so
that ζ1,κ = ζ3 = ζ4 = ζ7 = 0, and we fix x0 (0) = 0. Similarly, we define Cδ = eλv(c1)ζ6 > 0 so
that vδ (t, x) = min

(
1, Cδe−λv(c1)(x−c1t)

)
and xw and ξβ are redefined so that Lemma 7.21 and

Lemma 7.22 stay true as stated. Notice that χ, w, β, u and v now depend on δ because of these
various normalizations (and consequently these notations come with a subscript δ from now on).
To summarize, the super- and sub-solutions are now defined as follows:

uδ (t, x) =
{
χδ (x− c2t) if x < x0 (t)
wδ (t, x) if x ≥ x0 (t) ,

vδ (t, x) = min
(

1, Cδe−λv(c1)(x−c1t)
)
,

uδ (t, x) =
{

min
(
1, ϕδ

(
x− cδ2t

))
if x < x2 (t)

wδ (t, x) if x ≥ x2 (t) ,

vδ (t, x) =


max

(
0, θδ

(
x− cδ2t

))
if x < ξ1 + cδ2t

ψδ
(
x− cδ2t

)
if x ∈

[
ξ1 + cδ2t, x3 (t)

)
πδ (x− c1t) if x ∈ [x3 (t) , ξ4 + c1t)
βδ (x− c1t) if x ≥ ξ4 + c1t

.

Furthermore, the interfaces satisfy, for all t ≥ 0,
x0 (t) < x2 (t)
ξ1 + cδ2t < x2 (t)
x2 (t) < x3 (t)

ξ4 + c1t <
lnCδ
λv(c1) + c1t

.
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x

χ(x− c2t)

1

C exp(−λv(c1)(x− c1t))

x0(t)

v(t, x)

u(t, x)

w(t, x)

Figure 7.4.1 – Sub-solution
(
uδ, vδ

)
for Theorem 7.3

x

1
u(t, x) v(t, x)

θ(x− cδ2t)

ψ(x− cδ2t) π(x− c1t)
ϕ(x− cδ2t)

w(t, x)
ξ1 + cδ2t x2(t) x3(t)

β(x− c1t)
ξ4 + c1t

Figure 7.4.2 – Super-solution
(
uδ, vδ

)
for Theorem 7.3

7.4.3.5 Verification of the differential inequalities

Let us point out that by Theorem 7.9 and Theorem 7.10 and by construction of the pairs(
uδ, vδ

)
and

(
uδ, vδ

)
, it suffices to verify the differential inequalities

P
(
uδ, vδ

)
� F

(
uδ, vδ

)
(7.4.10)

and

P
(
uδ, vδ

)
� F

(
uδ, vδ

)
(7.4.11)

where the functions are regular in order to establish that
(
uδ, vδ

)
and

(
uδ, vδ

)
are indeed a super-

solution and a sub-solution of (7.1.1) respectively. Also, the differential inequalities can also be
verified before the translations are performed.
In what follows, for the sake of brevity, we voluntarily omit the mentions of the points (t, x),

x− c1t, x− c2t or x− cδ2t where the various functions are evaluated. In view of the construction,
it should be unambiguous.
First, we consider (7.4.10). By Lemma 7.24 and Lemma 7.26, for all (t, x) such that

(
uδ, vδ

)
(t, x) =

(
1, θδ

(
x− cδ2t

))
,
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we find θδ ≤ κ ≤ δ and

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(

aθδ
−cδ2θδ

′ − dθδ ′′ − rθδ
(
1− θδ − b

))
=
(

aθδ
−rθδ

(
δ − θδ

))
� (0, 0) .

By definition of
(
ϕδ, ψδ

)
, for all (t, x) such that(

uδ, vδ
)

(t, x) =
(
1, ψδ

(
x− cδ2t

))
,

we find, using ψδ ≤ 1 + δ,

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(

aψδ
−cδ2ψδ

′ − dψδ ′′ − rψδ
(
1− ψδ − b

))
=
(

aψδ
−rψδ (2δ + b (ϕδ − 1))

)
�
(

0
−2rδψδ

)
� (0, 0) .

Similarly, for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
ϕδ
(
x− cδ2t

)
, ψδ

(
x− cδ2t

))
,

we find

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
−cδ2ϕδ ′ − ϕδ ′′ − ϕδ

(
1− ϕδ − aψδ

)
−cδ2ψδ

′ − dψδ ′′ − rψδ
(
1− ψδ − bϕδ

))
=
(

δϕδ
−2rδψδ

)
� (0, 0) .

By Lemma 7.19 and Lemma 7.27, for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
wδ (t, x) , ψδ

(
x− cδ2t

))
,

we find, using wδ ≤ ϕδ (Lemma 7.27(1)),

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
∂twδ − ∂xxwδ − wδ

(
1− wδ − aψδ

)
−cδ2ψδ

′ − dψδ ′′ − rψδ
(
1− ψδ − bwδ

))
=
(

wδ
(
wδ + aψδ

)
−rψδ (2δ + b (ϕδ − wδ))

)
� (0, 0) .

By Lemma 7.23 and Lemma 7.27, for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
wδ (t, x) , πδ (x− c1t)

)
,
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we find, using wδ ≤ δ
b (Lemma 7.27(3)),

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
∂twδ − ∂xxwδ − wδ

(
1− wδ − aπδ

)
−c1πδ ′ − dπδ ′′ − rπδ

(
1− πδ − bwδ

))
�
(

wδ
(
wδ + aπδ

)
−rπδ

(
δ + πδ − bwδ

))
� (0, 0) .

By Lemma 7.22, Lemma 7.27 and construction of B, for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
wδ (t, x) , βδ (x− c1t)

)
,

we find, By definition of βδ, and that of ηβ in Subsection 7.4.3.1,

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
∂twδ − ∂xxwδ − wδ

(
1− wδ − aβδ

)
−c1βδ ′ − dβδ ′′ − rβδ

(
1− βδ − bwδ

))
�

(
wδ
(
wδ + aβδ

)
rbβδ

(
wδ −Be−Λδ(cδ2,c1)(x−c1t+ξβ)

))
� (0, 0) .

