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Abstract: We consider a single species model and a two-species compe-

tition model in a one-dimensional advective homogeneous environment.

One interesting feature in these models concerns the boundary condition

at the downstream end, where the species can be exposed to a net loss

of individuals, as tuned by a parameter b which measures the magnitude

of the loss. We first determine necessary and sufficient conditions for the

persistence of a single species for general value of b, in terms of the criti-

cal habitat size and the critical advection rate. Then for the competition

model, we assume that two species are identical except their random dif-

fusion rates. We obtain complete understanding when 0 ≤ b < 1, and our

result indicates that larger diffusion rate is selected, extending an earlier

work [20] (b = 1). However, for b > 1 the dynamics can be quite different,

and particularly we illustrate that some intermediate diffusion rate may

be selected when b > 3
2 .

AMS subject classifications: 35K57, 35K61, 92D25

Keywords: Reaction-diffusion-advection; competition; persistence; evo-

lution of dispersal

∗Y. Lou is partially supported by the NSF grant DMS-1411476 and the Recruitment Program of
Global Experts; P. Zhou is partially supported by the NSFC 11371248.
†Corresponding author.

1



2

1 Introduction

Individuals in a wide variety of environments are confronted with unidirectional drift

(advection) that drives them out of the system and thus induces decline in popula-

tion. Examples include gut-dwelling bacteria [2, 3, 17, 18], benthic marine species

along coastlines with dominant long-shore currents [4], and even the oases in the

desert moved by wind [7, 8]. However, perhaps the most salient example are these

aquatic organisms, living in streams and rivers, where they are constantly subject to

downstream advection due to water movement. See [14, 15, 19, 21, 22, 23, 24, 26] and

references therein.

Why can populations persist in streams when they are constantly washed down-

stream? This question, termed as the “drift paradox” in literatures, has received

considerable attentions [1, 12, 28]. Speirs and Gurney [26] argued that diffusive move-

ment of organisms can allow persistence in an advective environment and considered

the following mathematical model in [26]:
ut = duxx − αux + u[r − u], 0 < x < L, t > 0,
dux(0, t)− αu(0, t) = 0, t > 0,
u(L, t) = 0, t > 0,

(1.1)

where u(x, t) denotes the population density at location x and time t, d is the diffusion

rate, L is the size of the habitat, and in the sequel, we call x = 0 the upstream end and

x = L the downstream end. α is the effective speed of the current (sometimes we also

call α the advection speed/rate, and we remark here that α should be positive since

x = L is defined to be the downstream end). The constant r > 0 accounts for the

intrinsic growth rate, which indicates that the environment is spatially homogeneous.

We assume that d, r, α, L are all positive constants.

Speirs and Gurney [26] studied the local stability of steady state u ≡ 0 and

concluded that it is unstable if and only if α <
√

4dr and L > L∗, where

L∗ = 2d
π − arctan

(√
4dr−α2

α

)
√

4dr − α2
.

That is, the persistence is only likely when advection is slow and the stream is suf-

ficiently long. It is natural to inquire whether such predictions still hold for more

general situations. To this end, we consider the following single species problem:
ut = duxx − αux + u[r − u], 0 < x < L, t > 0,
dux(0, t)− αu(0, t) = 0, t > 0,
dux(L, t)− αu(L, t) = −bαu(L, t), t > 0.

(1.2)

We first give some comments on the boundary conditions in (1.2). At the upstream

end x = 0, the organism is assumed to satisfy the no-flux boundary condition, which
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means that no individuals will pass through this boundary. While at the downstream

end x = L, there appears an additional parameter b, which measures the loss rate of

individuals at the boundary relative to the flow rate (see [21] for a detailed derivation).

Clearly, for b = 0, we obtain the no-flux condition again, which together with the no-

flux upstream condition, for instance, can be effectively used to study the sinking,

self-shading phytoplankton model (see, e.g., [13, 14, 15]). For b = 1, one obtains

the free-flow condition, referred as the Danckwerts condition, can be applied to the

situation stream to lake (see [27]). When b becomes sufficiently large, i.e., b → ∞,

we get the hostile conditions, which can be used in the scenario stream to ocean (see

[26]). Hence, the case of zero Dirichlet boundary condition u(L, t) = 0 can be formally

regarded as b = +∞.

For the case b = 1, Vasilyeva and Lutscher [27] proved that the species can persist

when α <
√

4dr and L > L∗, where

L∗ ,


2d

arctan α
√

4dr−α2
2rd−α2√

4dr−α2
for 0 < α ≤

√
2dr,

2d
π+arctan α

√
4dr−α2

2rd−α2√
4dr−α2

for
√

2dr < α <
√

4dr.

(1.3)

On the other hand, it is easy to see that if b = 0, then for any α, L > 0, problem

(1.2) admits a unique positive steady state which is globally asymptotically stable

among all non-negative and not identically zero initial data. Can we synthesize these

results?

It turns out that the transition occurs at b = 1
2 . Namely, if b ≥ 1

2 , the persistence

happens when α <
√

4dr and L > L∗ for some positive number L∗ depending on

b, α, d, r; If 0 < b < 1
2 , the persistence occurs when α <

√
dr

b(1−b) and L > L∗. As

b → 0+,
√

dr
b(1−b) → ∞ and L∗ → 0+, which is consistent with the case b = 0. The

explicit expressions of L∗ are given in the next section, where we will also show that

L∗ is always a strictly increasing function of α, and it is a strictly decreasing function

of d provided that b ∈ (0, 1). This suggests that when b ∈ (0, 1), the persistence

is more likely if we increase the diffusion rate. A natural question arises: will large

diffusion always be selected during the course of evolution? The second part of our

paper intends to address this question.

It has now been well accepted that as long as the organisms disperse by only

random diffusion, slow diffusion rate will be selected provided that the environments

under consideration are spatially heterogeneous but temporally constant. More specif-

ically, co-existence between phenotypes of differing diffusion rates is impossible, as the

one with faster diffusion rate will be completely wiped out (see, e.g., [9, 11]). The

intuitive explanation for this phenomenon is that slower diffusion helps individuals to

better track favorable regions whereas faster diffusion makes it easier for population
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to move away from such “good” regions, and to lose competitive advantages.

Nevertheless, for the situation where the organisms are adopting a dispersal strat-

egy that includes both random and passive movements, the mechanism behind the

evolution of dispersal rates is not yet completely understood. Next we will consider

a system of reaction-diffusion-advection equations for two logistically growing and

competing populations, where the individuals undergo diffusive movements due to

self-propelling and/or water turbulence and passive movements caused by water flow,

and the only phenotypic difference between the two species is the diffusion rate. To

be more precise, we consider

ut = d1uxx − αux + u[r − u− v], 0 < x < L, t > 0,
vt = d2vxx − αvx + v[r − u− v], 0 < x < L, t > 0,
d1ux(0, t)− αu(0, t) = 0, t > 0,
d1ux(L, t)− αu(L, t) = −bαu(L, t), t > 0,
d2vx(0, t)− αv(0, t) = 0, t > 0,
d2vx(L, t)− αv(L, t) = −bαv(L, t), t > 0
u(x, 0) = u0(x) ≥, 6≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L,

(1.4)

where u(x, t) and v(x, t) represent the population density of two competing species at

location x and time t > 0, respectively. d1, d2 > 0 denote the random diffusion rates

of two species.

