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Abstract. We study a two-species Lotka-Volterra competition model in an
advective homogeneous environment. It is assumed that two species have the
same population dynamics and diffusion rates but different advection rates.
We show that if one competitor disperses by random diffusion only and the

other assumes both random and directed movements, then the one without
advection prevails. If two competitors are drifting along the same direction
but with different advection rates, then the one with the smaller advection
rate wins. Finally we prove that if the two competitors are drifting along the

opposite direction, then two species will coexist. These results imply that the
movement without advection in homogeneous environment is evolutionarily
stable, as advection tends to move more individuals to the boundary of the

habitat and thus cause the distribution of species mismatch with the resources
which are evenly distributed in space.

1. Introduction. We begin with the following logistic model proposed by Verhulst

ut = u[r − u], t > 0, (1)

where u(t) represents the total population number of a species at time t and r is a positive constant
accounting for the carrying capacity of the environment. It is easy to observe that for any initial

data u(0) > 0, problem (1) admits a unique positive solution satisfying limt→∞ u(t) = r, i.e., the
equilibrium u = r is globally asymptotically stable.
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Taking migration into consideration, one can turn to the reaction-diffusion equation

ut − d△u = u[r − u], x ∈ Ω, t > 0, (2)

where u(x, t) denotes the population density of the species at location x and time t; the habitat
Ω is a bounded domain in Rn with smooth boundary, denoted by ∂Ω; d > 0 is the dispersal rate,
and r > 0 signifies the intrinsic growth rate. Throughout this paper we assume that r is a positive
constant to reflect a homogeneous environment with resources being evenly distributed across the

space. We impose the zero Neumann boundary condition, i.e.,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0, (3)

where ν is the outward unit normal vector on ∂Ω. Similar to (1), all solutions of problem (2)-(3)

with non-negative and not identically zero initial data will converge to the steady state u = r as
t→ ∞. Hence, the single species u can perfectly match the resource at the equilibrium, when the
environment is homogeneous. We refer to [1, 7, 19] for the discussions of the heterogeneous case
r = r(x).

Besides the random movement, in some circumstances the species may also take directed move-
ment towards more favorable habitats [2, 3, 4, 5, 6, 13, 14, 15, 20], or there exist some external
environmental forces such as water flow [17, 18], wind [8, 9] and so on, which usually can be

described by an advection term in the equation. Here we give a typical example. Let x denote
the depth within a water column where x varies from 0 (water surface) to L (water bottom), and
u(x, t) be the population density of a single aquatic species at location x and time t. Due to self-
propelling and/or water turbulence, individuals undergo diffusive movements with diffusion rate

d > 0. Additionally, they may be sinking (resp. buoyant) provided they are heavier (resp. lighter)
than the water, with sinking velocity α > 0 (resp. buoyant velocity α < 0). Assume further that
the species obeys the logistic growth law, then we obtain the following reaction-diffusion-advection
model: 

ut = duxx − αux + u[r − u], 0 < x < L, t > 0,
dux(0, t)− αu(0, t) = 0, t > 0,

dux(L, t)− αu(L, t) = 0, t > 0,

(4)

where the no-flux boundary conditions mean that no individuals will pass through the water surface
and bottom. The dynamics of problem (4) is trivial: all solutions of problem (4) will converge

asymptotically to the unique positive steady state solution among all non-negative and non-trivial
initial data. In particular, if the species has almost the same weight as the water, then the upward
(or downward) movement caused by buoyancy (or gravity) can be ignored, i.e., α ≈ 0, and so in
this case problem (4) reduces to problem (2)-(3). (We remark here that problem (4) with different

boundary conditions has also been studied; see for example, Danckwerts condition in [23], hostile
condition in [22], and a more general condition in [16].)

We consider two aquatic species which are competing for the same resources in the water
column, as described by the following Lotka-Volterra competition model including advection forces:

ut = d1uxx − αux + u[r − u− v], 0 < x < L, t > 0,
vt = d2vxx − βvx + v[r − u− v], 0 < x < L, t > 0,

d1ux(0, t)− αu(0, t) = d1ux(L, t)− αu(L, t) = 0, t > 0,
d2vx(0, t)− βv(0, t) = d2vx(L, t)− βv(L, t) = 0, t > 0,
u(x, 0) = u0(x) ≥, ̸≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, ̸≡ 0, 0 < x < L.

(5)

For system (5), the case d1 ̸= d2 and α = β has recently been studied by the authors [16],
where it is shown that the species with higher diffusion rate will always displace the one with

the smaller rate, which indicates that in an advective environment, slow diffusers can be put at
disadvantage and higher diffusion rate can evolve, in contrast to the evolution of slow diffusion
rate in non-advective but spatially heterogeneous environment [10, 11].

In this paper, we continue to study system (5) under the hypothesis that the dispersal strategy
of the two species only differs in their advection rate, that is,

d1 = d2 and α ̸= β.
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Then system (5) becomes

ut = duxx − αux + u[r − u− v], 0 < x < L, t > 0,
vt = dvxx − βvx + v[r − u− v], 0 < x < L, t > 0,
dux(0, t)− αu(0, t) = dux(L, t)− αu(L, t) = 0, t > 0,
dvx(0, t)− βv(0, t) = dvx(L, t)− βv(L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, ̸≡ 0, 0 < x < L.