Finally, we consider the differential inequalities associated with (uδ, vδ). By definition of χδ,
for all (t, x) such that (

uδ, vδ
)

(t, x) =
(
χδ (x− c2t) , 1

)
,

we find

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
−c2χδ ′ − χδ ′′ − χδ

(
1− a− χδ

)
rbχδ

)
=
(

0
rbχδ

)
� (0, 0) .

By Lemma 7.21, Lemma 7.25 and by construction of A = 2Cδeλv(c1)xw , for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
wδ (t, x) , 1

)
,

we find, using Cδe−λv(c1)(x−c1t) ≥ 1,

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
∂twδ − ∂xxwδ − wδ

(
1− wδ − a

)
rbwδ

)
�
(
awδ

(
1−Ae−λv(c1)(x−c1t+xw))

0

)
�
(
awδ

(
1− 2Cδe−λv(c1)(x−c1t)

)
0

)
� (0, 0) .

Similarly, for all (t, x) such that(
uδ, vδ

)
(t, x) =

(
wδ (t, x) , Cδe−λv(c1)(x−c1t)

)
,
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we find

P
(
uδ, vδ

)
− F

(
uδ, vδ

)
=
(
∂twδ − ∂xxwδ − wδ

(
1− wδ − aCδe−λv(c1)(x−c1t)

)
rbwδ

)
�
(
awδe−λv(c1)(x−c1t)

(
Cδ −Ae−λv(c1)xw

)
0

)
� (0, 0) .

7.4.4 Construction of the super-solutions for Theorem 7.1
In this subsection, we prove Proposition 7.5.
Let c2 > max

(
cLLW , f

−1
(

2
√
rd
))

and let δ ∈ (0, δ?) such that cδLLW < c2. Define

cδ1 = 2
√
r (1− 2δ) d− δ.

Recall from Subsection 7.4.1.12 that, given a fixed c̃, the function c 7→ Λδ (c, c̃) is decreasing
and bijectively maps

[
2
√

1− aδ,+∞
)
onto(

1
2

(
c̃−

√
c̃2 − 4 (aδ + 1)

)
,

1
2

(
c̃−

√
c̃2 − 4

(
c̃
√

1− aδ + 2aδ − 1
))]

.

Thus the equation
Λδ
(
cδ2, c

δ
1
)

= Λ
(
c2, 2
√
rd
)
.

admits a unique solution cδ2 if and only if

cδ1 −
√(

cδ1
)2 − 4 (aδ + 1) < 2Λ

(
c2, 2
√
rd
)
≤ cδ1 −

√(
cδ1
)2 − 4

(
cδ1
√

1− aδ + 2aδ − 1
)
. (7.4.12)

Since c2 ∈ (cLLW ,+∞) ⊂
(
2
√

1− a,+∞
)
, we have by the above discussion

2
√
rd−

√(
2
√
rd
)2
− 4 (a+ 1) < 2Λ

(
c2, 2
√
rd
)
< 2
√
rd−

√(
2
√
rd
)2
− 4

(
2
√
rd
√

1− a+ 2a− 1
)
.

By the facts that cδ1 → 2
√
rd and aδ → a as δ → 0, we deduce that we can in fact assume that δ

is so small that (7.4.12) holds. Hence cδ2 is well-defined.
Furthermore, by continuity, cδ2 converges to c2 as δ → 0, and thus cδ2 > cδLLW . In summary,

we can assume that δ is so small that cδ1 and cδ2 are well-defined, respectively close to c1 and c2,
and satisfy the following:

cδLLW < cδ2 and Λδ
(
cδ2, c

δ
1
)

= Λ
(
c2, 2
√
rd
)

(7.4.13)

7.4.4.1 Super-solution

The pair
(
uδ, vδ

)
is defined by

uδ (t, x) =
{

min
(

1, ϕδ,cδ2
(
x− cδ2t− ζ1,κ

))
if x < x2 (t) + ζ1,κ

wδ,cδ2,cδ1 (t, x− ζ1,κ − ζ2) if x ≥ x2 (t) + ζ1,κ
,
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vδ (t, x) =


max

(
0, θδ,cδ2,Aκ

(
x− cδ2t

))
if x < ξ1,κ + cδ2t

ψδ,cδ2

(
x− cδ2t− ζ1,κ

)
if x ∈

[
ξ1,κ + cδ2t, x3 (t) + ζ1,κ

)
ωδ,Rδ

(
x− cδ1t− ζ1,κ − ζ3

)
if x ≥ x3 (t) + ζ1,κ

,

where
— κ ∈ (0, δ] is fixed so small that, for all t ≥ 0, ξ1,κ + cδ2t < x2 (t) + ζ1,κ (see Lemma 7.26);
— ζ3 is fixed so large that, for all t ≥ 0, x2 (t) < x3 (t) (see Lemma 7.28).

Thus, we have
ξ1,κ + cδ2t < x2 (t) + ζ1,κ < x3 (t) + ζ1,κ for all t ≥ 0.

7.4.4.2 Cleansing

Just as in the previous case, we normalize and simplify the notations so that x2 (0) = 0 and
the super-solution is defined as follows:

uδ (t, x) =
{

min
(
1, ϕδ

(
x− cδ2t

))
if x < x2 (t)

wδ (t, x) if x ≥ x2 (t) ,

vδ (t, x) =


max

(
0, θδ

(
x− cδ2t

))
if x < ξ1 + cδ2t

ψδ
(
x− cδ2t

)
if x ∈

[
ξ1 + cδ2t, x3 (t)

)
ωδ
(
x− cδ1t

)
if x ≥ x3 (t)

.

x

1
u(t, x) v(t, x)

θ(x− cδ2t)

ψ(x− cδ2t)
ω(x− cδ1t)

ϕ(x− cδ2t)

w(t, x)
ξ1 + cδ2t x2(t) x3(t)

Figure 7.4.3 – Super-solution
(
uδ, vδ

)
for Theorem 7.1

7.4.4.3 Verification of the differential inequalities

Just as in the previous case, we verify that
(
uδ, vδ

)
is indeed a super-solution. The only new

component to account for is ωδ, which can be handled easily in view of its definition.