Recently, system (1.4) with b = 1 (i.e., with Danckwerts boundary conditions) has

been qualitatively studied in [20], where the authors showed that populations with

higher dispersal rate will always displace those with lower dispersal rate, in contrast to

the evolution of slow random dispersal in non-advective but spatially heterogeneous

environments. This finding, to some extent, suggests that advection can put slow

diffusers at a disadvantage and thus fast diffusers can evolve. In this paper, we will

completely determine the dynamics of system (1.4) when 0 ≤ b < 1 and also illustrate

some different dynamics of system (1.4) when b > 3
2 .

We remark here that for system (1.4), due to the introduction of the parameter b

in the boundary conditions, even the local stability of the semi-trivial steady states

cannot be established by the arguments used in [20], but the new method developed

in this paper can be equally applied to deal with the case b = 1. Moreover, to obtain

the global dynamics of system (1.4), it seems non-trivial to prove the non-existence

result of any co-existence steady state, for which we will introduce some new ideas

and techniques to overcome the emerging difficulty.

This paper is organized as follows. In section 2 we focus on the global dynamics

of model (1.2) and determine necessary and sufficient conditions for the persistence

of a single species. In section 3 we provide a complete understanding of the global

dynamics of system (1.4) when b ∈ [0, 1) and some results on the global dynamics of
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system (1.4) when b > 3
2 . Section 4 is devoted to discussions of the main results.

2 Persistence of single specie

In this section we investigate the dynamics of the single species model (1.2). In

particular, we are interested in conditions under which the species can persist in the

long run. To this end, we study the steady states of (1.2), i.e.
duxx − αux + u[r − u] = 0, 0 < x < L,
dux(0)− αu(0) = 0,
dux(L)− αu(L) = −bαu(L).

(2.1)

This in turn leads to the study of the linear eigenvalue problem
dϕxx − αϕx + rϕ+ λϕ = 0, 0 < x < L,
dϕx(0)− αϕ(0) = 0,
dϕx(L)− αϕ(L) = −bαϕ(L).

(2.2)

It is well known that (see, e.g., [16, 25]) problem (2.2) admits a principal eigenvalue,

denoted by λ1, which is simple, and its corresponding eigenfunction, denoted by ϕ1,

can be chosen positive in [0, L]. In what follows, we restrict our attention to the

dependence of λ1 on various parameters.

2.1 Critical habitat size and its dependence on α

In this section we first prove the existence of the critical habitat size, denoted by L∗.

By investigating the dependence of L∗ on α, we also establish the existence of the

critical advection rate.

Proposition 2.1 For any given d, r, L, b > 0, we have

(a) limα→0+ λ1 = −r < 0;

(b) limα→+∞ λ1 = +∞.

Proof: Part (a) is trivial. We focus on the proof of part (b).

Let ψ = e−
α
d
xϕ, then (2.2) becomes

dψxx + αψx + [r + λ]ψ = 0, 0 < x < L,
ψx(0) = 0,
dψx(L) = −bαψ(L).

(2.3)

By the variational method, λ1 can be characterized by

λ1 = inf
06=ψ∈W 1,2

bαe
α
d
Lψ2(L) + d

∫ L
0 e

α
d
xψ2

xdx− r
∫ L
0 e

α
d
xψ2dx∫ L

0 e
α
d
xψ2dx

.
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By a transformation ψ = e−δ
α
d
xζ, where δ is a positive number to be determined

later, we see

λ1 = inf
06=ζ∈W 1,2

{bαe(1−2δ)αdLζ2(L) + d
∫ L
0 e(1−2δ)

α
d
xζ2xdx+ α2δ2

d

∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

−
αδ
∫ L
0 e(1−2δ)

α
d
x[ζ2]xdx+ r

∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

}
= inf

06=ζ∈W 1,2

{bαe(1−2δ)αdLζ2(L) + d
∫ L
0 e(1−2δ)

α
d
xζ2xdx+ α2δ2

d

∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

−
αδe(1−2δ)

α
d
Lζ2(L)− αδζ2(0)− δ(1− 2δ)α

2

d

∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

−
r
∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

}
= inf

06=ζ∈W 1,2

{ [b− δ]αe(1−2δ)
α
d
Lζ2(L) + [δ − δ2]α2

d

∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

+
d
∫ L
0 e(1−2δ)

α
d
xζ2xdx+ αδζ2(0)∫ L

0 e(1−2δ)
α
d
xζ2dx

−
r
∫ L
0 e(1−2δ)

α
d
xζ2dx∫ L

0 e(1−2δ)
α
d
xζ2dx

}
≥[δ − δ2]α

2

d
− r,

provided 0 < δ < min{b, 1}. By sending α → +∞, part (b) follows directly from the

above inequality, and so the proof is complete. �

Lemma 2.1 Fix d, r > 0 and 0 < b < 1
2 . Then the following statements hold:

(a) For any 0 < α <
√

dr
b(1−b) , there exists a critical number L∗ = L∗(d, α, r, b) > 0

such that

λ1 > 0 if 0 < L < L∗, λ1 = 0 if L = L∗, λ1 < 0 if L > L∗;

while if α ≥
√

dr
b(1−b) , then λ1 > 0 for any L > 0.

(b) For any L > 0, there exists a critical number α∗ = α∗(d, r, L, b) ∈ (0,
√

dr
b(1−b))

such that

λ1 < 0 if 0 < α < α∗, λ1 = 0 if α = α∗, λ1 > 0 if α > α∗.

Proof: The main idea of this proof is to determine all possible roots of λ1. It turns

out that these roots can be exactly described by a continuous curve (see (2.12) below).
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Let ψ1 = e−
α
2d
xϕ1, then (2.2) becomes{

dψ1xx + [r − α2

4d + λ1]ψ1 = 0, 0 < x < L,

ψ1x(0)− α
2dψ1(0) = ψ1x(L)− 1−2b

2d αψ1(L) = 0.
(2.4)

If 4d(r + λ1)− α2 > 0, then ψ1 has the expression

ψ1 = A cos

√
4d(r + λ1)− α2

2d
x+B sin

√
4d(r + λ1)− α2

2d
x, (2.5)

and if 4d(r + λ1)− α2 < 0, then ψ1 has a different expression

ψ1 = Ae

√
α2−4d(r+λ1)

2d
x +Be−

√
α2−4d(r+λ1)

2d
x. (2.6)

If ψ1 takes the form (2.5), one then is able to derive from the boundary conditions

that 
B
√

4d(r + λ1)− α2 = αA,

F1(L, λ1) ,
tan(

√
4d(r+λ1)−α2

2d
L)√

4d(r+λ1)−α2
− bα

2d(r+λ1)−bα2 = 0.