(6)

Our main goal is to understand how different dispersal strategies affect the outcome of competition

in a homogeneous environment. In particular, by the virtue of system (6), we will try to figure
out whether strong or weak advection would help the species gain more competitive advantages.

Note that in the frame of system (6), α and β are playing a symmetric role, hence without loss

of generality, we may assume that α < β. With this in mind, then mathematically we only need
to deal with the following three cases:

Case I : 0 = α < β; Case II : 0 < α < β; and Case III : α < 0 < β;

because α < β = 0 and α < β < 0 can be respectively converted to Case I and Case II by
the transformation x 7→ −x. Ecologically, Case I indicates that one species disperses by random

diffusion only, and the other one takes both random and biased movements, hence we can call
Case I: Pure random diffusion versus mixed movement for brevity. In Cases II and III, both
species assume a combination of random and directed movements, but with the two competing

species drifting in the same direction in Case II, and in the opposite direction in Case III. Hence,
for the sake of simplicity, we may call Case II: Advection along the same direction, and Case III:
Advection along opposite direction.

Before stating our main results, let us first introduce some notations. Throughout this paper,

we denote by (ũ, 0) and (0, ṽ) the two semi-trivial steady states of system (6) (the existence of
such solutions will be given later). In particular, we have ũ = r in Case I. In addition, we use
(u∗, v∗) to denote any co-existence steady state (i.e., both components are positive) of system (6)
if it exists.

Our first main result concerns Case I for system (6), where the global dynamics is completely
determined.

Theorem 1.1. Assume 0 = α < β. Then (ũ, 0) = (r, 0) is globally asymptotically stable, i.e.,
every solution of system (6) will converge to (r, 0) as t→ ∞ for any non-negative and non-trivial
initial condition.

We mention here that for the case α < β = 0, (0, ṽ) = (0, r) will become globally asymptotically

stable. Interchanging the role of α and β, one further finds that Theorem 1.1 holds actually for
0 = α < |β|, which gives us an information that pure random diffusion wins.

As a matter of fact, the conclusion of Theorem 1.1 can be generalized to system (5), where the
restriction d1 = d2 is dropped.

Theorem 1.1∗ For system (5), assume that d1, d2 > 0 and α = 0 ̸= |β|. Then (ũ, 0) = (r, 0) is

globally asymptotically stable, i.e., every solution of system (5) will converge to (r, 0) as t → ∞
for any non-negative and non-trivial initial condition.

Biologically, Theorem 1.1 and Theorem 1.1∗ are easy to understand. Since 0 = α < |β|, the
species v has a tendency to move more individuals to the boundary x = L or x = 0 due to gravity
or buoyancy. As a result, the distribution of species v will more likely mismatch with the resources
which are evenly distributed in space. In contrast, species u can perfectly match the resource at

the equilibrium u = r. This explains why finally species u, which has no advective movement, has
some competitive advantage over species v and it will win the competition finally.

We now turn to Case II, where we also obtain a complete understanding of the global dynamics
of system (6).

Theorem 1.2. Assume 0 < α < β. Then (ũ, 0) is globally asymptotically stable, i.e., every

solution of system (6) will converge to (ũ, 0) as t → ∞ for any non-negative and non-trivial
initial condition.

We remark here that for the case α < β < 0, by the transformation x 7→ −x, one can prove that
(0, ṽ) will become globally asymptotically stable. Combining this result with Theorem 1.2, one
finds that if the two competing species are drifting along the same direction, then larger advection

rate causes species extinction; in other words, small advection wins.
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Let us also give some biological explanations for this result: As now both species will move
to the same end of the habitat, it will cause overcrowding and overmatching of resources at the
boundary, which in turn results in the extinction of the species which has larger advection rate

and can thus send more individuals to the boundary. Hence small advection will be selected.
Next, we discuss Case III for system (6).

Theorem 1.3. Assume α < 0 < β. Then system (6) has a (locally) stable co-existence steady
state (u∗, v∗). In other words, in this situation, the two competing species may coexist finally.

From the biological point of view, the above result is not difficult to understand since in the
current scenario, u has a tendency to move to the boundary x = 0, while v prefers the other

end x = L, hence both of them are able to boom themselves in their own favorable regions. We
conjecture that (u∗, v∗) in the above theorem should be unique, and thereby it must be globally
asymptotically stable.

We point out here that in this paper, the stability/instability of the semi-trivial stead states is

given by two different methods: the first one uses the monotonicity of the principal eigenvalue on
the advection parameter, and the second one rests on the essential structure feature of the system.
Moreover, it seems nontrivial to prove the non-existence of any co-existence steady state for Case
II, where we will introduce some new ideas and mathematical techniques.