7.4.5 Construction of the sub-solutions for Theorem 7.2
In this subsection, we prove Proposition 7.4.
Let c1 > 2

√
rd and c2 > cLLW such that c1 ≥ c2 and c1 < f (c2). Let c > c2 so close to c2

that c1 < f (c) and let δ ∈ (0, δ?) and

c̃ ∈
(
max

(
c1, f (c)− 4

√
a
)
, f (c)

)
.
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7.4.5.1 Sub-solution

The pair
(
uδ,ζ,κ, vδ,ζ

)
is defined by

uδ,ζ,κ (t, x) =


αL (x) if x < x0,κ (t)

χc (x− ct− ζ0) if x ∈ [x0,κ (t) , x1 (t) + ζ0)
χc(ζ−ζ0)

zc,c̃,δ(0,Xz−ζ0)zc,c̃,δ (t, x− ζ0 − ζ) if x ≥ x1 (t) + ζ0

,

vδ,ζ (t, x) = min
(

1, e−λv(c̃)(x−yδ,ζ−c̃t)
)
,

where
yδ,ζ = ln δ − ln (2a)

λv (c̃) + ζ0 + ζ

and κ ∈
(
0,min

( 1−a
2 , δ2

))
and ζ > L are parameters.

Note that vδ,ζ (t, x) ≤ δ
2a for all x ≥ ζ0 + ζ + c̃t. By Lemma 7.32(3), we have x1(t) > c̃t + ζ

and thus vδ,ζ (t, x) ≤ δ
2a for all x ≥ x1 (t) + ζ0. Notice also that the support of x 7→ uδ,ζ,κ (0, x)

is included in [0, L+ ζ + 2Rz].

7.4.5.2 Cleansing

Again, we normalize and simplify:

uδ,ζ,κ (t, x) =


α (x) if x < x0 (t)

χ (x− ct) if x ∈ [x0 (t) , x1 (t))
zδ (t, x− ζ) if x ≥ x1 (t)

,

vδ,ζ (t, x) = min
(

1, Cδe−λv(c̃)(x−ζ−c̃t)
)
.

x

α(x)

χ(x− ct)
z(t, x− ζ)

1

C exp(−λv(c̃)(x− c̃t))

0 x0(t) x1(t)

v(t, x)

u(t, x)

Figure 7.4.4 – Sub-solution
(
uδ,ζ,κ, vδ,ζ

)
for Theorem 7.2

7.4.5.3 Verification of the differential inequalities

Again, we verify that
(
uδ,ζ,κ, vδ,ζ

)
is a sub-solution. The only new components are α and zδ,

the latter being handled with Lemma 7.20.

293



Chapitre 7 Invasion d’un territoire inoccupé par deux compétiteurs : propriétés de propagation
de systèmes de compétition – diffusion monostables à deux espèces

7.5 Discussion
As a preliminary remark, let us point out that analogous results can be obtained with the exact

same method for the coexistence case a < 1, b < 1. In that case the solutions are characterized
by a profile connecting (0, 0) to (0, 1) to

(
1−a
1−ab ,

1−b
1−ab

)
.

7.5.1 On the consequences of Theorem 7.1, Theorem 7.2 and Theorem 7.3
Consider here the Cauchy problem associated with Theorem 7.1, namely the initial condition u0

of the slower and stronger species has a support included in (−∞, 0] while the initial condition v0
of the faster and weaker species has compact support. Treating 2

√
rd as a parameter, Theorem 7.1

says that, while the species v always spreads at speed 2
√
rd if it persists, the species u:

— lags behind v and spreads at speed cLLW if 2
√
rd ≥ f(cLLW );

— lags behind v and spreads at speed f−1(2
√
rd) > cLLW if 2 < 2

√
rd < f(cLLW );

— drives v to extinction and spreads at speed 2 if 2
√
rd < 2.

In general, it is unclear whether cLLW = 2
√

1− a or not. Hence the condition 2
√
rd ≥ f (cLLW )

might be difficult to check in practice. However, since

max
c∈[2√1−a,2]

f (c) = f(2
√

1− a) = 2
(√

1− a+
√
a
)
,

the condition
√
rd >

√
1− a +

√
a always implies 2

√
rd > f (cLLW ) and consequently always

implies that u invades at speed cLLW . In particular, the maximum of a 7→
√

1− a+
√
a in (0, 1)

being
√

2, if rd > 2, then u invades at speed cLLW independently of the value of a and b. In
ecological terms, if v is a sufficiently fast invader, then it decelerates optimally any stronger and
slower competitor.
Applied to a pair (u0, 0), the nonexistence result reduces to a well-known property of the KPP

equation satisfied by u in isolation: all solutions spread at least at speed 2.
In view of Figure 7.1.1 and Figure 7.1.2, it is tempting to refer to the pair of speeds

(c?2, c?1) =
(

max
(
cLLW , f

−1
(

2
√
rd
))

, 2
√
rd
)

as a “minimal pair”. But in our opinion, such a terminology would be misleading. Indeed, a
very natural conjecture in view of the KPP literature is that the propagating terraces attract
initial data with appropriate exponential decays (λv (c1) for v0 and Λ (c2, c1) for u0). Assume
this conjecture is true indeed, assume 2 < 2

√
rd < f (cLLW ) and fix a compactly supported or

Heavyside-like u0. Then decreasing the decay of v0 will accelerate the invasion of v but decelerate
that of u (with the obvious convention that a compactly supported v0 has an infinite decay).
More generally, this paper presents several results that are complementary to that of Lewis,

Li and Weinberger, with several surprising consequences. It shows that cLLW is not always the
relevant speed when predicting the speed of the invasion of u in the territory of v. The initial
spatial distribution of v has to be taken into account and in particular, it can be inappropriate
to approximate a very large territory by an unbounded territory. Also, even if cLLW is linearly
determined and therefore only depends on a, the speed of u might still depend on rd.
Our acceleration result can be heuristically understood as a pulled property, in the sense that

very small densities of u on the right of the territory of v are still sufficiently large to increase
the speed of u on the left of the territory of v. Of course, it would be interesting to verify the
existence of such pulled accelerations in real biological invasions. Indeed, at first glance, our
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result might very well be described by ecological modelers as a strong case against diffusion
equations: dispersal operators preserving compact supports, like the nonlinear diffusion of the
porous form, ∂tu−∆ (um), or the diffusion with free boundary studied in the last decade by Du
and his collaborators (see for instance [59, 145]), will never lead to such a result.