Note that as long as 4d(r+ λ1)− α2 > 0, 2d(r+ λ1)− bα2 > 0 due to 0 < b < 1
2 . Set

λ1 = 0. We find

L = L1(α) , 2d
arctan bα

√
4dr−α2

2rd−bα2√
4dr − α2

, for 0 < α <
√

4dr. (2.7)

We claim that L1(α) is a monotonically increasing function for 0 < α <
√

4dr. Indeed,

differentiating L1 with respect to α, after a series of calculations one obtains

L1
′(α)

2d
=

f1
4dr − α2

, for α ∈ (0,
√

4dr),

where

f1 :=
b[2dr + (b− 1)α2]

rd+ b(b− 1)α2
+

α√
4dr − α2

arctan
bα
√

4dr − α2

2rd− bα2
.

Regard f1 as a function of b and recall b ∈ (0, 12). Then

f ′1(b) =
4d2r2 + (4b− 4b2 − 1)drα2 + b(b− 1)α4

2[rd+ b(b− 1)α2]2
,

f2(b)

2[rd+ b(b− 1)α2]2
.

A further calculation gives

f ′2(b) = α2(1− 2b)(4dr − α2) ≥ 0 for 0 < b <
1

2
and 0 < α <

√
4dr,
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and hence

f2(b) ≥ f2(0) = dr(4dr − α2) > 0 for 0 < b <
1

2
and 0 < α <

√
4dr.

Thus f1(b) > 0 for all 0 < b < 1
2 , that is, L1

′(α) > 0. Therefore, the above claim

holds. This monotonic property also gives

0 < L1(α) <
b

1
2 − b

√
d

r
= lim

α→
√
4dr

L1(α).

To ensure that λ1 = 0 is a principal eigenvalue, we have to check that the corre-

sponding eigenfunction ψ1 = A cos
√
4dr−α2

2d x + B sin
√
4dr−α2

2d x does not change sign

in (0, L). Note that B
√

4dr − α2 = αA and L = L1(α). Let A = 1/α. Then

ψ1 =

√
1

α2
+

1

4dr − α2
sin(

√
4dr − α2

2d
x+ θ),

where θ ∈ (0, π2 ) and tan θ =
√

4dr − α2/α. Since x < L1(α),

√
4dr − α2

2d
x ∈ (0, arctan

bα
√

4dr − α2

2rd− bα2
) ⊂ (0,

π

2
).

Hence,
√
4dr−α2

2d x+ θ ∈ (0, π), which infers that ψ1 does not change sign in (0, L). By

the uniqueness of the principle eigenvalue, we now can conclude that if ψ1 takes the

form (2.5), then

λ1 = 0⇔ L = L1(α), 0 < α <
√

4dr. (2.8)

If ψ1 takes the form (2.6), we can derive from the boundary conditions that
B =

√
α2−4d(r+λ1)−α√
α2−4d(r+λ1)+α

A,

F2(L, λ1) , e
L
d

√
α2−4d(r+λ1) − 2d(r+λ1)−bα2+bα

√
α2−4d(r+λ1)

2d(r+λ1)−bα2−bα
√
α2−4d(r+λ1)

= 0.

Set λ1 = 0. We find

L = L2(α) , ln
2dr − bα2 + bα

√
α2 − 4dr

2dr − bα2 − bα
√
α2 − 4dr

· d√
α2 − 4dr

, (2.9)

for
√

4dr < α <
√

dr
b(1−b) , where α =

√
dr

b(1−b) is determined from 2dr − bα2 −
bα
√
α2 − 4dr = 0. We claim that L2(α) is also a monotonically increasing function

for
√

4dr < α <
√

dr
b(1−b) . In fact, differentiating L2 with respect to α produces

L′2(α) =
h

(α2 − 4dr)(dr + b2α2 − bα2)
√
α2 − 4dr

, for α ∈ (
√

4dr,

√
dr

b(1− b)
),
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where

h := 2bd[(1− b)α2 − 2dr]
√
α2 − 4dr − dα[dr + b2α2 − bα2] · ln h1

h2
,

and where we denote

h1 = 2dr − bα2 + bα
√
α2 − 4dr and h2 = 2dr − bα2 − bα

√
α2 − 4dr

for brevity. Regard h as a function of b. Then by a series of computations, we obtain

h′(b) = 2d[(1− 2b)α2 − 2dr]
√
α2 − 4dr + (1− 2b)dα3 ln

h1
h2
− dα2

√
α2 − 4dr,

h′′(b) = −4dα2
√
α2 − 4dr − 2dα3 ln

h1
h2

+ dα4
√
α2 − 4dr

1− 2b

dr − bα2 + b2α2
,

and

h′′′(b) =
dα4
√
α2 − 4dr

(dr − bα2 + b2α2)2
· (α2 − 4dr).

Clearly, for 0 < b < 1
2 and

√
4dr < α <

√
dr

b(1−b) ,

h′′′(b) > 0⇒ h′′(b) > h′′(0) = α2
√
α2 − 4dr[

α2

r
− 4d] > 0

⇒ h′(b) > h′(0) = d(α2 − 4dr)3/2 > 0⇒ h(b) > h(0) = 0.

Hence, L′2(α) > 0 for α ∈ (
√

4dr,
√

dr
b(1−b)), as we wanted. Since

lim
α→
√
4dr

L2(α) =
b

1
2 − b

√
d

r
and lim

α→
√

dr
b(1−b)

L2(α) = +∞,

L2(α) ∈ ( b
1
2
−b

√
d
r ,+∞) for α ∈ (

√
4dr,

√
dr

b(1−b)) (the first limit can be obtained by

using ln(1 + x) ≈ x as x → 0). To guarantee λ1 = 0 is a principal eigenvalue, we

now have to check ψ1 = Ae

√
α2−4dr
2d

x + Be−
√
α2−4dr
2d

x does not change sign in (0, L).

Clearly, we can first choose A > 0 to ensure ψ1(0) = A+B = 2
√
α2−4dr√

α2−4dr+αA > 0, and

so ψ′1(0) > 0 due to the boundary condition. We next claim that ψ1 > 0 in [0, L].

If ψ1(x0) ≤ 0 for some x0 ∈ (0, L]. Then ψ1 must attain a positive local maximum

in (0, x0), say x1 ∈ (0, x0). Evaluating the first equation in (2.4) at x1, one can

easily deduce a contradiction. Hence, ψ1 does not change sign in (0, L). We now can

conclude that if ψ1 takes the form (2.6), then

λ1 = 0⇔ L = L2(α),
√

4dr < α <
√

dr
b(1−b) . (2.10)



10

For the special case 4d(r + λ1)− α2 = 0, it is easy to derive from (2.4) that

λ1 = 0⇔ α2 = 4dr and L =
b

1
2 − b

√
d

r
. (2.11)

This case can be seen as a degenerate case, since now the eigenfunction ψ1 is a linear

function.