The rest of this paper is arranged as follows. In Section 2 we present some preliminary results.
In the next three consecutive sections, we will discuss Cases I, II and III and establish Theorems
1.1 (1.1∗), 1.2 and 1.3, respectively.

2. Preliminary results. In this section we present some preliminary results, which are useful in

later analysis.
For any parameter γ ∈ R, consider the problem{

dwxx − γwx + w[r − w] = 0, 0 < x < L,

dwx(0)− γw(0) = dwx(L)− γw(L) = 0.
(7)

Then we have

Lemma 2.1. For any γ ∈ R, problem (7) admits a unique positive solution w̃.

Proof. Set

w =Me
γ
d
x and w = εe

γ
d
x.

It is easy to check that w and w are respectively an upper and lower solution to problem (7),

provided M ≥ re
|γ|
d

L and ε ≤ re−
|γ|
d

L. By the upper and lower solution method, problem (7)
has a positive solution, denoted by w̃.

We next prove w̃ is unique, which can be done by a standard argument, and so we only
sketch the main ideas here. Suppose for contradiction that problem (7) has two different positive

solutions. Since M and ε can be chosen arbitrarily large and small, respectively, one can show
that the maximal solution of problem (7), denoted by w̃1, and the minimal solution, denoted by
w̃2, satisfy

w̃1 > w̃2 > 0 in [0, L]. (8)

Multiply the equation of w̃1 by e−
γ
d
xw̃2 and the equation of w̃2 by e−

γ
d
xw̃1, subtract the resulting

equations and integrate over [0, L], we obtain∫ L

0
e−

γ
d
xw̃1w̃2[w̃1 − w̃2]dx = 0,

which contradicts (8). This contradiction finishes the proof.

Lemma 2.2. w̃ has the following properties:

(a) w̃x ≡ 0 in [0, L], if γ = 0;
(b) w̃x > 0 in [0, L], if γ > 0;
(c) w̃x < 0 in [0, L], if γ < 0.

Proof. Part (a) is easy to see and we turn to part (b).

Set p := w̃x
w̃

. After a series of computations we find{
−dpxx + [γ − 2dp]px + w̃p = 0, 0 < x < L,

p(0) = p(L) = γ
d
> 0.



REACTION-DIFFUSION-ADVECTION COMPETITION SYSTEM 5

By the maximum principle,

0 < p <
γ

d
in (0, L),

which particularly implies

w̃x > 0 in (0, L).

Thus part(b) is established. Part (c) can be verified similarly as part (b). The proof is complete.

The following result is an immediate consequence of previous two lemmas.

Corollary 1. For system (6), we have

(a) In Case I, system (6) has two semi-trivial steady states (ũ, 0) and (0, ṽ) with ũ = r and ṽx > 0
in [0, L];

(b) In Case II, system (6) has two semi-trivial steady states (ũ, 0) and (0, ṽ) with ũx > 0 and ṽx > 0
in [0, L];

(c) In Case III, system (6) has two semi-trivial steady states (ũ, 0) and (0, ṽ) with ũx < 0 and ṽx > 0
in [0, L].

Consider the linear eigenvalue problem{
−[dζx − γζ]x −m(x)ζ = τζ, 0 < x < L,
dζx(0)− γζ(0) = dζx(L)− γζ(L) = 0,

(9)

where m(x) ∈ C1([0, L]). Denote by (τ1, ζ1) the first pair of eigenvalue-eigenfunction of problem

(9). It is well known that (see, e.g., [12, 21]) τ1 is simple and ζ1 can be chosen strictly positive in
[0, L]. In later analysis, sometimes we write τ1 as τ1(γ,m(x)) to emphasize the dependence on γ
and m(x).

The following result concerns the monotonicity of τ1 with respect to γ.

Lemma 2.3. The following statements hold:

(a) τ1 is a strictly increasing function of γ ∈ R if mx ≤, ̸≡ 0 in [0, L];

(b) τ1 is a strictly decreasing function of γ ∈ R if mx ≥, ̸≡ 0 in [0, L].

Proof. To establish part (a), we first prove the following fact

q , ζ1x
ζ1

<
γ

d
in (0, L). (10)

Actually, by some tedious but straightforward calculations, we find{
−dqxx + [γ − 2dq]qx = mx, 0 < x < L,
q(0) = q(L) = γ

d
.

(11)

Since mx ≤, ̸≡ 0 in [0, L], an application of the maximum principle to (11) immediately gives (10).
We next verify τ1′(γ) > 0 for γ ∈ R.
Set ϑ = e−

γ
d
xζ1. Then from the equation of (τ1, ζ1) we can deduce{

−[dϑx + γϑ]x −m(x)ϑ = τ1ϑ, 0 < x < L,
ϑx(0) = ϑx(L) = 0.