7.5.2 On the boundary of the set of admissible pairs of speeds
In the present paper, the question of existence at the boundary of the set of admissible pairs

is not settled. It is in fact more subtle than expected.
Assuming only 2

√
rd > 2, this boundary is naturally partitioned as V ∪G ∪H ∪D, where

V = {cLLW } ×
(

max
(

2
√
rd, f (cLLW )

)
,+∞

)
,

G =
{

(c, f (c)) | c ∈
[
cLLW ,max

(
cLLW , f

−1
(

2
√
rd
)))}

,

H =
[
max

(
cLLW , f

−1
(

2
√
rd
))

, 2
√
rd
)
×
{

2
√
rd
}
,

D =
{

(c, c) | c ≥ 2
√
rd
}
,

and where G is possibly empty whereas V , H and D are always nonempty.
Points on V ∪G should correspond to pairs (u0, v0) with u0 supported in a left half-line and v0

exponentially decaying. Using both Theorem 7.3 and Theorem 7.2 as well as a limiting argument
and the comparison principle, it is possible to obtain the existence of such a terrace with a pair
(u0, v0) of this form.

However, on H, which corresponds naively to pairs (u0, v0) with compactly supported v0 and
exponentially decaying u0, such a construction seems to be impossible. A different, likely more
delicate, argument is needed to deal with H. Still, we believe existence holds there.
On the contrary, on D, the question remains completely open. Indeed, on D, propagating

terraces reduce to non-monotonic traveling waves connecting (0, 0) to (1, 0) with an intermediate
bump of v. To the best of our knowledge, such traveling waves have never been studied. Even
though it might be tempting to conjecture their nonexistence, we prefer to remain cautious here.

7.5.3 On the proofs

In the proof of Theorem 7.1, the approximated speed cδ1 is necessary in the following sense:
it is impossible to construct another v spreading this time exactly at speed 2

√
rd. This is an

immediate consequence of the Bramson shift for the KPP equation [29]: the level sets of the
solution of the KPP equation satisfied by v in isolation with compactly supported initial data
are asymptotically located at 2

√
rdt+ sBramson (t), with sBramson (t) = − 3

2 log t + o (log t). By
comparison, it is then easily verified that for the solution (u, v) of our competitive system, there
exists a time shift s (t) ≤ sBramson (t) such that the level sets of v in our problem are located at
2
√
rdt+ s (t).
Similarly, in the proofs of Theorem 7.1 and of Theorem 7.3, we believe that the approximated

speed cδ2 are needed to account for a time shift s̃ (t) 6= 0 describing the position of the level sets of
u. The characterization of this shift is completely open; the only hint provided by our approach
is that s̃ (t) is asymptotically nonnegative (contrarily to s (t) and sBramson (t)).
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7.A On competition–diffusion traveling waves connecting (1, 0)
to (0, 1)

In this appendix, the parameters (d, r, a, b) are not fixed anymore and can vary. We define

Π = (0,+∞)2 × (0, 1)× (1,+∞) .

For all (d, r, a, b) ∈ Π, cd,r,a,bLLW denotes the associated spreading speed of the system (7.1.2).
Subsequently, we define

E =
{

(c, d, r, a, b) ∈ (0,+∞)×Π | c ≥ cd,r,a,bLLW

}
.

7.A.1 Exact exponential decays
For all P = (c, d, r, a, b) ∈ E, we define

λ−∞1,P =
√
c2 + 4− c

2 ,

λ−∞2,P =
√
c2 + 4rd (b− 1)− c

2d ,

λ+∞
1,P = c+

√
c2 + 4rd
2d ,

λ+∞
2,P =

c+
√
c2 − 4 (1− a)

2 ,

λ+∞
3,P =

c−
√
c2 − 4 (1− a)

2 .

Lemma 7.33. Let P = (c, d, r, a, b) ∈ E and (ϕ,ψ) be a profile of traveling wave solution of
(7.1.1) with speed c. Define R−∞P : λ 7→ λ2 + cλ− 1 and R+∞

P : λ 7→ dλ2 − cλ− r.
Then the asymptotic behaviors of (ϕ,ψ) are as follows.
1. There exist A > 0 and B > 0 such that, as ξ → −∞:

a) if λ−∞2,P > λ−∞1,P , then {
ϕ (ξ) = 1−Aeλ

−∞
1,P ξ + h.o.t.

ψ (ξ) = Beλ
−∞
2,P ξ + h.o.t.

;

b) if λ−∞2,P < λ−∞1,P , then R−∞P
(
λ−∞2,P

)
< 0 andϕ (ξ) = 1 + a

R−∞
P (λ−∞2,P )Beλ

−∞
2,P ξ + h.o.t.

ψ (ξ) = Beλ
−∞
2,P ξ + h.o.t.

;
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c) if λ−∞2,P = λ−∞1,P , then c+ 2λ−∞2,P =
√
c2 + 4 > 0 and{

ϕ (ξ) = 1−B |ξ| eλ
−∞
2,P ξ + h.o.t.

ψ (ξ) = c+2λ−∞2,P
a Beλ

−∞
2,P ξ + h.o.t.

.