Based on the above analysis, we now can conclude from (2.8), (2.10) and (2.11)

that

λ1 = 0⇔ L = L∗(α), 0 < α <

√
dr

b(1− b)
, (2.12)

where

L∗(α) ,

{
L1(α) for 0 < α ≤

√
4dr,

L2(α) for
√

4dr < α <
√

dr
b(1−b) .

Clearly, L∗ is a continuous and strictly increasing function for 0 < α <
√

dr
b(1−b) , and

its range is (0,+∞).

By Proposition 2.1, we further have

λ1 < 0⇔ 0 < α <

√
dr

b(1− b)
and L > L∗(α), (2.13)

and

λ1 > 0⇔ 0 < α <

√
dr

b(1− b)
and L < L∗(α), or α ≥

√
dr

b(1− b)
. (2.14)

Clearly, part (a) follows directly from (2.12), (2.13) and (2.14).

To establish part (b), let us define the inverse of L∗, that is,

α∗ , L∗−1, for 0 < L < +∞.

It is easy to see that the range of α∗ is (0,
√

dr
b(1−b)), and it is also an increasing

function and satisfies

α > α∗ ⇔ L < L∗, α = α∗ ⇔ L = L∗, α < α∗ ⇔ L > L∗.

This, together with (2.12), (2.13) and (2.14), immediately gives part (b). The proof

of this lemma is finished. �

Lemma 2.2 Fix d, r > 0 and b ≥ 1
2 . Then the following statements hold:
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(a) For any 0 < α <
√

4dr, there exists a critical number L∗ = L∗(d, α, r, b) > 0

such that

λ1 > 0 if 0 < L < L∗, λ1 = 0 if L = L∗, λ1 < 0 if L > L∗;

While if α ≥
√

4dr, then λ1 > 0 for any L > 0.

(b) For any L > 0, there exists a critical number α∗ = α∗(d, r, L, b) ∈ (0,
√

4dr)

such that

λ1 < 0 if 0 < α < α∗, λ1 = 0 if α = α∗, λ1 > 0 if α > α∗.

Proof: We prove this result by a similar argument as the above lemma, and we still

consider the above eigenvalue problem (2.4).

We first claim that for b ≥ 1
2 , 4d(r + λ1) − α2 < 0 would not happen, i.e., ψ1

cannot be in the form of (2.6). Otherwise, F2(L, λ1) = 0 makes sense, that is,

e
L
d

√
α2−4d(r+λ1) =

2d(r + λ1)− bα2 + bα
√
α2 − 4d(r + λ1)

2d(r + λ1)− bα2 − bα
√
α2 − 4d(r + λ1)

> 1.

Since b ≥ 1
2 , 2d(r + λ1) − bα2 − bα

√
α2 − 4d(r + λ1) < 0, which together with the

above inequality implies

2d(r+λ1)−bα2 +bα
√
α2 − 4d(r + λ1) < 2d(r+λ1)−bα2−bα

√
α2 − 4d(r + λ1) < 0.

Clearly, this is impossible, and so the claim is true.

Suppose that ψ1 takes the form (2.5). Then

F1(L, λ1) ,
tan(

√
4d(r+λ1)−α2

2d L)√
4d(r + λ1)− α2

− bα

2d(r + λ1)− bα2
= 0.

Set λ1 = 0. We find that if b = 1
2 , then

L = L∗1(α) , 2d
arctan bα

√
4dr−α2

2rd−bα2√
4dr − α2

=
2d arctan

(
α√

4dr−α2

)
√

4dr − α2
, 0 < α <

√
4dr, (2.15)

and if b > 1
2 , then

L = L∗2(α) ,


2d

arctan bα
√

4dr−α2
2rd−bα2√

4dr−α2
for 0 < α ≤

√
2dr
b ,

2d
π+arctan bα

√
4dr−α2

2rd−bα2√
4dr−α2

for
√

2dr
b < α <

√
4dr.

(2.16)

Clearly, limα→
√
4dr L

∗
1(α) = limα→

√
4dr L

∗
2(α) = +∞. (Note that L∗2(α) is continuous

at α =
√

2dr
b .)
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We now first discuss the monotonicity of L∗1(α). By a direct computation, one

sees

L∗1
′(α)

2d
=

1 + α√
4dr−α2

arctan α√
4dr−α2

4dr − α2
> 0, for α ∈ (0,

√
4dr),

hence L∗1(α) is strictly increasing in 0 < α <
√

4dr.

As for L∗2(α), we first consider 0 < α ≤
√

2dr
b . By some computations,

L∗2
′(α)

2d
=

h1
4dr − α2

, for α ∈ (0,
√

2dr
b ],

where

h1 :=
b[2dr + (b− 1)α2]

rd+ b(b− 1)α2
+

α√
4dr − α2

arctan
bα
√

4dr − α2

2rd− bα2
.

Clearly,

2dr + (b− 1)α2 ≥ bα2 + (b− 1)α2 = (2b− 1)α2 > 0,

and

rd+ b(b− 1)α2 ≥ 1

2
bα2 + b(b− 1)α2 = b(b− 1

2
)α2 > 0,

so h1 > 0, and so

L∗2
′(α) > 0 for 0 < α ≤

√
2dr

b
.

While for
√

2dr
b < α <

√
4dr,

L∗2
′(α)

2d
=

h2
4dr − α2

, for α ∈ (

√
2dr

b
,
√

4dr),

where

h2 :=
b[2dr + (b− 1)α2]

rd+ b(b− 1)α2
+

α√
4dr − α2

[π + arctan
bα
√

4dr − α2

2rd− bα2
].

Since now dr > α2

4 , we see

2dr + (b− 1)α2 >
α2

2
+ (b− 1)α2 = (b− 1

2
)α2 > 0,

and

rd+ b(b− 1)α2 >
α2

4
+ b(b− 1)α2 = (b− 1

2
)2α2 > 0.

Moreover, since
√

2dr
b < α <

√
4dr, arctan bα

√
4dr−α2

2rd−bα2 ∈ (−π
2 , 0). These guarantee

h2 > 0, and so

L∗2
′(α) > 0 for

√
2dr

b
< α <

√
4dr.
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By similar analysis as in Lemma 2.1, one can conclude that if b = 1
2 , then

λ1 = 0⇔ L = L∗1(α), 0 < α <
√

4dr;

and if b > 1
2 , then

λ1 = 0⇔ L = L∗2(α), 0 < α <
√

4dr.

The rest proof can be dealt with in the same spirit of Lemma 2.1, and so we omit the

details here. �

Remark 2.1 For the case b = 0, it is easy to see that λ1 ≡ −r < 0, and the

corresponding eigenfunction can be chosen as ϕ1 = Ce
α
d
x, with C being any positive

constant. In particular, when b = 0, problem (1.2) always has a unique positive steady

state, and it is globally asymptotically stable among non-negative, not identically zero

initial data.

We now state the main result of this subsection.