(12)

Differentiating (12) with respect to γ produces{
−[dϑ′x + γϑ′]x − ϑx −m(x)ϑ′ = τ1′ϑ+ τ1ϑ′, 0 < x < L,
ϑ′x(0) = ϑ′x(L) = 0,

(13)

where the prime notation denotes the derivative with respect to γ. Multiplying (12) by e
γ
d
xϑ′ and

(13) by e
γ
d
xϑ, subtracting the resulting equations and then integrating by parts over (0, L) yield

τ1
′(γ) = −

∫ L
0 e

γ
d
xϑxϑdx∫ L

0 e
γ
d
xϑ2dx

. (14)

Note that ϑx = e−
γ
d
x[ζ1x − γ

d
ζ1] < 0 (due to (10)), we then see from (14) that

τ1
′(γ) > 0 for γ ∈ R,

which completes the proof of part (a).
Part (b) can be proved similarly. In fact, under the condition in part (b), the inequality sign in

(10) will be reversed, which together with the identity (14) directly gives the desired result. The

proof is complete.
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Since problem (6) is a monotonic dynamical system, to a large extent, its dynamics can be
determined by the stability/instability of steady states, which gives rise to the study of certain
eigenvalue problems obtained by linearization.

At the end of this section, we are going to unify some symbols associated with the linearized
problems for notation simplicity.

Linearizing system (6) at (ũ, 0) and (0, ṽ), respectively, we obtain the following two eigenvalue

problems {
−[dψx − βψ]x − [r − ũ]ψ = µψ, 0 < x < L,
dψx(0)− βψ(0) = dψx(L)− βψ(L) = 0,

(15)

and {
−[dφx − αφ]x − [r − ṽ]φ = λφ, 0 < x < L,
dφx(0)− αφ(0) = dφx(L)− αφ(L) = 0.

(16)

Denote by (µ1, ψ1) and (λ1, φ1) the first pair of eigenvalue-eigenfunction of problem (15) and (16),
respectively. (We underline that the symbols of µ1, ψ1, λ1 and φ1 appearing in later sections are
defined the same as here.)

(ũ, 0) is called linearly stable (resp. linearly unstable) in C(Ω̄)× C(Ω̄) provided µ1 > 0 (resp.
µ1 < 0). The stability of (0, ṽ) can be defined in the same manner. Moreover, if a steady state
is linearly stable (resp. linearly unstable), it is asymptotically stable (resp. unstable) (see, e.g.,
Theorem 7.6.2 in [21]).

3. Case I: Pure random diffusion versus mixed movement. In this section we study the
case 0 = α < β and show that the species without directed movement (u) will win the competition

finally.
We first investigate the stability/instability of (0, ṽ).

Lemma 3.1. Assume 0 = α < β. Then the semi-trivial steady state (0, ṽ) is unstable.

Proof. We prove this result by two different methods.
Method 1: Note that (λ1, φ1) defined in section 2 now satisfies (α = 0){

−dφ1xx − [r − ṽ]φ1 = λ1φ1, 0 < x < L,

φ1x(0) = φ1x(L) = 0,
(17)

and that {
dṽxx − βṽx + ṽ[r − ṽ] = 0, 0 < x < L,
dṽx(0)− βṽ(0) = dṽx(L)− βṽ(L) = 0.

(18)

Recall that τ1 is defined in (9). We find

λ1 = τ1(0, r − ṽ) and 0 = τ1(β, r − ṽ).

By Corollary 1,

[r − ṽ]x = −ṽx < 0,

which guarantees the validity of part (a) in Lemma 2.3, and then we have

λ1 = τ1(0, r − ṽ) < τ1(β, r − ṽ) = 0.

Hence, (0, ṽ) is unstable.

Method 2: Dividing the first equation of (17) by φ1 and then integrating the resulting equation
over [0, L] yield

λ1 = −
1

L

{
d

∫ L

0

φ1
2
x

φ2
1

dx+

∫ L

0
[r − ṽ]dx

}
. (19)

From (18) one can easily deduce
∫ L
0 ṽ[r − ṽ]dx = 0, and thus∫ L

0
[r − ṽ]dx =

∫ L

0

[r − ṽ]

r
[r − ṽ]dx > 0, (20)

due to ṽ ̸≡ r. Identity (19) and inequality (20) imply λ1 < 0, as we wanted. The proof is
complete.

Next, we prove that in this situation, the two species cannot coexist.

Lemma 3.2. Assume 0 = α < β. Then system (6) has no co-existence steady state.
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Proof. Arguing indirectly, we suppose that system (6) has a co-existence steady state (u∗, v∗).
Then (u∗, v∗) satisfies

du∗xx + u∗[r − u∗ − v∗] = 0, 0 < x < L,

dv∗xx − βv∗x + v∗[r − u∗ − v∗] = 0, 0 < x < L,
u∗x(0) = u∗x(L) = 0,
dv∗x(0)− βv∗(0) = dv∗x(L)− βv∗(L) = 0.

By a direct integration, one finds∫ L

0
u∗[r − u∗ − v∗]dx = 0 and

∫ L

0
v∗[r − u∗ − v∗]dx = 0,

and thus ∫ L

0
[r − u∗ − v∗]dx =

∫ L

0

[r − u∗ − v∗]

r
[r − u∗ − v∗]dx > 0, (21)

where the fact that r − u∗ − v∗ must change sign in [0, L] is used.
On the other hand, divide the equation of u∗ by u∗ and then integrate over [0, L] to obtain∫ L

0
[r − u∗ − v∗]dx = −d

∫ L

0

u∗x
2

u∗2
dx < 0,

which contradicts (21). This contradiction completes the proof.