2. There exist A ∈ R, B ∈ R and C ≥ 0 such that B > 0 if C = 0 and, as ξ → +∞:
a) if c > 2

√
1− a,

i. if λ+∞
1,P < λ+∞

3,P , then A > 0 and{
ϕ (ξ) = Be−λ

+∞
2,P ξ + Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1−Ae−λ
+∞
1,P ξ + h.o.t.

;

ii. if λ+∞
1,P = λ+∞

3,P , then A > 0 if C = 0 and{
ϕ (ξ) = 2dλ+∞

1,P −c
a Ce−λ

+∞
1,P ξ +Be−λ

+∞
2,P ξ + h.o.t.

ψ (ξ) = 1− (A+ Cξ) e−λ
+∞
1,P ξ + h.o.t.

;

iii. if λ+∞
1,P ∈

(
λ+∞

3,P , λ
+∞
2,P

)
, then R+∞

P

(
λ+∞

3,P

)
< 0, A > 0 if C = 0 and ϕ (ξ) = Be−λ

+∞
2,P ξ + Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1−Ae−λ
+∞
1,P ξ + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t. ;

iv. if λ+∞
1,P = λ+∞

2,P , then R+∞
P

(
λ+∞

3,P

)
< 0 and ϕ (ξ) = 2dλ+∞

1,P −c
a Be−λ

+∞
1,P ξ + Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1−Bξe−λ
+∞
1,P ξ + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t.
;

v. if λ+∞
1,P > λ+∞

2,P , then R+∞
P

(
λ+∞

2,P

)
< 0, R+∞

P

(
λ+∞

3,P

)
< 0 and ϕ (ξ) = Be−λ

+∞
2,P ξ + Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1 + rb

R+∞
P (λ+∞

2,P )Be−λ
+∞
2,P ξ + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t. ;

b) if c = 2
√

1− a,
i. if λ+∞

1,P < λ+∞
2,P , then A > 0 and{

ϕ (ξ) = (B + Cξ) e−λ
+∞
2,P ξ + h.o.t.

ψ (ξ) = 1−Ae−λ
+∞
1,P ξ + h.o.t.

.

ii. if λ+∞
1,P = λ+∞

2,P , then 2dλ+∞
1,P − c =

√
c2 + 4rd > 0 and{

ϕ (ξ) = 2dλ+∞
1,P −c
a (B + Cξ) e−λ

+∞
1,P ξ + h.o.t.

ψ (ξ) = 1−
(
B + 1

2Cξ
)
ξe−λ

+∞
1,P ξ + h.o.t.

;
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iii. if λ+∞
1,P > λ+∞

2,P , then R+∞
P

(
λ+∞

2,P

)
< 0 and ϕ (ξ) = (B + Cξ) e−λ

+∞
2,P ξ + h.o.t.

ψ (ξ) = 1 + rb

R+∞
P (λ+∞

2,P ) (B + Cξ) e−λ
+∞
2,P ξ + h.o.t. ;

Proof. This result follows from a standard yet lengthy phase-plane analysis. The detailed proof
can be found for instance in Kan-on [101] or in Morita–Tachibana [114].

Compiling these estimates, we obtain the following two corollaries.

Corollary 7.34. Let P = (c, d, r, a, b) ∈ E and (ϕ,ψ) be a profile of traveling wave solution
of the corresponding system with speed c. Then there exist i ∈ {2, 3}, C > 0, D > 0 and
(i+, j+) ∈ {0, 1} × {0, 1, 2} such that, as ξ → +∞,{

ϕ (ξ) = Cξi+e−λ
+∞
i,P

ξ + h.o.t.
ψ (ξ) = 1−Dξj+e−min(λ+∞

1,P ,λ
+∞
i,P )ξ + h.o.t.

.

Corollary 7.35. Let P = (c, d, r, a, b) ∈ E and (ϕ,ψ) be a profile of traveling wave solution of
the corresponding system with speed c. Let i− = 2−#

{
λ−∞1,P , λ

−∞
2,P

}
.

Then there exist A > 0 and B > 0 such that, as ξ → −∞,{
ϕ (ξ) = 1−A |ξ|i− emin(λ−∞1,P ,λ

−∞
2,P )ξ + h.o.t.

ψ (ξ) = Beλ
−∞
2,P ξ + h.o.t.

.

7.A.2 Component-wise monotonicity of the profiles
Thanks to Corollary 7.34 and a sliding argument, we can show the component-wise mono-

tonicity. We point out that Roques–Hosono–Bonnefon–Boivin [131] showed that the slow or fast
decay problem is related to the pulled or pushed front problem.

Proposition 7.36. Let P = (c, d, r, a, b) ∈ E. Let (ϕ,ψ) ∈ C 2
(
R, [0, 1]2

)
be a profile of

traveling wave solution of (7.1.1) with speed c connecting (1, 0) to (0, 1).
Then (ϕ,ψ) is component-wise strictly monotonic, i.e.

(ϕ,ψ) (ξ1) � (ϕ,ψ) (ξ2) whenever ξ1 < ξ2.

Proof. The proof relies upon a sliding argument.
The sliding argument for monostable problems has three main steps: first, showing that if two

profiles are correctly ordered at some point far on the left, then they remain correctly ordered
everywhere on the left of this point; next, showing thanks to the first step and the exponential
estimates at +∞ that, up to some translation, the two profiles are globally ordered; finally,
showing by optimizing the aforementioned translation that the two profiles actually coincide.
Notice that since the exponential estimates of Lemma 7.33 can be differentiated, they imply

the component-wise strict monotonicity of (ϕ,ψ) near ±∞. Thus we can define R > 0 such that
(ϕ,ψ) is component-wise strictly monotonic in R\ [−R,R]. In particular, we can assume that

(ϕ,ψ)(−R) � (ϕ,ψ)(ξ) � (ϕ,ψ)(R) for all ξ ∈ (−R,R). (7.A.1)
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Step 1: We claim that there is τ1 > 0 such that for all τ ≥ τ1,

(ϕ,ψ) (ξ − τ) � (ϕ,ψ) (ξ) for all ξ ∈ R. (7.A.2)

In view of the monotonicity of (ϕ,ψ) in R \ (−R,R), and (7.A.1), the claim clearly holds once
we take τ1 = 2R.
Step 2: Define τ? to be the infimum of all τ ∈ (0, 2R] such that (7.A.2) holds true. It remains

to show that τ? = 0. Suppose to the contrary that τ? > 0. By construction,

(ϕ,ψ) (ξ − τ?) � (ϕ,ψ) (ξ) for all ξ ∈ R.