Theorem 2.1 Assume that d, r, b > 0. Set α̂ =
√
dr/b(1− b) for b ∈ (0, 12 ] and

α̂ =
√

4dr for b ≥ 1
2 .

(a) If α ≥ α̂, then for any L > 0, the trivial steady state u = 0 is globally asymptot-

ically stable among all solutions of (1.2) with non-negative and not identically

zero initial data; If 0 < α < α̂, then there exists L∗ = L∗(d, r, b, α) > 0 such

that for L > L∗, (1.2) admits a unique positive steady state which is globally

asymptotically stable, and for 0 < L ≤ L∗, u = 0 is globally asymptotically

stable.

(b) For every L > 0, there exists α∗ = α∗(d, r, b, L) ∈ (0, α̂) such that for 0 < α <

α∗, (1.2) admits a unique positive steady state which is globally asymptotically

stable, and for α ≥ α∗, u = 0 is globally asymptotically stable.

Here L∗, α∗ are determined in Lemmas 2.1 and 2.2, respectively.

Part (a) of Theorem 2.1 implies that when the advection rate is larger than α̂, the

single species can not persist for any habitat size. For any advection rate smaller than

α̂, there exists some critical habitat size such that the species can persist if and only

if the habitat size is greater than the critical size. Complementary, part (b) ensures

that there always exist a critical advection rate, and the species can persist if and

only if its advection rate is less than the critical rate.

Proof: As the single equation for u is a monotone dynamical system and the non-

linear reaction term is of the logistic type, it is well known that the existence of a
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positive steady state for problem (1.2) is equivalent to that u = 0 is unstable (i.e.,

λ1 < 0) [5]. Moreover, if problem (1.2) admits a positive steady state, then it must

be globally asymptotically stable. For these reasons, in what follows, we only include

the details for the uniqueness result.

Suppose that problem (2.1) has two different positive solutions, then by a trans-

formation v = e−
α
d
xu, we see that the following problem has two positive solutions dvxx + αvx + v[r − e

α
d
xv] = 0, 0 < x < L,

vx(0) = 0,
dvx(L) + bαv(L) = 0.

(2.17)

This infers that the principal eigenvalue µ1 of the eigenvalue problem
dψxx + αψx + rψ + µψ = 0, 0 < x < L,
ψx(0) = 0,
dψx(L) + bαψ(L) = 0,

should be negative. Let us denote by ψ1 the corresponding eigenfunction. It is easy

to check that v = M(> r) and v = εψ1 are a pair of super- and sub- solution of

problem (2.17). Moreover, since M and ε can be chosen arbitrarily large and small,

respectively, one can easily show that the maximal solution of (2.17), denoted by v1,

and the minimal solution, denoted by v2, satisfy

v1 > v2 > 0 in [0, L]. (2.18)

Multiply the equation of v1 by e
α
d
xv2 and the equation of v2 by e

α
d
xv1, subtract the

resulting equations and then integrate over [0, L], one finally gets∫ L

0
e

2α
d
xv1v2[v1 − v2]dx = 0,

which contradicts (2.18). This contradiction finishes the proof. �

2.2 Monotone dependence of L∗ on d

As can be seen from Lemmas 2.1 and 2.2, the critical habitat size L∗ is an increasing

function of the advection speed α. In this subsection, we continue to explore the

dependence of L∗ on the diffusion rate d.

Let us first rewrite L∗ as a function of the diffusion rate d. For 0 < b < 1
2 ,

L∗ = L∗1(d) ,

 2d
arctan bα

√
4dr−α2

2rd−bα2√
4dr−α2

as d ≥ α2

4r ,

ln 2dr−bα2+bα
√
α2−4dr

2dr−bα2−bα
√
α2−4dr ·

d√
α2−4dr as α2b(1−b)

r < d < α2

4r ;
(2.19)
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for b = 1
2 ,

L∗ = L∗2(d) , 2d
arctan bα

√
4dr−α2

2rd−bα2√
4dr − α2

, as d > α2

4r ; (2.20)

and for b > 1
2 ,

L∗ = L∗3(d) ,


2d

arctan bα
√

4dr−α2
2rd−bα2√

4dr−α2
as d ≥ α2b

2r ,

2d
π+arctan bα

√
4dr−α2

2rd−bα2√
4dr−α2

as α2

4r < d < α2b
2r .

(2.21)

For notational simplicity, let us denote

f(d) , 2d
arctan bα

√
4dr−α2

2rd−bα2√
4dr − α2

,

g(d) , ln
k1
k2
· d√

α2 − 4dr
,

with k1 = 2dr − bα2 + bα
√
α2 − 4dr and k2 = 2dr − bα2 − bα

√
α2 − 4dr, and

h(d) , 2d
π + arctan bα

√
4dr−α2

2rd−bα2√
4dr − α2

=
2dπ√

4dr − α2
+ f(d).

The first result of this subsection is as follows.

Proposition 2.2 The following statements hold:

(1) L∗1(d) defined in (2.19) is a decreasing function of d;

(2) L∗2(d) defined in (2.20) is a decreasing function of d;

(3) L∗3(d) defined in (2.21) is a decreasing function of d provided 1
2 < b < 1.

Proof: We first prove part (1). It is easy to check that L∗1(d) is continuous at d = α2

4r

(actually, one can directly compute L∗1(
α2

4r ) = bα
(1−2b)r ). Hence, to establish part (1),

we only have to show L∗1(d) is decreasing in both (α
2

4r ,∞) and (α
2b(1−b)
r , α

2

4r ).

For d > α2

4r , a direct calculation gives

(4dr − α2)L∗1
′(d) = (4dr − α2)f ′(d)

=f1 , 2
2dr − α2

√
4dr − α2

· arctan
bα
√

4dr − α2

2dr − bα2
+ α

b(1− b)α2 − 2bdr

dr + (b2 − b)α2
.
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Regard f1 as a function of b. By some computations one attains

f1
′(b) =2

2dr − α2

√
4dr − α2

·
α
√
4dr−α2(2dr−bα2)+bα3

√
4dr−α2

(2dr−bα2)2

1 + b2α2(4dr−α2)
(2dr−bα2)2

+ α
[(1− 2b)α2 − 2dr] · [dr + (b2 − b)α2]− b(2b− 1)α2[(1− b)α2 − 2dr]

[dr + (b2 − b)α2]2

=
α(2dr − α2)

dr + (b2 − b)α2
+ αdr

α2(1 + 2b2 − 2b)− 2dr

[dr + (b2 − b)α2]2

=
(b2 − b)α3(4dr − α2)

[dr + (b2 − b)α2]2

<0, (due to 0 < b <
1

2
)

and hence f1(b) < f1(0) = 0, which immediately implies

L∗1
′(d) < 0 for d >

α2

4r
. (2.22)

For α2b(1−b)
r < d < α2

4r , we have

L∗1
′(d) =g′(d)

=
α2 − 2dr

(α2 − 4dr)
√
α2 − 4dr

· ln k1
k2

+
d√

α2 − 4dr
· (ln k1

k2
)′d

=
α2 − 2dr

(α2 − 4dr)
√
α2 − 4dr

· ln k1
k2
− bα

α2 − 4dr
· (1− b)α2 − 2dr

dr + (b2 − b)α2

=
(α2 − 2dr) · [dr + (b2 − b)α2] · ln k1

k2
− bα

√
α2 − 4dr · [(1− b)α2 − 2dr]

(α2 − 4dr) ·
√
α2 − 4dr · [dr + (b2 − b)α2]

,
g1

(α2 − 4dr) ·
√
α2 − 4dr · [dr + (b2 − b)α2]

.