Proof of Theorem 1. By the theory of monotone dynamical system [21], Theorem 1.1 follows
directly from part (a) of Corollary 1 and Lemmas 3.1 and 3.2. �

Remark 1. Actually, we can give a more direct proof for Theorem 1.1. Since α = 0, system (6)
has the following Lyapunov functional:

E(u, v)(t) =

∫ L

0
(u+ v − r lnu)dx.

It is straightforward to check

dE

dt
= −d

∫ L

0

ux2

u2
dx−

∫ L

0
(r − u− v)2dx ≤ 0.

From this it then follows that (r, 0) is locally stable in C([0, L]) × C([0, L]) norm. Indeed, it can
be further shown that (r, 0) is globally convergent by LaSalle’s invariance principle.

Proof of Theorem 1.1∗. Though now the condition d1 = d2 is dropped, one can easily check that

the second proof of Lemma 3.1 and the proof of Lemma 3.2 are still valid. Hence Theorem 1.1∗

holds by the monotone theory.
In addition, the Lyapunov functional constructed in Remark 1 works also for d1 ̸= d2. This

provides another proof of this theorem. �

4. Case II: Advection along the same direction. In this section we study the case 0 < α < β.
Our goal is to show that the species with smaller advection rate will wipe out the other species
eventually. To this end, we investigate the stability of semi-trivial steady states in Subsection 4.1.
In Subsection 4.2 we establish the non-existence of co-existence steady state.

4.1. Stability of semi-trivial steady states. We first analyze the stability of (ũ, 0).

Lemma 4.1. If 0 < α < β, the semi-trivial steady state (ũ, 0) is (locally) stable.

Proof. We prove this result by two different methods.

Method 1: Observe that (µ1, ψ1) defined in section 2 satisfies{
−[dψ1x − βψ1]x − [r − ũ]ψ1 = µ1ψ1, 0 < x < L,
dψ1x(0)− βψ1(0) = dψ1x(L)− βψ1(L) = 0,

(22)

and that {
dũxx − αũx + ũ[r − ũ] = 0, 0 < x < L,
dũx(0)− αũ(0) = dũx(L)− αũ(L) = 0.

(23)

By the definition of τ1 in (9), we see

µ1 = τ1(β, r − ũ) and 0 = τ1(α, r − ũ).
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Since

[r − ũ]x = −ũx < 0 (Corollary 1),

part (a) of Lemma 2.3 is applicable, and thus

µ1 = τ1(β, r − ũ) > τ1(α, r − ũ) = 0,

which shows that (ũ, 0) is locally stable.

Method 2: Rewrite (22) and (23) as

−d
{
e

β
d
x[e−

β
d
xũ]x

}
x
− [r − ũ]ũ = [β − α]ũx, 0 < x < L,

−d
{
e

β
d
x[e−

β
d
xψ1]x

}
x
− [r − ũ]ψ1 = µ1ψ1, 0 < x < L,

dũx(0)− βũ(0) = (α− β)ũ(0),
dũx(L)− βũ(L) = (α− β)ũ(L),
dψ1x(0)− βψ1(0) = dψ1x(L)− βψ1(L) = 0.

Multiplying the first equation by e−
β
d
xψ1 and the second one by e−

β
d
xũ, subtracting the resulting

equations and then integrating over [0, L], we obtain

µ1

∫ L

0
e−

β
d
xũψ1dx =[β − α]

∫ L

0
ũxe

− β
d
xψ1dx+

{
[dũx − βũ]e−

β
d
xψ1

}
|L0

=[β − α]
{
ũe−

β
d
xψ1

}
|L0 − [β − α]

∫ L

0
ũ[e−

β
d
xψ1]xdx

+
{
[α− β]ũe−

β
d
xψ1

}
|L0

=− [β − α]

∫ L

0
ũe−

β
d
x[ψ1x −

β

d
ψ1]dx,

(24)

where the second identity used integration by parts and the boundary conditions.

Set m(x) = r − ũ and γ = β in (9). Then similarly as the proof of (10), we can demonstrate

ψ1x

ψ1
<
β

d
,

which together with (24) implies µ1 > 0, as we desired. The proof is complete.

We now turn to the investigation of the stability of (0, ṽ).

Lemma 4.2. If 0 < α < β, the semi-trivial steady state (0, ṽ) is unstable.

Proof. One can use the same methods as in Lemma 4.1 to prove that λ1 defined in section 2
satisfies λ1 < 0, i.e., (0, ṽ) is unstable. For brevity we omit the details here.

4.2. Nonexistence of co-existence steady state. This subsection is devoted to the proof of
the nonexistence of positive steady state, which shows that the two competing species cannot

coexist.

Lemma 4.3. If 0 < α < β, system (6) has no co-existence steady state.

