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Abstract. In this paper we study the stability of cylinder front waves and
propagation of solution for a nonlocal Fisher type model describing the segrega-

tion of a population with nonlocal competition among bounded and continuous

phenotypic traits. By applying spectral analysis and separation of variables we
first prove the spectral and local exponential stability of cylinder waves with

noncritical speeds in some exponentially weighted spaces. By applying detailed

analysis with spectral expansion and special sub-supper solution construction,
we further prove the uniform boundedness of solution and global asymptotic

stability of waves for more general nonnegative initial value, and prove that

the spreading speed and asymptotic behavior of solution are determined by
the decay rate of initial value, which also extends some classical results on

the stability of planar waves for Fisher-KPP equation to the nonlocal Fisher
model in multi-dimensional cylinder case.
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1. Introduction and statement of main results

To investigate the intra-specific competition among multiple phenotypes within
a single population, the following non-local reaction-diffusion model was proposed
in [17],

∂tu(t, x, y)− dx4xu(t, x, y)− dy4yu(t, x, y)

= [1− αg(y − θ)−
∫

Ω

K(x, y, y′)u(t, x, y′)dy′]u(t, x, y), (t, x, y) ∈ R+ × R× Ω,

∂u

∂ν
= 0, (t, x, y) ∈ R+ × R× ∂Ω,

u(0, x, y) = u0(x, y), (x, y) ∈ R× Ω.

(1.1)

Here u(t, x, y) represents the density of a population that is structured by a continu-
ous spatial variable x ∈ R and continuous bounded phenotypical traits ~y ∈ Ω ⊂ Rn,
with Ω the set of all possible traits. The traits could be, for instance, rate of food in-
take or age at maturity. The terms dx4xu and dy4yu measure the spatial diffusion
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and mutations respectively. The nonlocal term
∫

Ω
K(x, y, y′)u(t, x, y′)dy′ indicates

that the intra-specific competition occurs among all the individuals at each location
x. The birth rate of populations is given by the fitness function 1−αg(y−θ) where
g is positive except g(0) = 0, this assumption takes into account the impact of
natural selection on population survival. Here α is a parameter that quantifies the
intensity of selection towards the optimal value θ. More detailed information about
the biological background of the nonlocal model (1.1) can be referred to [16, 23, 26].

Over the past decade, the propagation phenomena arising from the model (1.1)
have attracted tremendous attention among mathematicians. For unbounded do-
mains, wave propagation in the form of planar waves and cylinder waves are ob-
served. A travelling front solution (or a cylinder front solution) of equation (1.1) is
a solution u(t, x, y) in form of φ(x− ct, y) which connects zero to a non-trivial state
with a constant speed c ∈ R and φ(z, y) is monotone in z for each y ∈ Ω̄. For the
nonlocal model (1.1) with the simplified kernel K(x, y, y′) = K(y′) and θ = 0 in
the whole space (x, y) ∈ R×Rn or with bounded trait y ∈ Ω, by applying spectral
expansion (or separation of variables method), H. Berestycki et al. [4] obtained the
existence and uniqueness of cylinder front solutions φc(x− ct, y) of (1.1) for c ≥ c∗,
and φc(x − ct, y) must be in the form of Vc(x − ct)φ0(y). Under some additional
assumptions on K(y) for y ∈ Rn, in [4] it is also proved that the minimal speed c∗

is the spreading speed of the solution with compact supported initial value.
For the nonlocal model (1.1) in whole space (x, y) ∈ R × Rn with more general

kernel K(x, y, y′) and θ(x) = bx, M. Alfaro et al. [1] proved the existence of cylinder
waves φc(x − ct, y) by employing Harnack’s inequality and topological fixed-point
argument. Subsequently, accelerating invasions have been analysed in [24] if the
initial value displays a heavy tail in the direction y − bx = 0. M. Alfaro and G.
Peltier [3] proved the existence of steady-state solutions and pulsating fronts for
the case when θ is periodic in x. For the model (1.1) in moving environment with
θ = b · (x − cmt), M. Alfaro et al. [2] investigated the existence of waves and
the spreading speed of solution. For the nonlocal model (1.1) in bounded Ω with
constant kernel K ≡ 1, by applying Hamilton-Jacobi approach, E. Bouin and S.
Mirrahimi [9] investigated the asymptotic spreading speeds of the solution and the
asymptotic behavior of u(t, x, y) or

∫
Ω
u(t, x, y)dy.

When the spatial diffusion rate of a population varies (see [27][31]) and is mea-
sured by the trait variable y such as the leg length of cane toads, O. Bénichou et
al. [6] proposed the following biological diffusion model

∂tu(t, x, y)− y4xu(t, x, y)− d4yu(t, x, y) = r[1−
∫

Ω

u(t, x, y′)dy′]u(t, x, y),

(1.2)
where Ω is a bounded or unbounded set in [0,+∞), d and r are positive constants.

There are some deep and interesting theoretical works on the wave propagation
and spreading speed of solution for the model (1.2) when the traits are bound-
ed. The investigation on the spreading speed of the solutions to model (1.2) with
bounded Ω started with a Hamilton-Jacobi framework that was formally developed
in [7] and rigorously carried out in [32]. By applying the Leray-Schauder degree
argument similar to [1], the existence of traveling waves with a minimal speed to
model (1.2) with bounded Ω was obtained in [8]. Subsequently, E. Bouin et al. [11]
proved that the spreading speed of solution with compact supported initial value
is the minimal wave speed with the Bramson’s logarithmic delay.
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PROPAGATION FOR A NONLOCAL MODEL 3

For the model (1.2) with unbounded set Ω = (0,∞), N. Berestycki et al. [5] ap-
plied probabilistic techniques and E. Bouin et al. [10] used PDE method to prove
that the spreading speed of the solution with compact supported initial value is un-
bounded, and the associated population front travels superlinearly in time (in order
of t3/2), see also [15] for more detailed estimates on the accelerated propagation.

Another related nonlocal Fisher model is in the form of ut = uxx+ (1−
∫
R φ(x−

y)u(t, y)dy)u, where x is a spatial variable, and the nonlocal competition character-
ize the long range intra-specific competition. Some recent work on the existence of
traveling waves and the spreading speed of solution for this type of nonlocal Fisher
equations can be refered to [12, 19, 21, 25] and the references therein.

It is worth mentioning that different from the investigation of classical reaction-
diffusion models, the comparison principle can’t be applied directly to the aforemen-
tioned models with nonlinear coupled nonlocal reaction terms, thus the sub/super
solution method or some techniques such as sliding method or monotone iteration
schemes can’t be applied directly to the nonlinear model, which leads to additional
difficulties in establishing sharp estimates on the bound of solution in time and in
determining the asymptotic behavior of solution in time with more general initial
value, and as far as we know even for the simplest nonlocal model (1.1) with bound-
ed Ω there are no theoretical results on the stability of waves or the asymptotic
behavior of solution with more general initial value except the case when the initial
value has compact support.

This paper focuses on the non-local reaction-diffusion model (1.1) in the cylinder
domain R × Ω, where Ω is bounded and K(x, y, y′) = K(y′). Without loss of
generality, we choose dx = dy = 1 (after re-scaling of x and y) and we recast (1.1)
as follows

∂tu(t, x, y)−4x,yu(t, x, y)
=
[
1− g(y)−

∫
Ω
K(y′)u(t, x, y′)dy′

]
u(t, x, y), (t, x, y) ∈ R+ × R× Ω,

∂u
∂ν = 0, (t, x, y) ∈ R+ × R× ∂Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ R× Ω.

(1.3)
Next, we discuss the assumptions on K and g. The function g(y) is bounded and
measurable (and can be sign-changing). Furthermore, let {λj}+∞j=0 denote all the

eigenvalues of the operator −4y + g(y) under homogeneous Neumann boundary
condition on ∂Ω, with λ0 < λ1 ≤ λ2 ≤ ···. It is well known that the fist eigenvalue λ0

is simple and corresponds to a positive eigenfunction ψ0(y), and denote {ψj(y)}+∞j=0

be the sequence of the eigenfunctions which forms an orthonormal basis of L2(Ω),
i.e.

∫
Ω
ψ2
j (y)dy = 1, and

∫
Ω
ψi(y)ψj(y)dy = 0 for i, j ≥ 0 and i 6= j.

In this paper the assumptions of K and g can be summarized as follows

(H1): g ∈ L∞(Ω), λ0 < 1, K ∈ L2(Ω), K(y) ≥ 0, and K(y) 6≡ 0.