Regard g1 as a function of b. By a series of computations,

g1
′(b) =α(α2 − 2dr) ·

√
α2 − 4dr + α2(2b− 1) · (α2 − 2dr) · ln k1

k2

− [(1− 2b)α3 − 2drα] ·
√
α2 − 4dr,

g1
′′(b) =2α2(α2 − 2dr) · ln k1

k2
+ α3(2b− 1) · (α2 − 2dr) ·

√
α2 − 4dr

dr + (b2 − b)α2

+ 2α3
√
α2 − 4dr,

and

g1
′′′(b) = −α

3(α2 − 2dr) ·
√
α2 − 4dr · (α2 − 4dr)

[dr + (b2 − b)α2]2
.
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Since α2b(1−b)
r < d < α2

4r and 0 < b < 1
2 ,

g1
′′′(b) < 0⇒ g1

′′(b) < g1
′′(0) =

α3
√
α2 − 4dr

dr
[4dr − α2] < 0

⇒ g1
′(b) < g1

′(0) = 0⇒ g1(b) < g1(0) = 0.

Hence,

L∗1
′(d) < 0 for

α2b(1− b)
r

< d <
α2

4r
. (2.23)

Part (1) follows from (2.22) and (2.23).

By a careful reading, one finds that f ′1(b) < 0 for all b ∈ (0, 1) and d > α2

4r , and

thus

f1 < 0 for all b ∈ (0, 1) and d >
α2

4r
. (2.24)

This immediately gives the monotonicity of L∗2(d) in (α
2

4r ,∞) and L∗3(d) in (α
2b
2r ,∞).

Now, it remains to show L∗3
′(d) < 0 in (α

2

4r ,
α2b
2r ). In fact, for d ∈ (α

2

4r ,
α2b
2r ),

L∗3
′(d) = h′(d) =

2π(2dr − α2)√
4dr − α2(4dr − α2)

+ f ′(d) < 0,

where the inequality used α2

4r < d < α2b
2r < α2

2r and (2.24). The proof is finished. �

Set d̂ = α2b(1 − b)/r when 0 < b ≤ 1/2 and d̂ = α2/(4r) when b ≥ 1/2. As a

consequence of Proposition 2.2 we have

Theorem 2.2 Given any d > 0, r > 0, L > 0, we have

lim
d→d̂−

L∗ = +∞, lim
d→+∞

L∗ =
bα

r
.

If b ∈ (0, 1), then L∗ is a strictly decreasing function of d.

Remark 2.2 The monotonicity of L∗ with respect to d indicates that large diffusion

rate increases the likelihood of the persistence of a single species. This, to some

extent, gives us a hint that if one considers a two-species competing system instead of

the single species model, and assumes that the two species are identical except their

diffusion rates, then the species with larger diffusion rate may win the competition.

We will make this intuitive idea more transparent in the next section.

Remark 2.3 It is natural to ask whether the critical habitat size L∗ is still a mono-

tonically decreasing function of d when b ≥ 1. It turns out that this situation is

complicated, and we will include some discussions in the final section.
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Similar to Theorem 2.1, the main result of this subsection can be stated as follows.

Theorem 2.3 Assume that α > 0, r > 0, b ∈ (0, 1).

(a) If 0 < d ≤ d̂, then for any L > 0, the trivial steady state u = 0 is globally

asymptotically stable among all solutions of (1.2) with non-negative and not

identically zero initial data; If d > d̂, then there exists L∗ = L∗(d, r, b, α) > 0

such that for L > L∗, (1.2) admits a unique positive steady state which is glob-

ally asymptotically stable, and for 0 < L ≤ L∗, u = 0 is globally asymptotically

stable.

(b) If 0 < L ≤ bα
r , then for any d > 0, u = 0 is globally asymptotically stable; If

L > bα
r , then there exists d∗ = d∗(α, r, b, L) > 0 such that for d > d∗, (1.2)

admits a unique positive steady state which is globally asymptotically stable,

and for 0 < d ≤ d∗, u = 0 is globally asymptotically stable.

Theorem 2.3 follows from Theorem 2.2. As the proof is similar as that of Theorem

2.1, we omit the details.

Part (a) of Theorem 2.3 implies that when the dispersal rate is less than d̂, the

single species can not persist for any habitat size. For any dispersal rate greater than

d̂, there exists some critical habitat size such that the single species can persist if

and only if the habitat size is greater than the critical size. Complementary, part (b)

ensures that there exists a critical diffusion rate if and only if the habitat size is larger

than bα
r , and the single species can persist if and only if its diffusion rate is larger

than the critical diffusion rate. We caution the readers that these results hold under

the assumption b ∈ (0, 1).

3 Global dynamics for two-species competition model

In this section, we first focus our attention on the study of the two-species competition

system (1.2) with 0 ≤ b < 1. Due to the monotonicity of such systems, to a large

extent, its dynamics can be determined by the stability/instability of the semi-trivial

solutions of the stationary problem

d1uxx − αux + u[r − u− v] = 0, 0 < x < L,
d2vxx − αvx + v[r − u− v] = 0, 0 < x < L,
d1ux(0)− αu(0) = 0,
d1ux(L)− αu(L) = −bαu(L),
d2vx(0)− αv(0) = 0,
d2vx(L)− αv(L) = −bαv(L).

(3.1)

This in turn leads us to the study of some corresponding eigenvalue problems obtained

by the linearization method. We discuss this in subsection 3.1. However, to obtain
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a complete understanding of the global dynamics, in general one needs to establish

the non-existence of the co-existence steady state, or the stability of the co-existence

steady state (if it exists). This will be covered by subsection 3.2. In subsection 3.3, we

summarize the results obtained in previous sections and present our final conclusion

for 0 ≤ b < 1. In the last part, subsection 3.4, we want to show that system (1.2)

may have different dynamics provided b crosses over 1.

3.1 Local stability of semi-trivial steady states

We start with the local stability of the two semi-trivial steady states of system (1.4),

which are respectively denoted by (ũ, 0) and (0, ṽ) in the sequel. For the sake of

notation simplicity, we are going to unify some symbols associated with the linearized

version of problem (1.4).