Proof. We argue by contradiction. Suppose that system (6) has a co-existence steady state

(u∗, v∗). For notational simplicity, we write it as (u, v). Then we have
duxx − αux + u[r − u− v] = 0, 0 < x < L,
dvxx − βvx + v[r − u− v] = 0, 0 < x < L,

dux(0)− αu(0) = dux(L)− αu(L) = 0,
dvx(0)− βv(0) = dvx(L)− βv(L) = 0.

(25)

Let T = ux
u

and S = vx
v
. Then after a series of computations, we arrive at

−dTxx + [α− 2dT ]Tx + uT + vS = 0, 0 < x < L,
−dSxx + [β − 2dS]Sx + uT + vS = 0, 0 < x < L,

T (0) = T (L) = α
d
> 0,

S(0) = S(L) = β
d
> 0.

(26)

Define

f(x) , dux − αu for x ∈ [0, L],

and

g(x) , dvx − βv for x ∈ [0, L].
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Clearly, f(0) = f(L) = g(0) = g(L) = 0 due to the boundary conditions.
For clarity, we divide the rest of the proof into several steps.

Step 1. f ′(x) > 0 ⇔ g′(x) > 0, f ′(x) < 0 ⇔ g′(x) < 0, f ′(x) = 0 ⇔ g′(x) = 0.
By an inspection of (25), one easily sees that

f ′(x) = u[u+ v − r] and g′(x) = v[u+ v − r].

Since u and v are strictly positive in [0, L], the sign of f ′(x) and g′(x) is determined by the same
function u+ v − r, and hence Step 1 is established.

Step 2. f (or g) cannot be identically zero in any interval [y1, y2] ⊂ [0, L].
We only prove this result for f , since g can be treated similarly.

Suppose for contradiction that f ≡ 0 in some interval [y1, y2] ⊂ [0, L]. Then ux ≡ α
d
u in

[y1, y2], and hence

u(x) = u(y1)e
α
d
x for x ∈ [y1, y2].

On the other hand, since f ≡ 0 in [y1, y2], f ′(x) ≡ 0 in [y1, y2]. By Step 1, we have u+v−r ≡ 0
in [y1, y2], and so

g(x) , dvx − βv ≡ C,

for some constant C. Substituting the expression of v(x) = r−u(x) = r−u(y1)e
α
d
x into g(x) ≡ C,

one can easily deduce α = β, a contradiction to our assumption. The proof of this step is finished.

Step 3. There exists small δ > 0 such that f(x) < 0 in (0, δ] ∪ [L − δ, L) and g(x) < 0 in

(0, δ] ∪ [L− δ, L).
We first claim that if the above conclusion for f is true, then the counterpart for g is also true.

The reason is as follows: if f(x) < 0 in (0, δ] ∪ [L − δ, L), then by shrinking δ > 0 if necessary,
we may assume f ′(x) < 0 in (0, δ] and f ′(x) > 0 in [L − δ, L); by Step 1, g′(x) < 0 in (0, δ] and

g′(x) > 0 in [L− δ, L), and thus g(x) < 0 in (0, δ] ∪ [L− δ, L).
Based on the above claim, in what follows, we only have to deal with f . Since the arguments

treating (0, δ] and [L− δ, L) are exactly the same, we omit the details for the latter one.
If f(x) < 0 in (0, δ] for some δ > 0 does not hold, then in view of Step 2, f(x) > 0 in (0, ε] for

some small ε > 0. By similar analysis as in the above claim, we see g(x) > 0 in (0, ε] (shrinking
ε > 0 if necessary).

Denote the first zero point of f in (ε, L] by z1, and the first one of g by z2 ∈ (ε, L] (both z1
and z2 must exist since f(L) = g(L) = 0). Without loss of generality, we may assume z1 ≤ z2.
Then we have

f(0) = f(z1) = 0, f(x) > 0 in (0, z1), (27)

and

g(0) = 0, g(z1) ≥ 0, g(x) > 0 in (0, z1). (28)

Recall T and S defined in (26). Then (27) guarantees

T (0) = T (z1) =
α

d
> 0, T (x) >

α

d
> 0 in (0, z1), (29)

and (28) guarantees

S(x) ≥
β

d
> 0 in [0, z1]. (30)

Moreover, from (29) one sees that T must attain a positive local maximum in (0, z1), say z3 ∈
(0, z1). Evaluating the first equation of (26) at z3, one then easily finds S(z3) < 0, a contradiction
to (30). This contradiction completes the proof of this step.

Step 4. Both f and g must change sign in [0, L].
We only deal with the case of g, since the case of f can be proved by similar arguments with

easy modifications.
If the above conclusion for g is not valid, then in view of Steps 2 and 3,

g(x) ≤, ̸≡ 0 in [0, L],

and consequently

[e−
β
d
xv]x = e−

β
d
x[vx −

β

d
v] ≤, ̸≡ 0 in [0, L]. (31)
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Rewrite (25) as the following

d
{
e

β
d
x[e−

β
d
xu]x

}
x
+ [r − u− v]u = [α− β]ux, 0 < x < L,

d
{
e

β
d
x[e−

β
d
xv]x

}
x
+ [r − u− v]v = 0, 0 < x < L,

dux(0)− βu(0) = (α− β)u(0),
dux(L)− βu(L) = (α− β)u(L),
dvx(0)− βv(0) = dvx(L)− βv(L) = 0.