Moreover, by (7.A.1) and monotonicity of (ϕ,ψ) in R\(−R,R), we see that for each τ ∈
[
τ?

2 , 2τ
?
]
,

(ϕ,ψ) (ξ − τ) � (ϕ,ψ) (ξ) for all ξ ∈ R \ (−R+ τ,R),

and in particular for all ξ ∈ R \ (−R + τ?/2, R). By the minimality of τ? > 0, there exists
ξ? ∈ [−R + τ?/2, R] such that equality holds for at least one of the components. The strong
comparison principle yields

(ϕ,ψ)(ξ − τ?) = (ϕ,ψ)(ξ) for all ξ ∈ R.

This implies (ϕ,ψ) is periodic with period τ?, and contradicts (ϕ,ψ)(−∞) = (1, 0) and (ϕ,ψ)(+∞) =
(0, 1).

Hence τ? = 0 and, subsequently, for all τ > 0, we have

(ϕ,ψ) (ξ − τ) � (ϕ,ψ) (ξ) for all ξ ∈ R,

which exactly means that (ϕ,ψ) is component-wise strictly monotonic.

7.A.3 Ordering of the decays
By a similar proof, we can characterize more precisely the decays. We point out that Roques–

Hosono–Bonnefon–Boivin [131] showed that the slow or fast decay problem is related to the
pulled or pushed front problem.

Lemma 7.37. Let p = (d, r, a, b) ∈ Π, c ≥ cpLLW and ĉ ≥ c. Define P = (c, p) ∈ E and
P̂ = (ĉ, p) ∈ E.
Let (ϕ,ψ) ∈ C 2

(
R, [0, 1]2

)
and

(
ϕ̂, ψ̂

)
∈ C 2

(
R, [0, 1]2

)
be two profiles of traveling wave

solution of (7.1.1) with speed c and ĉ respectively. Denote (i, C,D, i+, j+) and
(
î, Ĉ, D̂, î+, ĵ+

)
the quantities given by Corollary 7.34 when applied to (ϕ,ψ) and

(
ϕ̂, ψ̂

)
respectively.

Then at least one of the following estimates fails:

Ĉξ î+e−λ
+∞
î,P̂

ξ = o
(
Cξi+e−λ

+∞
i,P

ξ
)

as ξ → +∞,

D̂ξĵ+e−min
(
λ+∞

1,P̂
,λ+∞
î,P̂

)
ξ = o

(
Dξj+e−min(λ+∞

1,P ,λ
+∞
i,P )ξ

)
as ξ → +∞.

Proof. The proof is by contradiction: we assume from now on that, on the contrary, the above
two asymptotic estimates are satisfied. This means that, near +∞, any translation of (ϕ,ψ)
dominates

(
ϕ̂, ψ̂

)
(in the sense of the competitive ordering).

299



Chapitre 7 Invasion d’un territoire inoccupé par deux compétiteurs : propriétés de propagation
de systèmes de compétition – diffusion monostables à deux espèces

Here are the three steps of the sliding argument of this proof.
Step 1: choose ξ0 ∈ R sufficiently close to −∞ and such that for all ξ ≤ ξ0,(

ϕ̂, ψ̂
)

(ξ) �
(

3
4 ,

1
4

)
and ϕ̂(ξ) ≥ max

(
5− a
8− 4a,

3 + b

4b + ψ̂(ξ)
)
. (7.A.3)

Notice that such a ξ0 exists indeed, since (ϕ̂, ψ̂)(−∞) = (1, 0), and max
(

5−a
8−4a ,

3+b
4b

)
< 1 with

a < 1 and b > 1. We claim that if there exists τ ∈ R such that

(ϕ,ψ) (ξ0 − τ) �
(
ϕ̂, ψ̂

)
(ξ0) ,

then
(ϕ,ψ) (ξ − τ) �

(
ϕ̂, ψ̂

)
(ξ) for all ξ ≤ ξ0.

Clearly, there exists ε ∈
(
0, 1

4
]
such that

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) + ε (−1, 1) for all ξ ≤ ξ0.

Now, let ε? ∈
[
0, 1

4
]
be the infimum of all these ε and assume by contradiction that ε? > 0. In

view of the limiting values at −∞ and of the inequality at ξ0, there exists ξ? ∈ (−∞, ξ0) such
that

(ϕ,ψ) (ξ? − τ) �
(
ϕ̂, ψ̂

)
(ξ?) + ε? (−1, 1)

with, most importantly, equality for at least one of the components. Let us verify that (ϕε? , ψε?) =(
ϕ̂, ψ̂

)
+ ε? (−1, 1) is a sub-solution. Since (ϕ,ψ) satisfies by definition −ϕ̂

′′ − cϕ̂′ = (ĉ− c)ϕ̂′ + ϕ̂
(

1− ϕ̂− aψ̂
)

−dψ̂′′ − cψ̂′ = (ĉ− c)ψ̂′ + rψ̂
(

1− ψ̂ − bϕ̂
) ,

we find (note that, by Proposition 7.36, (ϕ̂′, ψ̂′) � (0, 0)){
−ϕ′′ε? − cϕ′ε? − ϕε? (1− ϕε? − aψε?) < ε? (1− (2− a)ϕε? − (1− a) ε? − aψε?)
−dψ′′ε? − cψ′ε? − rψε? (1− ψε? − bϕε?) > −rε? (1− (2− b)ψε? − (b− 1) ε? − bϕε?) .