Linearizing problem (1.4) at (ũ, 0) and (0, ṽ) respectively, we obtain the following

two eigenvalue problems:
−[d2ψx − αψ]x − [r − ũ]ψ = µψ, 0 < x < L,
d2ψx(0)− αψ(0) = 0,
d2ψx(L)− αψ(L) = −bαψ(L),

(3.2)

and 
−[d1ϕx − αϕ]x − [r − ṽ]ϕ = λϕ, 0 < x < L,
d1ϕx(0)− αϕ(0) = 0,
d1ϕx(L)− αϕ(L) = −bαϕ(L).

(3.3)

Denote by (µ1, ψ1) and (λ1, ϕ1) the first pair of eigenvalue-eigenfunction of problem

(3.2) and (3.3), respectively.

It is well known that (see, e.g., [16, 25]) both µ1 and λ1 are simple, and their

corresponding eigenfunctions ψ1 and ϕ1 can be chosen strictly positive in [0, L]. We

say that (ũ, 0) is linearly stable (resp. linearly unstable) if µ1 > 0 (resp. µ1 < 0);

similarly (0, ṽ) is linearly stable (resp. linearly unstable) provided λ1 > 0 (resp.

λ1 < 0). Moreover, if a steady state is linearly stable (resp. linearly unstable), then it

should be asymptotically stable (resp. unstable) (see, e.g., Theorem 7. 6. 2 in [25]).

Before giving the local stability of the semi-trivial steady states, we first establish

an identity which is very useful in later analysis.

Consider the auxiliary eigenvalue problem
−[dζx − αζ]x −m(x)ζ = τζ, 0 < x < L,
dζx(0)− αζ(0) = 0,
dζx(L)− αζ(L) = −bαζ(L),

(3.4)

where m(x) ∈ L∞([0, L]). We denote the first pair of eigenvalue-eigenfunction of

problem (3.4) by (τd1 , ζ
d
1 ) to emphasize the dependence on the parameter d, then we

have
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Lemma 3.1 For any 0 < d1 < d2, the following identity holds:

τd11 − τ
d2
1 = (d1 − d2)

∫ L
0 (ζd11 )x[e

− α
d2
x
ζd21 ]xdx∫ L

0 e
− α
d2
x
ζd11 ζ

d2
1 dx

.

Proof: Rewrite the equations of (τd11 , ζd11 ) and (τd21 , ζd21 ) as follows:

d2(ζ
d1
1 )xx − α(ζd11 )x + [m(x) + τd11 ]ζd11 = (d2 − d1)(ζd11 )xx, 0 < x < L,

d2(ζ
d2
1 )xx − α(ζd21 )x + [m(x) + τd21 ]ζd21 = 0, 0 < x < L,

d2(ζ
d1
1 )x(0)− αζd11 (0) = (d2 − d1)(ζd11 )x(0),

d2(ζ
d1
1 )x(L)− αζd11 (L) = −bαζd11 (L) + (d2 − d1)(ζd11 )x(L),

d2(ζ
d2
1 )x(0)− αζd21 (0) = 0,

d2(ζ
d2
1 )x(L)− αζd21 (L) = −bαζd21 (L).

Multiply the first equation by e
− α
d2
x
ζd21 and the second one by e

− α
d2
x
ζd11 , subtract the

resulting equations and then integrate over [0, L], one finally obtains

(τd11 −τ
d2
1 )

∫ L

0
e
− α
d2
x
ζd11 ζ

d2
1 dx+

{
[d2(ζ

d1
1 )x − αζd11 ]e

− α
d2
x
ζd21

}
|L0

−
{

[d2(ζ
d2
1 )x − αζd21 ]e

− α
d2
x
ζd11

}
|L0

=[d2 − d1]
{

(ζd11 )xe
− α
d2
x
ζd21

}
|L0 − [d2 − d1]

∫ L

0
(ζd11 )x[e

− α
d2
x
ζd21 ]xdx.

Using the boundary conditions, one further derives

(τd11 − τ
d2
1 )

∫ L

0
e
− α
d2
x
ζd11 ζ

d2
1 dx = [d1 − d2]

∫ L

0
(ζd11 )x[e

− α
d2
x
ζd21 ]xdx,

which is exactly our claim. Hence the proof is finished. �

We now go to discuss the stability/instability of (ũ, 0) and (0, ṽ). In view of the

results obtained in section 2, ũ and ṽ do not always exist, and their existence depends

on the parameters in the equation. In the next two lemmas, we assume that they

exist, and discuss their stability properties. The precise version will be given in the

final conclusion (see subsection 3.3), by combining results from section 2.

Lemma 3.2 Assume that 0 < d1 < d2, α, r, L > 0, and 0 ≤ b < 1, and that (ũ, 0)

exists. Then (ũ, 0) must be unstable.

Proof: Note that (µ1, ψ1) (defined at the beginning of this subsection) satisfies
−[d2ψ1x − αψ1]x − [r − ũ]ψ1 = µ1ψ1, 0 < x < L,
d2ψ1x(0)− αψ1(0) = 0,
d2ψ1x(L)− αψ1(L) = −bαψ1(L),
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and that 
−[d1ũx − αũ]x − [r − ũ]ũ = 0, 0 < x < L,
d1ũx(0)− αũ(0) = 0,
d1ũx(L)− αũ(L) = −bαũ(L).

Set m(x) = r − ũ in (3.4), then by Lemma 3.1, we see

µ1 = [d2 − d1]
∫ L
0 ũx[e

− α
d2
x
ψ1]xdx∫ L

0 e
− α
d2
x
ũψ1dx

. (3.5)

Let w = ũx
ũ and z = ψ1x

ψ1
. Then after some tedious but straightforward calculations

we have {
−d1wxx + [α− 2d1w]wx + ũw = 0, 0 < x < L,
w(0) = α

d1
> 0, w(L) = (1− b) αd1 > 0,

(3.6)

and {
−d2zxx + [α− 2d2z]zx = −ũx, 0 < x < L,
z(0) = α

d2
> 0, z(L) = (1− b) αd2 > 0.

(3.7)

An application of the maximum principle to (3.6) yields that 0 < w < α
d1

in (0, L),

and so

ũx > 0 in (0, L). (3.8)

Hence, using the maximum principle again, we see from (3.7) that z = ψ1x
ψ1

< α
d2

,

which particularly implies

[e
− α
d2
x
ψ1]x < 0 in (0, L). (3.9)

Substituting (3.8) and (3.9) into (3.5), one immediately gets µ1 < 0, which gives the

instability of (ũ, 0). The proof is complete. �

By using similar arguments, we can establish the local stability of (0, ṽ) as follows.

Lemma 3.3 Assume that 0 < d1 < d2, α, r, L > 0, and 0 ≤ b < 1, and that (0, ṽ)

exists. Then (0, ṽ) must be (locally) stable.

3.2 Non-existence of co-existence steady state

This subsection is devoted to studying whether system (1.4) has a co-existence steady

state or not. To establish the non-existence result, we first establish several prelim-

inary results (Lemmas 3.4 and 3.5 below), which will be frequently used in Lemma

3.6, the main result of this subsection.