(32)

Multiply the first equation of (32) by e−
β
d
xv and the second one by e−

β
d
xu, subtract and integrate

the resulting equations over [0, L] to obtain{
[dux − βu]e−

β
d
xv

}
|L0 = [α− β]

∫ L

0
uxe

− β
d
xvdx.

By the boundary conditions and integration by parts, we further find∫ L

0
u[e−

β
d
xv]xdx =

∫ L

0
ue−

β
d
x[vx −

β

d
v]dx = 0,

which contradicts (31). The proof of this step is complete.
In view of Steps 3 and 4, there exist 0 < x1 < x2 ≤ L such that

g(0) = g(x1) = g(x2) = 0, g(x) ≤ 0 in (0, x1), and g(x) > 0 in (x1, x2), (33)

which particularly implies

S(x) ≥
β

d
> 0 in [x1, x2]. (34)

Step 5. f < 0 in (0, x1].

Otherwise, f has at least one zero point in (0, x1], and let x0 be the first one. Then we have

f(0) = f(x0) = 0, f(x) < 0 in (0, x0) ⊂ (0, x1],

which infers that

[e−
α
d
xu]x < 0 in (0, x0). (35)

Clearly, g(x0) ≤ 0, that is,

dvx(x0) ≤ βv(x0). (36)

Now rearrange (25) as{
d
{
e

α
d
x[e−

α
d
xu]x

}
x
+ [r − u− v]u = 0, 0 < x < L,

d
{
e

α
d
x[e−

α
d
xv]x

}
x
+ [r − u− v]v = [β − α]vx, 0 < x < L.

(37)

Multiply the first equation of (37) by e−
α
d
xv and the second one by e−

α
d
xu, subtract the resulting

equations, and then integrate over [0, x0], one finally gets

[dvx(x0)− αv(x0)]e
−α

d
x0u(x0)− [β − α]u(0)v(0)

=[β − α]

∫ x0

0
vxe

−α
d
xudx

=[β − α]v(x0)e
−α

d
x0u(x0)− [β − α]u(0)v(0)

− [β − α]

∫ x0

0
v[e−

α
d
xu]xdx,

which can be reduced to

[dvx(x0)− βv(x0)]e
−α

d
x0u(x0) = −[β − α]

∫ x0

0
v[e−

α
d
xu]xdx.

By inequality (36), ∫ x0

0
v[e−

α
d
xu]xdx ≥ 0,

which leads to a contradiction with (35). The proof of this step is complete.

Step 6. f ≤ 0 in [x1, x2] with f(x2) < 0.
We first prove f ≤ 0 in [x1, x2].

If not, then there exist x1 < x3 < x4 ≤ x2 such that

f(x) ≤ 0 in [x1, x3], f(x3) = 0, f(x) > 0 in (x3, x4] ⊂ [x1, x2].
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This particularly tells us that f has an increasing tendency when x crosses over x3. On the other
hand, since g > 0 in (x1, x2) and g(x2) = 0 (see (33)), g has a decreasing tendency as x→ x−2 . So
does f due to Step 1. Therefore, f must attain at least one positive local maximum in (x3, x2).

Let x5 ∈ (x3, x2) be the one that is closest to x3. Clearly, f(x) > 0 in (x3, x5] and f ′(x5) = 0.
Note that

f ′(x) = duxx − αux = d
uxxu− α

d
uxu

u
,

and

T ′(x) = [
ux

u
]x =

uxxu− u2x
u2

.

Since ux >
α
d
u > 0 in (x3, x5] (f(x) > 0 in (x3, x5]),

uxxu− u2x < uxxu−
α

d
uxu in (x3, x5].

In particular,

[uxxu− u2x]|x=x5 < [uxxu−
α

d
uxu]|x=x5 =

f ′(x5)u(x5)

d
= 0,

and so T ′(x5) < 0.

Now restrict T on [x3, x5]. Then the following properties are easy to see

T (x3) = [
ux

u
]|x=x3 =

α

d
> 0, T (x) >

α

d
> 0 in (x3, x5], T

′(x5) < 0.

Hence, T must attain a positive local maximum in (x3, x5), say x6. Evaluating the first equation
of (26) at x = x6, we find S(x6) < 0, a contradiction to (34). This contradiction confirms f ≤ 0
in [x1, x2].

Combining f ≤ 0 in [x1, x2] with the fact that f has a decreasing tendency as x→ x−2 , we see
f(x2) < 0. Thus Step 6 is established.

After x passes through x2, we can find the next zero point of g. Denote it by x7 ∈ (x2, L]. In
(x2, x7), clearly either g > 0 or g < 0.