It is easy to check that for any c ≥ 2
√

1− λ0 the expression Vc(x − ct)ψ0(y) is a
traveling front solution of (1.3), where Vc(x − ct) is the planar front solution of
following Fisher-KPP equation satisfyingV ′′c (ξ) + V ′c (ξ) +

(
(1− λ0)− Vc(ξ)

∫
Ω

ψ0(y)K(y)dy

)
Vc(ξ) = 0, ξ ∈ R,

Vc(−∞) = µ0, Vc(+∞) = 0,

(1.4)

with µ0 = (1− λ0)
(∫

Ω
K(y)ψ0(y)dy

)−1
> 0.
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4 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

By applying the argument based on separation of variables and detailed as-
ymptotic estimates, it is also proved in [4] that, under the assumption of (H1), the
problem (1.3) has a positive and bounded cylinder front solution φc(z, y) (z = x−ct)
with φc decreasing in z if and only if c ≥ 2

√
1− λ0, and the cylinder front φc(z, y)

is unique (neglecting the shift in z) and thus φc(x− ct, y) = Vc(x− ct)ψ0(y).
In this paper, we study the local and global asymptotic stability of the cylinder

waves V (x− ct)ψ0(y) to model (1.3) in various settings.
For the remainder of this paper, we further assume µ0 = 1 without loss of

generality, i.e.
∫

Ω
ψ0(y)K(y)dy = 1 − λ0. This is possible by replacing u(t, x, y)

by 1
µ0
u(t, x, y) (and accordingly for the cylinder wave) for the original model (1.3).

Then the re-scaled Vc(ξ) satisfies{
V ′′c (ξ) + V ′c (ξ) + (1− λ0)(1− Vc(ξ))Vc(ξ) = 0, ξ ∈ R,
Vc(−∞) = 1, Vc(+∞) = 0.

(1.5)

By applying detailed spectral analysis and the classical stability theories of traveling
waves based on analytic semigroup theories, in the following section we shall prove
that all the cylinder waves Vc(x − ct)ψ0(y) with noncritical speeds are spectrally
stable and nonlinearly exponentially stable in some appropriate spaces. Our results
on nonlinear exponential stability of cylinder waves are stated as follows.

Theorem 1. Under the assumption of (H1), for each c > c∗ = 2
√

1− λ0 and
a > 0 satisfying

0 <
−c−

√
c2 − 4(1− λ0)

2
< a <

−c+
√
c2 − 4(1− λ0)

2
,

the cylinder traveling front Vc(x − ct)ψ0(y) of (1.3) is locally exponentially stable
in the following exponentially weighted space

Xa = {u(x, y) : wa(x)u(x, y) ∈ X, ‖u‖Xa = ‖wau‖X}, X = Cunif(R× Ω),

where wa(z) = 1 + eaz. In other words, if the initial perturbation ‖u0(x, y) −
Vc(x)ψ0(y)‖Xa is sufficiently small, then there exist positive constants M and σc
such that the equation (1.3) admits a unique global solution u(t, z+ ct, y) satisfying

‖u(t, z + ct, y)− Vc(z)ψ0(y))‖Xa 6Me−σct,∀t > 0.

In this paper we also investigate the uniform boundedness and the long-time
behavior of the solution for the nonlocal parabolic equation (1.3) with more general
nonnegative initial value, where the nonnegative initial value need not to be a small
perturbation of a cylinder wave. In Section 3, under the assumption of (H1), by

applying spectral expansion u(t, x, y) =
∞∑
j=0

vj(t, x)ψj(y), we investigate the related

Cauchy problem of the coupled system of vj(t, x), and by detailed spectral analysis
and applying comparison principle to some auxiliary linear evolutional models, we
can prove that the boundedness and long time behavior of the solution u(t, x, y)
to nonlinear model (1.3) are determined by that of v0(t, x) =

∫
Ω
u(t, x, y)ψ0(y)dy,

then by investigating the Cauchy problem of v0(t, x) in one dimensional space, it
can be proved that ‖v0(t, ·)‖L∞(R) and ‖u(t, ·)‖L∞(R×Ω) are uniformly bounded in
time for any nonnegative initial value, which can be stated as follows.

Theorem 2. There exist positive constants δ0, M0 and M , such that for any given
nonzero and nonnegative bounded initial value u0(x, y) ∈ L∞(R × Ω), there exist
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PROPAGATION FOR A NONLOCAL MODEL 5

positive global solution u(t, x, y) of (1.3), which is also uniformly bounded in time
and satisfies

‖u(t, x, y)− v0(t, x)ψ0(y)‖L∞(R×Ω) 6Me−δ0t(‖u0‖L∞(R×Ω) + 1), ∀t > 0, x ∈ R,
(1.6)

and

0 < v0(t, x) 6M0(‖u0‖L∞(R×Ω) + 1), ∀t > 0, x ∈ R, (1.7)

where v0(t, x) satisfies the following initial value problem{
∂
∂tv0 − ∂2

∂2xv0 = (1− λ0)[(1− v0 − b0(t, x)]v0, t > 0, x ∈ R,
v0(0, x) = 〈u0(x, ·), ψ0(·)〉, x ∈ R,

(1.8)

with b0(t, x) = 1
(1−λ0)

∫
Ω
K(y)(u(t, x, y) − v0(t, x)ψ0(y)) dy decaying exponentially

in time:

sup
x∈R
|b0(t, x)| 6Me−δ0t(‖u0‖L∞(R×Ω) + 1), ∀t > 0. (1.9)

In Section 4, we further investigate the global asymptotic stability of cylinder
waves and the asymptotic behavior of the solution u(t, x, y) in the x direction as
t → ∞, for more general nonnegative initial value which decay exponentially at
only one end or with compact support. By virtue of Theorem 2, we focus on
investigating the long time behavior of v0(t, x) = 〈u(t, x, ·), ψ0(·)〉 as t → +∞,
where v0(t, x) satisfies a nonlinear equation in one dimensional space, a projected
PDE equation of u(t, x, ·) after spectral expansion, which can be treated as a Fisher-
KPP equation in one dimensional space vt− vxx = (1− λ0)v(1− b0(t, x)− v), with
a nonlocal heterogeneous perturbation term

b0 =
1

(1− λ0)

∫
Ω

K(y)(u− v0ψ0(y)) dy

such that |b0(t, x)| 6Me−δ0t for any t > 0, x ∈ R.
For the Cauchy problem of the classical Fisher-KPP model ut = 4x,yu+u(1−u)

in higher dimensional cylinder space or in one dimensional space, there are many
literatures ( see [13, 20, 22, 29, 30, 33] for some classical results) which reveal that
the spreading speed and the long time behavior of the solution is determined by the
asymptotic behavior of the initial value at two ends, especially the decaying rate of
the initial value u0(x, y) at x = +∞ determines the spreading speed of the solution
in positive x direction. Recently for some Fisher type equation with some special
types of heterogeneous resource term depending only on t or x (periodic in t or x)
or x − ct, there are many interesting works on some new types wave phenomena
induced by heterogeneity and long time behavior of the solution. However for the
Fisher-KPP equation with more general heterogenous resource term b(t, x) or with
nonlocal competition term, as far as we know, there are fewer works on the stability
of waves or long time behavior of the solution with general initial value, and it is
not clear whether the spreading speed of the solution can still be determined by
the decay rate of the initial value.

Now we state our main results on the asymptotic behavior of solution as follows.

Theorem 3. (Global asymptotic stability of cylinder waves with more general initial
value ) Under the assumption of (H1) and let

∫
Ω
K(y)ψ0(y) dy = 1− λ0. For any
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6 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

nonnegative initial value u0(x, y) ∈ L∞(R× Ω) satisfying

lim
x→−∞

inf

∫
Ω

u0(x, y)ψ0(y)dy > 0 and lim
x→∞

eσx
∫

Ω

u0(x, y)ψ0(y)dy = r > 0,

(1.10)
with 0 < σ <

√
1− λ0, (1.3) has a unique global solution u(t, x, y), which satisfies

lim
t→∞

‖u(t, z + ct, y)− Vc
(
z − 1

σ ln r
)
ψ0(y)‖L∞(R×Ω) = 0, (1.11)

where c = σ+
√

1−λ0

σ ∈ (2
√

1− λ0,∞), and Vc(z) is the unique planar wave solution
of (1.5) satisfying lim

x→+∞
eσzVc(z) = 1.

Theorem 4. (Global exponential stability of cylinder waves in exponentially weight-
ed space) Under the assumption of Theorem 3, if the initial value u0(x, y) satisfies,
for some a > σ with 0 < a− σ � 1,∫

Ω

u0(x, y)ψ0(y)dy ∼ re−σx +O(e−ax), x→ +∞, r > 0, 0 < σ <
√

1− λ0,

then there exist positive constants M , δa and z0 > 0 such that the problem (1.3)
admits a unique global solution u(t, z + ct, y) satisfying

‖u(t, z + ct, y)− Vc(z − 1
σ ln r)ψ0(y))‖Xa 6Me−δat,∀t > 0.