From (
1− (2− a)ϕε? − (1− a) ε? − aψε?
− (1− (2− b)ψε? − (b− 1) ε? − bϕε?)

)
�

(
1− (2− a) ϕ̂+ 1−a

4 − aψ̂
−
(

1− (2− b) ψ̂ + b−1
4 − bϕ̂

)) ,
we deduce by (7.A.3) that(

1− (2− a)ϕε? − (1− a) ε? − aψε?
− (1− (2− b)ψε? − (b− 1) ε? − bϕε?)

)
�
(

0
0

)
for all ξ ≤ ξ0.

We are now in position to apply the strong comparison principle of Theorem 7.11 and deduce
from the existence of ξ? a contradiction. Hence ε? = 0, that is

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ≤ ξ0.

Finally, by strong comparison principle the strict inequality must hold for any ξ ≤ ξ0.
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Step 2: in this step, we show the existence of τ1 such that, for all τ ≥ τ1,

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

To this end, we fix ξ0 as in (7.A.3) and choose τ0 > 0 large so that

(ϕ,ψ) (ξ0 − τ) �
(
ϕ̂, ψ̂

)
(ξ0) for all τ ≥ τ0.

By Step 1, we deduce that for all τ ≥ τ0,

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ≤ ξ0.

Next, we use the asymptotic behavior of (ϕ,ψ) and (ϕ̂, ψ̂) at +∞ to choose τ1 ≥ τ0 such that
for all τ ≥ τ1,

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ≥ ξ0.

The above two inequalities complete Step 2.
Step 3: define τ? as the infimum of all τ such that the preceding inequality holds true. By

construction,
(ϕ,ψ) (ξ − τ?) �

(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

It suffices to show the existence of ξ? ∈ R such that (ϕ,ψ) (ξ? − τ?) � (ϕ,ψ) (ξ?) with equality
for at least one component. Granted, then the strong comparison principle yields

(ϕ,ψ) (ξ − τ?) =
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R,

and the proof is ended. Suppose by contradiction that such a ξ? does not exist, that is

(ϕ,ψ) (ξ − τ?) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

Now, the asymptotic behavior assumed at the beginning of this proof implies

lim
ξ→+∞

ϕ (ξ − τ?)
ϕ̂ (ξ) = +∞, and lim

ξ→+∞

1− ψ (ξ − τ?)
1− ψ̂ (ξ)

= +∞.

Hence, there exists ξ1 > 0 large and δ > 0 small such that for all τ ∈ (τ? − δ, τ?),

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ≥ ξ1.

By taking δ > 0 small, we have also that, for all τ ∈ (τ? − δ, τ?),

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ [ξ0, ξ1].

Finally, the result in Step 1 implies that for all τ ∈ (τ? − δ, τ?),

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

This contradicts the minimality of τ?.
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From the preceding lemma, Lemma 7.33 and the respective monotonicities of c 7→ λ+∞
1,P ,

c 7→ λ+∞
2,P and c 7→ λ+∞

3,P , we deduce the following corollary which is a refinement of Lemma 7.33.
Basically, it discards the possibility of solutions having a fast decay and a super-critical speed.

Corollary 7.38. Let P = (c, d, r, a, b) ∈ E with c > cd,r,a,bLLW and (ϕ,ψ) be a profile of traveling
wave solution of (7.1.1) with speed c.
Then there exist A > 0 and C > 0 such that, as ξ → +∞:
1. if λ+∞

1,P < λ+∞
3,P , then {

ϕ (ξ) = Ce−λ
+∞
3,P ξ + h.o.t.

ψ (ξ) = 1−Ae−λ
+∞
1,P ξ + h.o.t.

;

2. if λ+∞
1,P = λ+∞

3,P , then {
ϕ (ξ) = 2dλ+∞

1,P −c
a Ce−λ

+∞
1,P ξ + h.o.t.

ψ (ξ) = 1− Cξe−λ
+∞
1,P ξ + h.o.t.

;

3. if λ+∞
1,P ∈

(
λ+∞

3,P , λ
+∞
2,P

)
, then R+∞

P

(
λ+∞

3,P

)
< 0 and ϕ (ξ) = Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1 + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t. ;

4. if λ+∞
1,P = λ+∞

2,P , then R+∞
P

(
λ+∞

3,P

)
< 0 and ϕ (ξ) = Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1 + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t. ;

5. if λ+∞
1,P > λ+∞

2,P , then R+∞
P

(
λ+∞

3,P

)
< 0 and ϕ (ξ) = Ce−λ

+∞
3,P ξ + h.o.t.

ψ (ξ) = 1 + rb

R+∞
P (λ+∞

3,P )Ce
−λ+∞

3,P ξ + h.o.t. ;

Remark. We emphasize that there exists a unique translation of the profile such that the nor-
malization C = 1 holds. The remaining degree of freedom in the first case above (A can still
take any positive value a priori) is the main difficulty regarding uniqueness.

7.A.4 Uniqueness and continuity
We are now in position to establish the following uniqueness result.

Proposition 7.39. Let P = (c, d, r, a, b) ∈ E such that λ+∞
1,P ≥ λ

+∞
3,P .

Let (ϕ,ψ) ∈ C 2
(
R, [0, 1]2

)
and

(
ϕ̂, ψ̂

)
∈ C 2

(
R, [0, 1]2

)
be two profiles of traveling wave

solution of (7.1.1) with speed c.
Then (ϕ,ψ) and

(
ϕ̂, ψ̂

)
coincide up to translation.
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Proof. The proof relies upon a sliding argument again.
In view of Corollary 7.38, if c > cd,r,a,bLLW , the assumption λ+∞

1,P ≥ λ+∞
3,P immediately yields that

the two profiles can be normalized so that they have the same decay at +∞. Similarly, in view
of Lemma 7.33, if c = cd,r,a,bLLW , then the two profiles can be normalized so that their decays either
coincide or are well-ordered. In all cases, we can fix a priori the roles of the two profiles so that
(ϕ,ψ) dominates

(
ϕ̂, ψ̂

)
near +∞. By following the first two steps of the proof of Lemma 7.37,

we can assume without loss of generality the existence of τ0 ∈ R such that, for all τ ≥ τ0,

(ϕ,ψ) (ξ − τ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

Next, define τ? ∈ R as the infimum of all τ such that the preceding inequality holds true. It
again suffices to show that there exists ξ? ∈ R where equality holds for one of the components.
Assume on the contrary that no such ξ? exists. Thus the preceding inequality is strict for both
components for all ξ ∈ R. Now, note that

lim
ξ→+∞

ϕ (ξ − τ?)
ϕ̂ (ξ) ≥ 1 and lim

ξ→+∞

1− ψ (ξ − τ?)
1− ψ̂ (ξ)

≥ 1.