Step 7. If g > 0 in (x2, x7), then f ≤ 0 in [x2, x7] with f(x7) < 0.
This result can be verified in the same spirit of Step 6.

Step 8. If g < 0 in (x2, x7), then f < 0 in [x2, x7].
If not, then in view of f(x2) < 0, we can find the first zero point of f in (x2, x7], denoted by

x8. Obviously,

f < 0 in (x2, x8) and g(x8) < 0,

that is,

[e−
α
d
xu]x < 0 in (x2, x8) and dvx(x8) < βv(x8). (38)

By using the same arguments as in Step 5, we now can derive from (37) the following identity{
[dvx − αv]e−

α
d
xu

}
|x8
x2

−
{
[dux − αu]e−

α
d
xv

}
|x8
x2

=[β − α]

∫ x8

x2

vxe
−α

d
xudx

=[β − α]
{
ve−

α
d
xu

}
|x8
x2

− [β − α]

∫ x0

0
v[e−

α
d
xu]xdx,

which can be reduced to

[dvx(x8)− βv(x8)]e
−α

d
x8u(x8) + f(x2)e

−α
d
x2v(x2) = −[β − α]

∫ x0

0
v[e−

α
d
xu]xdx.

By (38) and f(x2) < 0, one can easily deduces a contradiction, which ends the proof of this step.

Step 9. We are now in a position to get the final conclusion.
Steps 7 and 8 imply f ≤ 0 in [x2, x7]. Actually, by repeating the same analysis, we can establish

f ≤ 0 in [x7, L], which together with the previous results obtained in Steps 5 and 6 gives

f ≤ 0 in [0, L].

However, this violates the conclusion obtained in Step 4, and this violation shows that (u, v),

assumed in (25), does not exist. The proof of this lemma now is complete.

Proof of Theorem 2. By the theory of monotone dynamical systems [21], Theorem 1.2 follows from

Lemmas 4.1, 4.2 and 4.3. �
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5. Case III: Advection along opposite direction. In this section we deal with the case
α < 0 < β. We will show that in this situation, two species could coexist.

As in previous sections, we first study the stability of (ũ, 0).

Lemma 5.1. If α < 0 < β, the semi-trivial steady state (ũ, 0) is unstable.

Proof. This lemma can be established by the following two methods.
Method 1: The first method in Lemma 4.1 also works for this result. We mention here that

since now α < 0, part (b) of Lemma 2.3 will become true, and it is crucial in the proof.

Method 2: Observe that (µ1, ψ1) defined in section 2 satisfies{
−[dψ1x − βψ1]x − [r − ũ]ψ1 = µ1ψ1, 0 < x < L,
dψ1x(0)− βψ1(0) = dψ1x(L)− βψ1(L) = 0.

(39)

Next, we only have to show µ1 < 0.
From the equation of ũ one can derive∫ L

0
ũ[r − ũ]dx = 0 and

∫ L

0
[r − ũ]dx =

∫ L

0

[r − ũ]

r
[r − ũ]dx > 0. (40)

The former identity implies that r− ũ must change sign in (0, L). Since ũx < 0 in [0, L] (Corollary

1), we see that r − ũ changes sign only once in (0, L). Let x0 ∈ (0, L) be the unique zero point of
r − ũ. Then

[x− x0][r − ũ] > 0, for x ∈ [0, L]\{x0}. (41)

Let us define

h(τ) ,
∫ L

0
eτ(x−x0)[r − ũ]dx, τ ∈ R.

Clearly, h(0) > 0 due to (40). By inequality (41),

h′(τ) =

∫ L

0
eτ(x−x0)[x− x0][r − ũ]dx > 0, τ ∈ R,

and thereby

h(τ) > h(0) > 0, for τ > 0. (42)

Set Ψ = e−
β
d
xψ1, then (39) becomes{

−d[e
β
d
xΨx]x − [r − ũ]e

β
d
xΨ = µ1e

β
d
xΨ, 0 < x < L,

Ψx(0) = Ψx(L) = 0.
(43)

Dividing the first equation of (43) by Ψ and then integrating over [0, L] yield

µ1

∫ L

0
e

β
d
xdx =− d

∫ L

0
e

β
d
xΨ2

x

Ψ2
dx−

∫ L

0
e

β
d
x[r − ũ]dx

=− d

∫ L

0
e

β
d
xΨ2

x

Ψ2
dx− e

β
d
x0

∫ L

0
e

β
d
(x−x0)[r − ũ]dx

=− d

∫ L

0
e

β
d
xΨ2

x

Ψ2
dx− e

β
d
x0h(

β

d
)

<0,

where the last inequality used (42). Hence, µ1 < 0, as we wanted. The proof is finished.

By the above two methods (with easy modifications), we can establish the instability of (0, ṽ)
as follows.

Lemma 5.2. If α < 0 < β, the semi-trivial steady state is (0, ṽ) is unstable.

Proof of Theorem 3. By the theory of monotone dynamical systems, system (6) must have a stable
co-existence steady state due to Lemmas 5.1 and 5.2. Hence, the proof of this theorem is complete.
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