Theorem 5. Under the assumption of (H1). If the initial value u0(x, y) is non-
negative and has compact support in the cylinder, then there exists two functions
ξ−(t) and ξ+(t) such that the solution u(t, x, y) of (1.3) satisfies

lim
t→+∞

‖u(t, x, y)− Vc∗(x− ξ+(t))ψ0(y)‖L∞(R+×Ω) = 0,

lim
t→+∞

‖u(t, x, y)− Vc∗(−x− ξ−(t))ψ0(y)‖L∞(R−×Ω) = 0,
(1.12)

with c∗ = 2
√

1− λ0. In addition, there exists a positive constant C such that

|ξ±(t)− 2
√

1− λ0t+
3

2
ln t| 6 C, for t >> 1.

This paper is organised as follows. In section 2, by apply spectral analysis we
prove the spectral and local exponential stability of the cylinder waves with noncrit-
ical speeds to model (1.3) in some weighted spaces. In section 3, by combining the
spectral expansion method and detailed asymptotic analysis with the sub-supper
solution method, we prove the uniform boundedness of the solution to model (1.3)
in time for any nonnegative initial value. In Section 4, we investigate the long
time behavior of the solution with more general initial value decaying with some
exponential rates at one end or with compact support, and prove Theorems 3-5.

2. Local exponential stability of cylinder waves in some weighted
spaces

In this section, we investigate the spectral and local exponential stability of cylin-
der wave solution φc(x− ct, y) with c > c∗ for the model (1.3) in some appropriate
spaces, where the cylinder wave solution φc(ξ, y) satisfies the following boundary
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PROPAGATION FOR A NONLOCAL MODEL 7

value problem
0 = cφc(ξ, y) +4ξ,yφc(ξ, y)− g(y)φc(ξ, y) +

[
1−

∫
Ω

K(y′)φc(ξ, y
′)dy′

]
φc(ξ, y),

∂φc
∂ν

= 0, (ξ, y) ∈ R× ∂Ω,

lim
ξ→+∞

φc(ξ, ·) = 0, lim inf
ξ→−∞

φc(ξ, ·) > 0.

(2.1)
Let λ0 be the principal eigenvalue of −∆y + g(y) in Ω under homogeneous Neu-
mann boundary condition on ∂Ω. It is proved in [4] that if λ0 < 1 then for any
c ≥ 2

√
1− λ0, (2.1) has a unique positive bounded solution with separate variable

expression φc(ξ, y) = Vc(ξ)ψ0(y), where under the assumption
∫

Ω
ψ0(y)K(y)dy =

1− λ0 (after the re-scaling of φc(ξ, y)), V (ξ) satisfies{
V ′′c (ξ) + cV ′c (ξ) + (1− λ0)(1− Vc(ξ))Vc(ξ) = 0, ξ ∈ R,
Vc(−∞) = 1, Vc(+∞) = 0.

(2.2)

It is well known that for c > 2
√

1− λ0, the planar wave solution Vc(ξ) of (2.2)
decays exponentially at both ends uniformly in y ∈ Ω and satisfies

if c > c∗, Vc(ξ)− 1 ∼ eµ
+ξ, as ξ → −∞,

if c > c∗, Vc(ξ) ∼ e−σ
−ξ, as ξ → +∞,

if c = c∗, Vc(ξ) ∼ ξe−σ
+ξ, as ξ → +∞,

(2.3)

where

µ+ =
−c+

√
c2 + 4(1− λ0)

2
> 0, σ± =

c±
√
c2 − 4(1− λ0)

2
> 0.

In moving coordinate (ξ, y, t) (with ξ = x− ct) the initial boundary value problem
(1.3) can be rewritten as follows

∂tu = 4ξ,yu+ c∂ξu− g(y)u+
[
1−

∫
Ω
K(y′)u(t, ξ, y′)dy′

]
u, t > 0, (ξ, y) ∈ R× Ω,

∂u
∂ν = 0, t > 0, (ξ, y) ∈ ∂Σ,
u(0, ξ, y) = u0(ξ, y), (ξ, y) ∈ Σ.

(2.4)

To prove the local asymptotic stability of the cylinder waves in some appropriate
space, we first investigate the following linearized evolutional equation of (2.4)
around the cylinder wave φc(ξ, y)

∂tv = 4ξ,yv + c∂ξv − g(y)v +

(
1−

∫
Ω

K(y′)φc(ξ, y
′)dy′

)
v − φc

∫
Ω

K(y′)v(t, ξ, y′)dy′

, Lc v.
(2.5)

It is easy to check that the operator Lc generates an analytic semigroup in the
Banach space L2(Σ), Σ = R×Ω with the domain D(Lc) = H2

v(Σ), and respectively
in the Banach space Cunif(Σ), with domain D(Lc) = X2 given by

X2 =

u ∈ Cunif(Σ)
⋂

(
⋂
q≥1

W 2,q
loc (Σ)), 4x,yu ∈ Cunif(Σ), and

∂u

∂ν
= 0 on ∂Σ

 .
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8 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

By applying the analytic semigroup theories and stability theories of traveling
waves, to prove the local exponential stability/instability of cylinder waves in s-
pace X = Cunif(Σ) or Hk(Σ), it suffices to investigate the spectral distribution of
the linear operator Lc in X or Hk(Σ).

For convenience of our investigation on the nonlinear local stability of the waves,
in the following of this paper we choose the working space of Lc as X = Cunif(Σ),
with domain D(Lc) = X2.

Let σ(Lc) be the spectral set of Lc in X, σn(Lc) the set consisting of the isolated
eigenvalues of Lc with finite algebraic multiplicity and σess(Lc) = σ(Lc)\σn(Lc) the
essential spectral set of Lc.

2.1. Location of σess(Lc). By applying the essential spectral theories to the el-
liptic operator Lc in Cunif(Σ) (see [28]) and Hk(Σ) (see [34]), it is known that the
boundaries of the essential spectra of Lc are determined by the location of the
spectra of the limiting operators L±c of Lc as ξ → ±∞, with L±c defined by

L+
c u , 4ξ,yu+ c∂ξu− g(y)u+ u, u ∈ X2,

L−c u , 4ξ,yu+ c∂ξu− g(y)u− ψ0(y)
∫

Ω
K(y′)u(ξ, y′)dy′ + λ0u, u ∈ X2,

(2.6)

where (λ0, ψ0(y)) is defined in Section 1 and
∫

Ω
K(y′)ψ0(y′)dy′ = 1− λ0.

Without loss of generality, we investigate the essential spectral set of Lc in
X ∩ L2(Σ), after applying Fourier transform to L−c and L+

c with respect to ξ,
in the following we first investigate the location of eigenvalues of the corresponding

operators L̂−c and L̂+
c on bounded region Ω with parameter τ , i.e. the following

eigenvalue problems

λ−(τ)v(y) = L̂−c v(y)

, 4yv(y)− g(y)v(y) + (−τ2 + icτ + λ0)v(y)− (
∫

Ω
K(y′)v(y′)dy′)ψ0(y),

(2.7)

and

λ+(τ)v(y) = L̂+
c v(y) , 4yv(y)− g(y)v(y) + (−τ2 + icτ + 1)v(y), (2.8)

with eigenfunction v(y) ∈ X2 ∩H2
ν(Σ).

For any given parameter τ ∈ R, let λ−(τ) be an eigenvalue of (2.7) with an
eigenfunction v(y), note that we can represent the nonzero function v(y) as

v(y) =

∞∑
k=0

ckψk(y), with constant ck0 6= 0, for some k0 ≥ 0. (2.9)

Substituting (2.9) into (2.7), we have

λ−(τ)

∞∑
k=0

ckψk(y) =

∞∑
k=0

ck(4y − g(y))ψk(y) + (−τ2 + icτ + λ0)

∞∑
k=0

ckψk(y)

−
∞∑
k=0

ckψ0(y)

∫
Ω

K(y′)ψk(y′)dy′.