Next, we claim that

lim
ξ→+∞

ϕ (ξ − τ?)
ϕ̂ (ξ) = 1 or lim

ξ→+∞

1− ψ (ξ − τ?)
1− ψ̂ (ξ)

= 1.

Otherwise we may further reduce τ?, just as in the proof of Lemma 7.37. Notice that this equality
directly yields τ? = 0, that is

(ϕ,ψ) (ξ) �
(
ϕ̂, ψ̂

)
(ξ) for all ξ ∈ R.

Next, from the fact that λ+∞
1,P ≥ λ+∞

3,P and, depending on c, Corollary 7.38 or Lemma 7.33,
both of the above limits are equal to 1.
Since the decay rate at +∞ of both profiles coincide, we can reverse the profiles and repeat

the proof. This leads to (
ϕ̂, ψ̂

)
(ξ) � (ϕ,ψ) (ξ) for all ξ ∈ R.

Hence the two profiles actually coincide, which directly contradicts the assumption of nonex-
istence of ξ?.
In the end, ξ? exists indeed and, by virtue of the strong comparison principle, the two nor-

malized profiles coincide. In other words, the two profiles coincide up to translation.

Corollary 7.40. Let (d, r, a, b) ∈ Π such that d ≤ 2 + r
1−a . Then each speed c ≥ cd,r,a,bLLW is

associated with a unique profile (up to translation).

Proof. It suffices to prove that, for all c ≥ cd,r,a,bLLW , λ+∞
1,(c,d,r,a,b) ≥ λ

+∞
3,(c,d,r,a,b).

Noticing that this inequality is equivalent to R+∞
(c,d,r,a,b)

(
λ+∞

3,(c,d,r,a,b)

)
≤ 0, we find that we just

have to prove that, for all c ≥ cd,r,a,bLLW ,

d ≤
cλ+∞

3,(c,d,r,a,b) + r(
λ+∞

3,(c,d,r,a,b)

)2
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and, using the polynomial equation satisfied by λ+∞
3,(c,d,r,a,b) = c−

√
c2−4(1−a)

2 , this reads

d ≤

(
λ+∞

3,(c,d,r,a,b)

)2
+ 1− a+ r(

λ+∞
3,(c,d,r,a,b)

)2 = 1 + 1− a+ r(
λ+∞

3,(c,d,r,a,b)

)2

It only remains to show that

inf
c≥cd,r,a,b

LLW

1− a+ r(
λ+∞

3,(c,d,r,a,b)

)2 ≥ 1 + r

1− a.

The above inequality follows actually quite easily:

inf
c≥cd,r,a,b

LLW

1− a+ r(
λ+∞

3,(c,d,r,a,b)

)2 ≥ inf
c≥2
√

1−a

1− a+ r(
λ+∞

3,(c,d,r,a,b)

)2 = 1− a+ r

sup
c≥2
√

1−a

(
λ+∞

3,(c,d,r,a,b)

)2

and, by monotonicity,

sup
c≥2
√

1−a

(
λ+∞

3,(c,d,r,a,b)

)2
=
(
λ+∞

3,(2
√

1−a,d,r,a,b)

)2
= 1− a.

Finally, as a consequence of the uniqueness, we also have the continuity of the profiles with
respect to the parameters.

Proposition 7.41. Let
Eu =

{
P ∈ E | λ+∞

1,P ≥ λ
+∞
3,P

}
.

For all P ∈ Eu, let
(
ΦP ,ΨP

)
be the unique profile of traveling wave solution of (7.1.1) with

speed c satisfying ΨP (0) = 1
2 .

Then P 7→
(
ΦP ,ΨP

)
is in C

(
intEu,Cb

(
R,R2)).

Proof. Let P∞ ∈ intEu and (Pn)n∈N ∈ (intEu)N such that lim
n→+∞

Pn = P∞. By standard

elliptic estimates (see Gilbarg–Trudinger [80]), the sequence
((

ΦPn ,ΨPn
))
n∈N converges, up to

a diagonal extraction, in C 2
loc. A fortiori it converges pointwise in R. The limit (Φ∞,Ψ∞) is

continuous, monotonic, and satisfies Ψ∞ (0) = 1
2 . Using standard elliptic estimates to study the

asymptotic behaviors, we find easily

lim
−∞

(Φ∞,Ψ∞) ∈ {(1, 0) , (0, 0)} and lim
+∞

(Φ∞,Ψ∞) = (0, 1) .

If Φ∞ is null in R, then ξ 7→ Ψ∞ (−ξ) is a KPP traveling wave with negative speed, which is
impossible. Therefore the limit at −∞ of (Φ∞,Ψ∞) is (1, 0). This shows that the sequence of
monotonic functions

((
ΦPn ,ΨPn

))
n∈N converges pointwise in [−∞,+∞], whence by a variant of

the Dini theorem it converges uniformly in R. In view of the preceding uniqueness result, the limit
is exactly

(
ΦP∞ ,ΨP∞

)
. Finally, a classical uniqueness and compactness argument shows that

the previous diagonal extraction was not necessary and the sequence
((

ΦPn ,ΨPn
))
n∈N converges

indeed in Cb
(
R,R2) to (ΦP∞ ,ΨP∞

)
.
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