(2.10)
For the case when there exists k0 ≥ 1 such that ck0 6= 0 in (2.9), multiplying (2.10)
by ψk0(y) and integrating on Ω, it yields

λ−(τ) = −λk0 − τ2 + icτ + λ0, for some k0 ≥ 1. (2.11)
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PROPAGATION FOR A NONLOCAL MODEL 9

For the remaining case when the eigenfunction v(y) = ψ0(y), multiplying (2.10) by
ψ0(y) and integrating on Ω, we have

λ−(τ) = −τ2 + icτ − 1 + λ0. (2.12)

(2.11) and (2.12) imply that there exists δ0 ≥ min{1 − λ0, λ1 − λ0} > 0 such
that for any given τ ∈ R all the eigenvalues of (2.7) denoted by λ−(τ) satisfy
λ−(τ) ≤ −δ0 < 0. Thus

σ(L−c ) ⊂ {Reλ ≤ −δ0 < 0}. (2.13)

It is easy to see that λ+(τ) is an eigenvalue of the eigenvalue problem (2.8) with
parameter τ , if and only if

−τ2 + icτ + 1− λ+(τ) = λk, for some k ≥ 0,

thus

sup{Reλ+(τ), τ ∈ R} = 1− λ0 > 0, (2.14)

if we choose τ = 0 and eigenvalue λ+(0) = 1− λ0 with eigenfunction ψ0(y).
The fact σ(L+

c )
⋂
{Reλ > 0} 6= ∅ further means

σess(Lc)
⋂
{Reλ > 0} 6= ∅,

which is also true when the working space of Lc is Cunif(Σ) or L2(Σ), thus for any
c ≥ c∗ = 2

√
1− λ0 the cylinder waves φc(x − ct, y) are spectrally unstable and

nonlinearly unstable in Cunif(Σ) and in Hk(Σ).
In the following we try to prove that the cylinder waves Vc(x − ct)ψ0(y) with

noncritical speed c > 2
√

1− λ0 are spectrally stable and nonlinearly exponentially
stable in some exponentially weighted spaces of X with an exponential weight near
ξ = +∞. Let wa(ξ) = 1 + eaξ, define the exponentially weighted space Xa by

Xa = {u(ξ, y) : wa(ξ)u(ξ, y) ∈ X, ‖u‖Xa = ‖wau‖X}, (2.15)

and we can define the related exponentially weighted space of X2 similarly and
denoted by X2

a .
Define the operator Lc,a : X2

a → Xa as the restriction of Lc on X2
a , and defined

L̃c,a : X2 → X as L̃c,av(ξ, y) = wa(ξ)Lc(w−1
a (ξ)v(ξ, y) for v(ξ, y) ∈ X2, obviously

σess(L̃c,a) = σess(Lc,a), σn(L̃c,a) = σn(Lc,a),

and ‖(λI − L̃c,a)−1‖X→X = ‖(λI − Lc,a)−1‖Xa→Xa .

For a > 0 it is easy to check that the limiting operator of L̃c,a as ξ → −∞ is

still L−c , while the limiting operator of L̃c,a as ξ → +∞ denoted by L̃+
c,a has the

following expression

L̃+
c,av = 4ξ,yv + 2avξ + a2v + cvξ + cav − g(y)v + v, v ∈ X2.

To obtain the location of σess(Lc,a), it remains to investigate the location of σ(L̃+
c,a),

by applying Fourier transform to L̃+
c,a with respect to ξ, we investigate the following

eigenvalue problem with parameter τ ∈ R

λ+(τ)v(y) = ̂̃L+
c,av , ∆yv(y)−g(y)v(y)+(−τ2+icτ+2iaτ+a2−ca+1)v(y), (2.16)

with zero Neumann boundary condition on ∂Ω.
Obviously for any given τ ∈ R, λ+(τ) is an eigenvalue of (2.16) if and only if

λ+(τ) = −τ2 + icτ + 2iaτ + a2 − ca+ 1− λk, for some k ≥ 0. (2.17)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4786342

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



10 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

For any given c > 2
√

1− λ0, if we choose a > 0 satisfying

c−
√
c2 − 4(1− λ0)

2
< a <

c+
√
c2 − 4(1− λ0)

2
, (2.18)

then by (2.17) it follows that there exists a positive constant δ+ depending only on
a and c such that for any given τ ∈ R it holds that

Reλ+(τ) < −δ+ < 0,

which with the location of σ(L−c ) in (2.13) guarantees that

sup{Re σess(Lc,a)} 6 −δ < 0, δ = {δ+, λ1 − λ0, 1− λ0} > 0.

Thus we have the following spectral estimates.

Lemma 2.1. For any given c > c∗ and a > 0 satisfying (2.18), let Lc,a be the
restriction of Lc on the weighted space Xa, with weight function defined by wa(x) =
1 + eax, there exists small enough δ > 0 such that

sup{Re σess(Lc,a)} 6 −δ < 0. (2.19)

2.2. Location of isolated eigenvalues of Lc,a. By Lemma 2.1, to prove the
spectral stability and the nonlinear exponential stability of cylinder wave Vc(x −
ct)ψ0(y) with c > c∗ in the weighted space Xa, it remains to prove the non-existence
of unstable eigenvalues of Lc,a. For this purpose, in this subsection we investigate
the location of eigenvalues of Lc,a in the range Ωδ = {λ ∈ C : Reλ > −δ/2} with
small enough δ > 0 satisfying (2.19).

Consider the eigenvalue problem

λu(ξ, y) = Lc,au(ξ, y)

= 4ξ,yu+ c∂ξu− g(y)u+ (1− Vc(ξ)(1− λ0))u− φ0(y)Vc(ξ)

∫
Ω

K(y′)u(ξ, y′)dy′

(2.20)
with the eigenvalue λ satisfying Reλ > −δ/2 and having an eigenfunction u(ξ, y) ∈
X2
a .
We express the eigenfunction u(ξ, y) of Lc,a in X2

a by spectral expansion

u(ξ, y) =

∞∑
i=0

vi(ξ)ψi(y) (2.21)

with ψi(y) defined as in Section 1.
Substituting (2.21) into (2.20), it is easy to check that if λ is an eigenvalue of

(2.20) with Reλ > −δc/2, then there exists some k ≥ 0 such that vk(ξ) 6≡ 0 in
(2.21) and (λ, vk(ξ)) must be an eigenpair of the following eigenvalue problem

v′′k (ξ) + cv′k(ξ) + [1−λk − (1−λ0)Vc(ξ)]vk(ξ) = λvk(ξ), if vk 6= 0, for some k ≥ 1;
(2.22)

or

v′′0 (ξ) + cv′0(ξ) + [1− λ0 − 2(1− λ0)Vc(ξ)]v0(ξ) = λv0(ξ), (2.23)

if v0(ξ)ψ0(y) is an eigenfunction of (2.20).

Theorem 2.1. For any given c > 2
√

1− λ0 and a satisfying (2.18), let δ > 0 be
small enough chosen as in Lemma 2.1.
(i) If λ is an eigenvalue of Lc,a with Reλ ≥ −δ/2, then λ must be real and the
eigenfunction must be in the form of v0(ξ)ψ0(y).
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PROPAGATION FOR A NONLOCAL MODEL 11

(ii) There exists small enough δc,a > 0 such that there is no eigenvalue of Lc,a with
Reλ > −δc,a.

Proof. Let λ be an isolated eigenvalue of Lc,a with Reλ ≥ −δ/2 with δ > 0 small
enough chosen as in Lemma 2.1 and the eigenfunction u(ξ, y) ∈ X2

a expressed by
(2.21).

We first assume that there exists k ≥ 1 such that vk(ξ) 6= 0 in (2.21), i.e.
(λ, vk(ξ)) is an eigenpair of (2.22) with vk(ξ)(1 + eaξ) ∈ Cunif(R). Using the fact
that

Re

(
c−

√
c2 + 4(λ+ λk − 1)

2

)
< a < Re

(
c+

√
c2 + 4(λ+ λk − 1)

2

)
, ∀ Reλ ≥ −δ/2,

then by applying the classical asymptotic analysis to (2.22) it holds that

vk(ξ) ∼ exp

{
−c−

√
c2 + 4(λ+ λk − 1)

2

}
, as ξ → +∞, if Reλ ≥ −δ/2. (2.24)

Let ṽk(ξ) = e
c
2 ξvk(ξ) ∈ H2(R), by (2.22) and (2.24), it is easy to check that

ṽk(ξ) ∈ H2(R) and satisfies the differential equation

ṽ′′k (ξ) + [−c
2

4
+ 1− λk − (1− λ0)Vc(ξ)]ṽk(ξ) = λṽk(ξ), for some k ≥ 1, (2.25)

which means that λ must be a real eigenvalue of the differential operator Lk =
∂2

∂ξ2 + bk(ξ) with an eigenfunction ṽk(ξ) = e
c
2 ξvk(ξ) ∈ H2(R) and note that

bk(ξ) , −c
2

4
+1−λk− (1−λ0)Vc(ξ) < λ0−λ1 ≤ −δ < 0, ∀k ≥ 1,∀ c > 2

√
1− λ0.

(2.26)
(2.26) further implies that

σ

(
∂2

∂ξ2
+ bk(ξ)

)
⊂ (−∞,−δ], ∀k ≥ 1,

which contradicts with the assumptions Reλ ≥ −δ/2 and vk(ξ) 6= 0 for some
k ≥ 1, this proves that if λ is an eigenvalue of Lc,a with Reλ > −δ/2, then the
eigenfunction in X2

a must be in the form of v0(ξ)φ0(y) and (λ, v0(ξ)) is an eigenpair
of (2.23).

By applying nearly the same argument as above, it can be proved that the
eigenvalue λ must be real and λ is an eigenvalue of L0 with an eigenfunction v0 ∈
H2(R) and L0 defined by

L0 =
∂2

∂ξ2
− c2

4
+ 1− λ0 − 2(1− λ0)Vc(ξ).

Using the fact that

−c
2

4
+ 1− λ0 − 2(1− λ0)Vc(ξ) ≤ −

c2

4
+ 1− λ0 = −δc < 0, for c > 2

√
1− λ0,

which means that σ(L0) ⊂ (−∞,−δc], this completes the proof of Theorem 2.1 and
Theorem 1 �

Remark 2.1. Note that the estimates (2.13) and (2.17) are still valid for the critical
speed case c = c∗ = 2

√
1− λ0, thus if we choose a =

√
1− λ0, then σess(Lc∗,a) ⊂

{Reλ < 0} ∪ {0}, and it can be further proved that σ(Lc∗,a) \ {0} ⊂ {Reλ < 0}
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12 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

and zero is not an eigenvalue of Lc∗,a, but 0 ∈ σess(Lc∗,a), the above stated spectral
results of Lc∗,a are nearly the same as that for the planar wave front with the critical
speed for Fisher equation ut = uxx = (1−λ0)u(1−u). By applying Green function
method with detailed point-wise semigroup estimate, it was proved in [18] that for
the Fisher equation ut = uxx + (1 − λ0)u(1 − u) if the small initial perturbation
of Vc∗(x) in Xa (a =

√
1− λ0) decays faster than x−2e−ax at x = +∞, then the

solution tends to the planar wave Vc∗(x − c∗t) in Xa and the perturbation of the
wave decays algebraically in time. However in the multi-dimensional cylinder case
even for the classical nonlinear parabolic equation it is still an open theoretical
problem that whether the above mentioned weak spectral stability of the cylinder
wave with critical speed can still guarantee some types of asymptotically stability
of the wave.

3. Uniform boundedness of solutions with more general initial value

In this section under the assumption of (H1), we investigate the initial boundary
value problem

ut(t, x, y)−4x,yu(t, x, y) + g(y)u(t, x, y)
= [1−m(t, x)]u(t, x, y), (t, x, y) ∈ R+ × R× Ω,
m(t, x) =

∫
Ω
K(y′)u(t, x, y′)dy′, (t, x) ∈ R+ × R,

∂u
∂ν = 0, (t, x, y) ∈ R+ × R× ∂Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ R× Ω.

(3.1)

with more general nonnegative initial value u0(x, y).

Lemma 3.1. For any nonzero and nonnegative initial value u0 ∈ L∞(R × Ω),
problem (3.1) admits a unique global positive classical solution u(t, x, y) ∈ C∞(R+×
R× Ω), which satisfies

0 < u(t, x, y) 6 et||u0||L∞(R×Ω), ∀(x, y) ∈ (R× Ω), t > 0. (3.2)

Proof. By applying comparison principle to (3.1) in the linear form, obviously
u(t, x, y) > 0 for any t > 0 and (x, y) ∈ R×Ω. It is easy to see that et||u0||L∞(R×Ω)

is a super-solution of the following linear initial boundary value problem{
wt −4x,yw + g(y)w = w, (t, x, y) ∈ R+ × R× Ω,

w(t, x, y) = u0(x, y), (x, y) ∈ R× Ω,
(3.3)

and u(t, x, y) is a sub-solution of (3.3), then by comparison principle we have

u(t, x, y) ≤ et||u0||L∞(R×Ω), ∀t > 0,∀(x, y) ∈ R× Ω.

�

By Lemma 3.1, denotem(t, x) =
∫

Ω
K(y′)u(t, x, y′)dy′ and vj(x, t) = 〈u(t, x, y), ψj(y)〉 =∫

Ω
u(x, y, t)ψj(y)dy, then u(t, x, y) =

∞∑
j=0

vj(t, x)ψj(y) and vj(t, x) (j ≥ 0) is the u-

nique global solution of the following nonlinear initial value problem{
∂
∂tvj −

∂2

∂x2 vj + (λj − 1 +m(t, x))vj = 0, (t, x) ∈ R+ × R,
vj(0, x) =

∫
Ω
u0(x, y)ψj(y)dy, x ∈ R.

(3.4)
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PROPAGATION FOR A NONLOCAL MODEL 13

Lemma 3.2. Let (λj , ψj(y)), ( j = 0, 1, ·) be the eigenpair stated as in Section 1,
there exists J ≥ 1 such that λj ≥ 2 for all j ≥ J + 1, and denote u⊥(t, x, y) =
∞∑

j=J+1

vj(x, t)ψj(y). Then for any given nonnegative bounded initial value u0(x, y),

it holds that

sup
x∈R
||u⊥(t, x, y)||L2(Ω) 6 e−t||u0||L∞(R)×L2(Ω), ∀t ≥ 0. (3.5)

Proof. Using the fact that λj ≥ 2 for any j ≥ J + 1 and m(t, x) ≥ 0 for x ∈ R, it
is easy to check that e−t‖vj(0, x)‖L∞(R) and −e−t‖vj(0, x)‖L∞(R) are supper and
sub-solutions of (3.4) respectively for any j ≥ J + 1, thus

sup
x∈R
|vj(t, x)| ≤ e−t‖vj(0, x)‖L∞(R), ∀t ≥ 0,∀j ≥ J + 1,

and

sup
x∈R
||u⊥(t, x, ·)||L2(Ω) = sup

x∈R

+∞∑
j≥J+1

|vj(t, x)| ≤ e−t
+∞∑

j≥J+1

‖vj(0, x)‖L∞(R)

≤ e−t||u0||L∞(R)×L2(Ω), ∀t ≥ 0,∀j ≥ J + 1.

�

Next, we consider the finite sum u(t, x, y) − u⊥(t, x, y) =
J∑
j=0

vj(x, t)ψj(y), we

only need to deal with the functions vj(t, x) for j = 0, 1, · · ·, J . Denote by cj =

||ψjψ0
||L∞(Ω), then

|vj(0, x)| 6
∫

Ω

u0(x, y)|ψj(y)|dy 6 cj
∫

Ω

u0(x, y)ψ0(y)dy = cjv0(0, x). (3.6)

By (3.6) and the fact λj − λ0 ≥ δ0 > 0 for j ≥ 1, applying sub-supper solution
method to the linear problem (3.4), it can be proved that

|vj(t, x)| 6 cje−(λj−λ0)tv0(t, x) ≤ cje−δ0tv0(t, x), ∀ x ∈ R, t > 0, j ≥ 1. (3.7)

Define

m0(t, x) = v0(t, x)

∫
Ω

K(y)ψ0(y)dy = (1− λ0)v0(t, x),

mj(t, x) = vj(t, x)

∫
Ω

K(y)ψj(y)dy, j = 1, 2, · · ·, J,
(3.8)

then

|mj(t, x)| 6
∫

Ω

K(y)|ψj(y)|dy · |vj(t, x)| 6 (1− λ0)c2je
−(λj−λ0)tv0(t, x). (3.9)

By Lemma 3.2 and (3.7)-(3.9), now we are ready to complete the proof of Theorem
2.

Proof of Theorem 2: Define

m⊥(t, x) =

∫
Ω

K(y)u⊥(t, x, y)dy,

then by Lemma 3.2 and (3.7), we have

|m⊥(t, x)| 6 ||K||L2(Ω)||u⊥(t, x, ·)||L2(Ω)

6 e−t||K||L2(Ω)||u0||L∞(R)×L2(Ω).
(3.10)
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14 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

Denote b0(t, x) = 1
(1−λ0)

(
m(t, x) − m0(t, x)

)
, then the equation of v0(t, x) in the

system of (3.4) can be written as

∂

∂t
v0 −

∂2

∂x2
v0 = (1− λ0)(1− b0(t, x)− v0)v0, t > 0, x ∈ R. (3.11)

(3.9) and (3.17) imply that

|b0(t, x)| = 1

(1− λ0)

∣∣∣∣∣∣
∞∑
j=1

vj(t, x)

∫
Ω

K(y)ψi(y)dy

∣∣∣∣∣∣
=

1

(1− λ0)

∣∣∣∣∣∣
J∑
j=1

mj(t, x) +m⊥(t, x)

∣∣∣∣∣∣
6

J∑
j=1

c2je
−(λj−λ0)t|v0(t, x)|+

‖K‖L2(Ω)

(1− λ0)
e−t‖u0(x, ·)‖L2(Ω).

(3.12)

In particular, there exists a positive constant C0 independent of u0 such that

|b0(t, x)| ≤ C0e−δ0t
(
|v0(t, x)|+ ‖u0(x, ·)‖L2(Ω)

)
∀t ≥ 0, x ∈ R, (3.13)

with δ0 = min{1, λ1 − λ0} > 0.
Next, we claim that

‖v0(t, ·)‖L∞(R) ≤ C uniformly in t ≥ 0. (3.14)

By Lemma 3.1 the assertion holds for finite t. For t large enough, we set T >> 1
such that

C0e−δ0T 6
1

2
, (3.15)

then (3.11) and (3.12) yield that

∂

∂t
v0 −

∂2

∂x2
v0 = (1− λ0)(1− b0(t, x)− v0)v0

≤ (1− λ0)

[
1− v0 +

1

2

(
v0(t, x) + ‖u0(x, ·)‖L2(Ω)

)]
v0(t, x), ∀t ≥ T.

(3.16)
It follows from the maximum principle that

‖v0(t, ·)||L∞(R) 6 max{‖v0(0, ·)‖L∞(R), 2 + ‖u0(·, ·)‖L∞(R)×L2(Ω)}, ∀t > T. (3.17)

This proves (3.14). Lemma 3.2 and (3.7) also imply that

‖u(t, x, ·)− v0(t, x)ψ0(·)‖L2(Ω) 6
J∑
j=1

c2je
−δ0t|v0(t, x)|+ e−t‖u0(x, ·)‖L2(Ω) ≤ Ce−δ0t,

(3.18)
which with (3.14) further implies

sup
t>0
‖u(t, ·, ·)‖L∞(R)×L2(Ω) ≤M0. (3.19)

By virtue of (3.19), the nonlinear equation (3.1) can be written in a form of linear
heterogeneous parabolic equation ut = 4x,yu − u + f(t, x, y) with f(t, x, y) =
u(2 − m(t, x)) satisfying ‖f(t, x, y)‖L∞(0,+∞)×L∞(R)×L2(Ω) ≤ M1, and note that
σ(L0) ⊂ {Re λ ≤ −1} with L0 = 4x,y − I, and

‖eL0t‖Lp(R×Ω)→W 1
p (R×Ω) ≤ Cpt−1/2e−1/2t, ∀t > 0, 1 < p < +∞, (3.20)
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PROPAGATION FOR A NONLOCAL MODEL 15

then by the decay estimate (3.20) and applying a recursive argument to (3.1) it
is easy to show that there exist positive constants θ and Cθ such that for any
u0 ∈ L∞(R× Ω) the unique classical solution of u of (3.1) also satisfies

‖u(t, x, y)‖Cθ(R×Ω) ≤ Cθ(‖u0‖L∞(R×Ω) +M0), ∀t ≥ 1. (3.21)

Estimate (3.21) can be similarly proved by applying interior W 1,2
p,p estimates and

bootstrap argument. By interpolation, (3.18) can be improved to

sup
(x,y)∈R×Ω

|u(t, x, y)− v0(t, x)ψ0(y)| 6 C ′e−δ
′
0t for t ≥ 1, (3.22)

for some C ′, δ′0 > 0. This proves Theorem 2.

4. Asymptotic behavior of solution with more general initial value

By virtue of the uniform boundedness of the solution and the estimates (1.6)-(1.7)
proved in Theorem 2, to investigate the spreading speed and asymptotic behavior of
the solution u(t, x, y) in higher dimensional cylinder to the problem (3.1) with more
general initial value, it suffices to investigate the long time behavior of v0(t, x) =
〈u(t, x, ·), ψ0(·)〉 as t → +∞, where v0(t, x) satisfies the nonlinear equation (3.11)
in one dimensional space, i.e. vt − vxx = (1− λ0)v(1− b0(t, x)− v), with b0(t, x) =

1
1−λ0

∫
Ω
K(y)(u(t, x, y)− v0(t, x)ψ0(y))dy. Due to the exponential decay in time of

the coupled term b(t, x) obtained in (3.13), the equation (3.11) of v0(t, x) can be
treated as a Fisher-KPP equation with a heterogenous term b(t, x).

In this section we shall focus on the investigation of the long time behavior of the
solution of Fisher-KPP equation (3.11) with more general heterogenous decaying
resource term b0(t, x), using the decaying estimate (3.13) of b0(t, x) in time, we
shall prove that for more general initial value the spreading speed of the solution to
problem (3.1) or problem (3.11) is still determined by the decay rate of the initial
value and the solution may still tend to the wave with some noncritical speed or
the critical speed in some appropriate sense.

4.1. Global asymptotic stability of waves with noncritical speeds. In this
subsection we investigate the Cauchy problem of (3.11), i.e.{

vt − vxx = (1− λ0)v(1− b0(t, x)− v), x ∈ R, t > 0,

v(0, x) = v∗0(x), x ∈ R.
(4.1)

For any given c > 2
√

1− λ0, let Vc(x−ct) be the traveling front solution connect-
ing 1 and 0 of (the limiting problem of) (4.1) with b0(t, x) ≡ 0 (as t → +∞), and
without loss of generality, we choose Vc(z) be the unique wave solution satisfying
the following boundary value problem

cV ′c + V ′′c + (1− λ0)Vc(1− Vc) = 0, z ∈ R,
Vc(−∞) = 1, Vc(+∞) = 0,

lim
z→+∞

eσzVc(z) = 1, σ =
c−
√
c2−4(1−λ0)

2 .

(4.2)

Observe that σ 7→ c = σ + 1−λ0

σ is a bijection from (0,
√

1− λ0) to (2
√

1− λ0,∞).
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16 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

For any given c > 2
√

1− λ0 and r > 0, let ψc(x − ct; r) be the unique planar
wave solution connecting r and 0 to the following boundary value problem:

cψ′c + ψ′′c + (1− λ0)ψc(1− ψc
r ) = 0, z ∈ R,

ψc(−∞, r) = r, ψc(+∞, r) = 0,

lim
z→+∞

eσzψc(z) = 1, σ =
c−
√
c2−4(1−λ0)

2 .

(4.3)

Obviously ψc(z; 1) = Vc(z) and ψc(z; r) = rVc(z − zr) and reσzr = 1.
In this subsection we always assume that the initial value v∗0(x) is nonnegative,

bounded and stays away from zero at x = −∞, i.e.

0 < q
0
< lim inf

x→−∞
v∗0(x) ≤ lim sup

x→−∞
v∗0(x) < q0, for x ≤ 0; (4.4)

and assume that the nonnegative bounded initial value v∗0(x) decays exponentially
at x = +∞ with the same decay rate of a wave for (4.2) or (4.3) with a noncritical
speed, which means for some c > 2

√
1− λ0

lim
x→+∞

v∗0(x)

Vc(x+ x0)
= 1, as x→ +∞, for some x0 ∈ R, (4.5)

or equivalently and without loss of generality, we assume the initial value of v∗0(x)
satisfies the decay estimate

lim
x→+∞

v∗0(x)eσx = 1, for some 0 < σ < 1
√

1− λ0. (4.6)

For the heterogeneous term b0(t, x), we assume that

|b0(t, x)| ≤ C0e−δt(v(t, x) + e−σ(x−ct) ∧ 1) for some C0, δ, σ > 0. (4.7)

Note that the decay estimate (3.13) implies (4.7).

Lemma 4.1. Let v(t, x) be a solution to (4.1) with initial value satisfying (4.6) for
some σ ∈ (0,

√
1− λ0). Assume in addition that b0(t, x) satisfies (4.7) for some

positive C0 and δ > 0. Then the following statements hold true.

(a) For each t > 0, we have lim
x→+∞

eσxv(t, x) = eσct, where c = σ + 1−λ0

σ .

(b) There exist positive constants t1 and r1 such that

v(t, x) ≥ r1(e−σ(x−ct) ∧ 1), t ≥ t1, x ∈ R.

(c) For each ε > 0, there exists t2 > 0 such that

|b0(t, x)| ≤ ε

1 + ε
v(t, x), t ≥ t2, x ∈ R.

Proof. To prove (a), we first observe that vt − vxx ≤ κv, where κ = (1 − λ0)(1 +
‖b‖L∞(R+×R)). Hence, the comparison principle yields, for each t > 0,

0 ≤ v(s, x) ≤ sup
y∈R

(eσyv∗0(y))e−σx+(σ2+κ)s ≤ Cte−σx, (s, x) ∈ [0, t]× R. (4.8)

Next, observe that by Duhamel’s principle:

v(t, x) = e(1−λ0)t(pt ∗ v∗0)(x) + E(t, x), (4.9)

where pt(x) = p(t, x) = 1√
4πt

e−x
2/(4t) and

E(t, x) =

∫ t

0

e(1−λ0)(t−s)
∫
R
p(t− s, x− x′)(−b0(s, x′)− v(s, x′))v(s, x′) dx′ds.
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PROPAGATION FOR A NONLOCAL MODEL 17

Thanks to (4.7) and (4.8), it follows that for each fixed t > 0,

|E(t, x)| ≤ Ct
∫ t

0

e(1−λ0)(t−s)
∫
R
p(t− s, x− x′)(e−σx

′
)2 dx′ds ≤ C ′te−2σx, t ≥ 0,

so that lim
x→∞

eσx|E(t, x)| = 0 for any t > 0. Therefore, using (4.6) and (4.9) again,

we have

lim
x→∞

eσxv(t, x) = lim
x→∞

eσxe(1−λ0)t(pt ∗ v∗0)(x) = eσct, ∀t > 0. (4.10)

To see the last equality, we note that v∗0(x) = e−σx(1 + g(x)) with g(+∞) = 0, so
that

eσxe(1−λ0)t(pt ∗ v∗0)(x) =
1√
4πt

eσx+(1−λ0)t

∫
R

e−
(x−x′)2

4t e−σx
′
(1 + g(x′)) dx′

=
1√
4πt

e(1−λ0)t

∫
R

e−
(x−x′−2σt)2

4t +σ2t(1 + g(x′)) dx′

= e(1−λ0)t+σ2t

∫
R
pt(x− x′ − 2σt)(1 + g(x′)) dx′

= eσct
∫
R
pt(x̃)(1 + g(x− x̃− 2σt)) dx̃, ∀t > 0.

Then one can take x→ +∞ in the above by the dominant convergence theorem to
obtain the last equality in (4.10). This completes the proof of (a).

For (b), note that v(t, x) satisfies

vt−vxx ≥ (1−λ0)v(1−|b|−v) ≥ (1−λ0)v[1−Cbe−δt(v+(e−σ(x−ct)∧1)−v]. (4.11)

By choosing t1 > 1 large enough, we see that v(t, x) is a supersolution of

wt − wxx = (1− λ0)w[1− ε
2ψ(x− ct; 1)− (1 + ε

2 )w], t ≥ t1, x ∈ R, (4.12)

where we used

(e−σx ∧ 1) ≤ Bψ(x; 1) for some B > 1. (4.13)

Next, observe that w(t, x) = rψ(x−ct; 1) is a subsolution of (4.12) for any r ∈ (0, 1).
Finally, we can choose r = r(ε) small enough so that

v(t1, x) ≥ rψ(x− ct2; 1), x ∈ R.

(This is thanks to (a) and lim
x→∞

eσxψ(x− ct1; 1) = eσct1 .) We can then conclude by

the comparison principle that

v(t, x) ≥ rψ(x− ct; 1) ≥ r

B
(e−σ(x−ct) ∧ 1), t ≥ t1, x ∈ R. (4.14)

This proves (b). Assertion (c) follows from (4.7) and (b). �

Theorem 4.1. Let v(t, x) be a solution to (4.1) with initial value v∗0(x) satisfying
(4.4) and (4.6) for some σ ∈ (0,

√
1− λ0). Suppose, in addition, that (4.7) holds,

then

lim
t→∞

[
sup
z∈R
|v(t, z + ct)− Vc(z)|

]
= 0. (4.15)
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18 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

Proof. Fix ε > 0, then by Lemma 4.1 (a) and (c), there exists tε ≥ 1, such that

(1−λ0)v

(
1− v

1− ε

)
≤ vt−vxx ≤ (1−λ0)v

(
1− v

1 + ε

)
, t ≥ tε, x ∈ R, (4.16)

and
lim

x→+∞
eσxv(t, x) = eσct, ∀t ≥ 0. (4.17)

By comparison principle, we have

ṽ−(t, x) ≤ v(t, x) ≤ ṽ+(t, x), t ≥ tε, x ∈ R,
where ṽ±(t, x) are, respectively, the solutions of the Cauchy problem of the following
classical Fisher equation{

ṽt − ṽxx = (1− λ0)
(

1− ṽ
1±ε

)
, t ≥ tε, x ∈ R,

ṽ(tε, x) = v(tε, x), x ∈ R.
(4.18)

Notice that by (4.17) and (4.18), the initial value ṽ(tε, x) satisfies

lim
z→+∞

eσz ṽ(tε, z + ctε) = 1,

then by [33, Theorem 9.3] it is follows that the solution ṽ±(t, x) converges to the
planar wave solution ψ(x− ct; 1± ε) of (4.18) uniformly in the moving coordinate
z = x− ct as t→ +∞; precisely speaking, we have

lim
t→+∞

sup
z∈R
|ṽ±(t, z + ct)− ψ(z; 1± ε)| = 0,

where ψ(z; r) is given in (4.3). Thus

ψ(z; 1− ε) ≤ lim inf
t→+∞

v(t, z + ct) ≤ lim sup
t→+∞

v(t, z + ct) ≤ ψ(z; 1− ε),∀z ∈ R. (4.19)

The proof is completed by letting ε↘ 0 in (4.19). �

Obviously Theorem 3 follows from Theorem 2 and Theorem 4.1.

Remark 4.1. If the decay assumption (4.6) on the initial value is weakened to

v∗0(x) = e−(σ+o(1))x, x→ +∞,
we conjecture that

lim
t→∞

[
sup
x∈R
|v(t, x)− ψ (x− ct+ ξ(t))|

]
= 0, (4.20)

where ξ(t) is in general a bounded function.

Proof of Theorem 4: Under the assumption that the initial value u0(x, y)
satisfies the assumption (1.10) and∫

Ω

u0(x, y)ψ0(y)dy ∼ re−σx +O(e−ax), as x→ +∞, (4.21)

for some r > 0, σ ∈ (0,
√

1− λ0) and a > σ, which means u0(x, y) − Vc(x −
1
σ ln r)ψ0(y) ∈ Xa, for c = σ + 1−λ0

σ > 2
√

1− λ0 and a > σ. By virtue of the
local exponential stability of the wave Vc(x+ x0)ψ0(y) in some weighted space Xa

( see Theorem 1), it suffices to consider the case r = 1 in (4.21) and prove that
‖u(t, z + ct, y)− Vc(z)ψ0(y)‖Xa → 0 as t→ +∞ if a− σ is small enough.

By Theorem 3, it is known that under the assumption (1.10),

‖u(t, z + ct, y)− Vc(z)ψ0(y)‖L∞(R×Ω) → 0 as t→ +∞.
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PROPAGATION FOR A NONLOCAL MODEL 19

Denote v(t, x) = 〈u(t, x, ·), ψ0(·)〉, and let ṽ(t, z) = v(t, z + ct), then in the moving
coordinate z = x − ct, ṽ(t, z) satisfies the following heterogeneous Fisher type
equation:

ṽt = ṽzz + cṽz + (1− λ0)ṽ(1− b0(t, z + ct)− ṽ),

then v̂(t, z) = ṽ(t, z)− Vc(z), satisfies the nonlinear equation

v̂t = v̂zz + cv̂z + (1− λ0)v̂ + F (t, z, v̂),

with the initial value v̂0(z) =
∫

Ω
u0(z, y)ψ0(y) − Vc(z) ∈ L∞(R), and v̂0(z) =

O(e−az) for z >> 1 and a > σ, where

F (t, z, v̂) = −b0(t, z + ct)(v̂ + Vc(z))− v̂2(t, z)− 2Vc(z)v̂.

Under the assumption (1.10), by (4.7) and Theorem 3 we know that

|F (t, z, v̂)| ≤ Cte−2σz ∧ η(t), z ∈ R, t > 0,

where η(t)→ 0+ as t→ +∞.
Note that

v̂(t, z) = e(1−λ0)t

∫
R
p(t, z + ct− z′)v̂0(z′)dz′ + F̂ (t, z, v̂),

where p(t, z) = 1√
4πt

e−
z2

4t and

F̂ (t, z) =

∫ t

0

e(1−λ0)(t−s)
∫
R
p(t− s, z + ct− z′)F (s, z′, v̂(s, z′) dz′ds.

Choosing a ∈ (σ, σ+), with σ+ =
c+
√
c2−4(1−λ0)

2 >
√

1− λ0 > σ, by detailed
computation it can be verified that

e(1−λ0)t

∫
R
p(t, z + ct− z′)e−az

′
dz′ = e−δate−az,

with −δa = a2 + ca+ 1− λ0 < 0, if a ∈ (σ, σ+), and it can be proved that

|F̂ (t, z)| ≤ Ce−2σz, t ≥ 0, z ≥ 0,

thus for any given v̂0 ∈ L∞(R) satisfying v̂0(z) = O(e−az) for z >> 1 with a ∈
(σ, σ+) and a < 2σ, we have

lim
z→+∞

|eaz v̂(t, z)| ≤ C0e−δat‖eaz v̂0(z)‖L∞(R), t > 0,

which with Theorem 3 further implies that

‖u(t, z + ct, y)− Vc(z)ψ0(y)‖Xa → 0 as t→ +∞,
then for large enough t we can apply Theorem 1 to yield the exponential decay in
time of ‖u(t, z + ct, y)− Vc(z)ψ0(y)‖Xa , which completes the proof of Theorem 4.

4.2. Spreading speed of the solution with the Bramson logarithmic delay
when the initial value has compact support. In this subsection we investigate
the spreading speed and asymptotic behavior of the solution of (1.3) with nonneg-
ative compact supported initial value, in [4] it has been proved that the spreading
speed of the solution must be the minimal speed 2

√
1− λ0, in this paper we try

to prove that the propagation of the solution for (1.3) with bounded Ω still has
Bramson’s type of delay estimate, which also extends some classical results for the
scalar Fisher-KPP equation to the nonlocal model (1.3). By Theorem 2 and esti-
mate (3.13), to prove Theorem 5 it suffices to investigate the asymptotic behavior
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20 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

of solution v(t, x) to the heterogenous Fisher type equation (4.1) with compact
supported initial value. After re-scaling of the coordinates: x 7→

√
1− λ0x and

t 7→ (1−λ0)t, it is easy to see that in the new coordinates v(t, x) satisfies the equa-
tion (4.1) with λ0 = 0, thus in the following of this subsection we just investigate
the Cauchy problem of (4.1) with λ0 = 0, i.e.{

vt − vxx = v(1− b0(t, x)− v), t > 0, x ∈ R,
v(0, x) = v∗0(x), x ∈ R,

(4.22)

where b0(t, x) satisfies (3.13), which with Theorem 2 implies that for any given
nonnegative bounded initial value u0(x, y) there exist positive constants C0 and δ0,
such that

‖b0(t, ·)‖L∞(R) ≤ C0e
−δ0t, t > 0,

thus

b̃(t) = sup
x∈R
|b0(t, x)| ∈ L1([0,∞)). (4.23)

Denote b1(t) = b̃(t), b2(t) = −b̃(t), and vi(t, x) = e
∫ t
0
bi(s)dsv(t, x) (i = 1, 2), it is

easy to see that vi(t, x) satisfies

∂

∂t
v1 −

∂2

∂x2
v1 ≥ v1(1− v1), t > 0, x ∈ R,

and
∂

∂t
v2 −

∂2

∂x2
v2 ≤ v2(1− v2), t > 0, x ∈ R,

Let Φ(x − 2t) be the traveling wave solution with the minimal speed of Fisher
equation ut = uxx + u(1− u) satisfying

Φ′′(z) + 2Φ′(z) + Φ(z)(1− Φ(z)) = 0, z ∈ R,
Φ(−∞) = 1, Φ(+∞) = 0,

Φ(0) = 1
2 .

(4.24)

Let ṽ(t, x) be the unique solution of{
ṽt − ṽxx = ṽ(1− ṽ), t > 0, x ∈ R,
ṽ(0, x) = v∗0(x), x ∈ R,

Then by comparison principle it yields that

e−
∫ t
0
b̃(s) dsṽ(t, x) ≤ v(t, x) ≤ e

∫ t
0
b̃(s) dsṽ(t, x). (4.25)

Theorem 5 is a consequence of Theorem 2 and the following theorem.

Theorem 4.2. Let b0(t, x) satisfy (3.13) and let v be a solution of (4.22). There
exists a constant C ≥ 0 and two functions ξ±(0,∞) → R such that |ξ(t)| ≤ C for
all t > 0, and

lim
t→+∞

sup
z∈R+

∣∣∣∣v(z + 2t− 3
2 log t, t)− Φ(z + ξ+(t))

∣∣∣∣ = 0, (4.26)

and

lim
t→+∞

sup
z∈R−

∣∣∣∣v(z − (2t− 3
2 log t), t)− Φ(−z + ξ−(t))

∣∣∣∣ = 0. (4.27)
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PROPAGATION FOR A NONLOCAL MODEL 21

Proof. By Theorem 1.1 of [20] and (4.25), we have

lim inf
t→+∞

 min
0≤x≤2t− 3

2 log t−C
v(t, x)

 ≥ e−‖b̃‖L1 lim inf
t→+∞

 min
0≤x≤2t− 3

2 log t−C
ṽ1(t, x)

 > 0, as C → +∞,

and

lim supt→+∞

(
max

x≥2t− 3
2 log t+C

v(t, x)

)
≤ e‖b̃‖L1 , for C >> 1,

lim supt→+∞

(
max

x≥2t− 3
2 log t+C

ṽ2(t, x)

)
→ 0, for C >> 1.

Furthermore, by Propositions 2.3 and 3.1 of [20], there exist positive constants κ
and ρ such that

κze−z ≤ v(t, 2t− 3
2 log t+ z) ≤ ρ(z + 1)e−z, t ≥ 1, 0 ≤ z ≤

√
t. (4.28)

We can then repeat the proof of [20, Theorem 1.2] to prove (4.26). (4.27) can be
proved by the same argument. �

Remark 4.2. If the nonnegative initial value v∗0(x) satisfies the assumption

0 < q
0
< lim inf

x→−∞
v∗0(x) ≤ lim sup

x→−∞
v∗0(x) < q0, for x ≤ 0; (4.29)

and
v∗0(x) ≡ 0, for x >> 1,

then estimate (4.26) is still valid and it can be proved that the solution v(t, x) of
(4.22) tends to Vc∗(x− c∗t) in the following weak way

lim
t→∞

sup
x∈R
|v(t, x)− Vc∗ (x− c∗t− η(t))| = 0, (4.30)

with η(t) = − 3
2 ln t + O(1) for all t > 0, which with Theorem 2 also means that

the solution u(t, x, y) of the nonlocal equation (1.3) tends to the cylinder wave
Vc∗(x− ct)ψ0(y) in the similar weak sense.

Remark 4.3. If the initial value v∗0(x) satisfies (4.29) and decays with the same
exponential rate as that of Vc∗(x) at x = +∞, i.e.

v∗0(x) ∼ xe−2x ∼ Vc∗(x), x→ +∞, c∗ = 2,

due to the exponential decay b0(t, x) in time and the initial assumption, by con-
structing appropriate sub and supper solution to heterogeneous Fisher type equa-
tion vt = vxx + v(1 − b0(t, x) − v), it is naturally expected that the shift η(t) in
(4.30) can be uniformly bounded for all t > 0, and we conjecture that the shift η(t)
has a limit as t→ +∞ if v∗0(x) ≡ Vc∗(x), for x >> 1.

If v∗0(x) decays faster than Vc∗(x) at x = +∞, such as

v∗0(x) = O(e−2x), x→ +∞, (4.31)

by virtue of (4.25) and Theorems 5 and 4.2, by applying comparison argument it
can be proved that the spreading speed of the solution is still the critical speed.

We conjecture that the estimate (4.30) is still valid with η(t) satisfying η(t)
t → 0 as

t→ +∞.
It is well known that for classical Fisher equation in one dimensional space, in

[13, 22] the authors give more detailed description on the asymptotic behavior of
solution and the spreading of the level set of solution, which are classified by the
decay rate of the initial value v∗0(x) near z = +∞. However due to the fact that
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22 QING LI, XINFU CHEN, KING-YEUNG LAM, YAPING WU

the comparison principle can’t be applied directly to the nonlocal model (1.3) or
to the nonlinear heterogenous equation (4.22), some powerful techniques applied in
[13, 22], which are based on the comparison principle for nonlinear homogeneous
parabolic equation, can’t be applied directly to the nonlocal model (1.3) or to
equation (4.22) with a heterogeneous term. For the typical case when the initial
value is compact supported ( or a heaviside function), it is unknown that whether
the bounded shifts ξ±(t) in Theorem 4.2 have limits, which may be not true for the
nonlocal model (1.3) and the above mentioned conjectures are also open problems.
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