22

Lemma 3.4 Assume that 0 < d1 < d2, α, r, L > 0 and 0 ≤ b < 1. If (u, v) is

a co-existence steady state of system (1.4) (that is, (u, v) solves problem (3.1) and

u, v > 0), then for any two points 0 ≤ y1 ≤ y2 ≤ L, we have the following identities:

[d1 − d2]
∫ y2

y1

vx[e
− α
d1
x
u]xdx =[d1ux(y2)v(y2)− d2vx(y2)u(y2)]e

− α
d1
y2

− [d1ux(y1)v(y1)− d2vx(y1)u(y1)]e
− α
d1
y1 ;

(3.10)

and

[d2 − d1]
∫ y2

y1

ux[e
− α
d2
x
v]xdx =[d2vx(y2)u(y2)− d1ux(y2)v(y2)]e

− α
d2
y2

− [d2vx(y1)u(y1)− d1ux(y1)v(y1)]e
− α
d2
y1 .

(3.11)

Proof: Here we only include the proof for identity (3.10), since the other case can

be treated similarly.

Rewrite the equations of (u, v), i.e., (3.1), as follows{
d1
{
e
α
d1
x
[e
− α
d1
x
u]x
}
x

+ u[r − u− v] = 0, 0 < x < L,

d1
{
e
α
d1
x
[e
− α
d1
x
v]x
}
x

+ v[r − u− v] = [d1 − d2]vxx, 0 < x < L.

Multiplying the first equation by e
− α
d1
x
v, the second one by e

− α
d1
x
u, subtracting the

resulting equations and then integrating over [y1, y2], we get

−
{

[d1ux − αu]e
− α
d1
x
v
}
|y2y1 =[d1 − d2]

∫ y2

y1

vxxe
− α
d1
x
udx−

{
[d1vx − αv]e

− α
d1
x
u
}
|y2y1

=[d1 − d2]
{
vxe
− α
d1
x
u
}
|y2y1 − [d1 − d2]

∫ y2

y1

vx[e
− α
d1
x
u]xdx

−
{

[d1vx − αv]e
− α
d1
x
u
}
|y2y1 ,

and so

[d1 − d2]
∫ y2

y1

vx[e
− α
d1
x
u]xdx = [d1 − d2][vx(y2)e

− α
d1
y2u(y2)− vx(y1)e

− α
d1
y1u(y1)]

−
{

[d1vx(y2)− αv(y2)]e
− α
d1
y2u(y2)− [d1vx(y1)− αv(y1)]e

− α
d1
y1u(y1)

}
+
{

[d1ux(y2)− αu(y2)]e
− α
d1
y2v(y2)− [d1ux(y1)− αu(y1)]e

− α
d1
y1v(y1)

}
= [d1ux(y2)v(y2)− d2vx(y2)u(y2)]e

− α
d1
y2 − [d1ux(y1)v(y1)− d2vx(y1)u(y1)]e

− α
d1
y1 ,

which coincides with (3.10). Thus the proof is finished. �

For any co-existence solution (u, v) (suppose it exists), define

T :=
ux
u

and S :=
vx
v
. (3.12)
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After some computations, one gets
−d1Txx + [α− 2d1T ]Tx + uT + vS = 0, 0 < x < L,
−d2Sxx + [α− 2d2S]Sx + uT + vS = 0, 0 < x < L,
T (0) = α

d1
> 0, T (L) = (1− b) αd1 > 0,

S(0) = α
d2
> 0, S(L) = (1− b) αd2 > 0.

(3.13)

We now include some properties of T and S in the following lemma.

Lemma 3.5 Let T and S be defined as in (3.12). Then

−d1Tx + αT − d1T 2 = −d2Sx + αS − d2S2, for any x ∈ [0, L]. (3.14)

In addition, the following situations for T and S cannot occur:

(1) T (resp. S) achieves a positive local maximum in (x1, x2) and S ≥ 0 (resp.

T ≥ 0) in [x1, x2];

(2) T (resp. S) achieves a negative local minimum in (x1, x2) and S ≤ 0 (resp.

T ≤ 0) in [x1, x2].

where [x1, x2] is any interval in [0, L].

Proof: We first prove the identity (3.14). From the equations of (u, v), we see

−d1uxx + αux
u

=
−d2vxx + αvx

v
= 1− u− v,

and thereby

−d1
uxxu− u2x

u2
+ α

ux
u
− d1

u2x
u2

= −d2
vxxv − v2x

v2
+ α

vx
v
− d2

v2x
v2
,

which is exactly the identity (3.14).

Next, we prove part (1). If T attains a positive local maximum in (x1, x2), say

x∗ ∈ (x1, x2), then

T (x∗) > 0, T ′(x∗) = 0, and T ′′(x∗) ≤ 0.

Evaluating the first equation of (3.13) at x∗, one easily sees S(x∗) < 0, contradicting

our assumption. So this case would not happen. Clearly, all other cases in part (1)

and part (2) can be verified similarly, so the proof is complete. �

Based on previous two results, we next move to establish the main result of this

subsection.

Lemma 3.6 Assume that 0 < d1 < d2, α, r, L > 0 and 0 ≤ b < 1. Then system

(1.4) has no co-existence steady state.
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Proof: Arguing indirectly, we suppose that there is a co-existence steady state of

system (1.4), denoted by (u, v). For clarity, we prove this result by several claims.

Claim 1. Both ux and vx must change sign in [0, L].

If ux does not change sign in [0, L], then ux ≥ 0 in [0, L] (note ux(0) = α
d1
u(0) > 0).

Recall the identity (3.11) and let y2 there be L and y1 there be 0. Then∫ L

0
ux[e

− α
d2
x
v]xdx =

∫ L

0
ux[vx −

α

d2
v]e
− α
d2
x
dx = 0.

We first make an assertion that vx − α
d2
v must change sign in [0, L]. Otherwise,

ux[vx− α
d2
v]e
− α
d2
x ≡ 0 in [0, L]. Clearly, ux 6≡ 0. Hence, vx− α

d2
v ≡ 0 in some interval

[x1, x2] ⊂ [0, L], and so v(x) = v(x1)e
α
d2

(x−x1) for x ∈ [x1, x2]. On the other hand,

due to vx− α
d2
v ≡ 0 in [x1, x2], vxx− α

d2
vx ≡ 0 in [x1, x2]. By the equation of v, we see

u+v−r ≡ 0, which in turn gives d1uxx−αux ≡ 0, and thus d1ux−αu ≡ C in [x1, x2]

for some constant C. Substitute the expression u(x) = r − v(x) = r − v(x1)e
α
d2

(x−x1)

into d1ux−αu ≡ C, one then can easily deduce d1 = d2, contradicting our assumption.

Hence, the above assertion holds.

Let x∗ ∈ [0, L] be such that vx(x∗)− α
d2
v(x∗) > 0, i.e., S(x∗) > α

d2
. Since S(0) = α

d2

and S(L) = (1− b) αd2 ≤
α
d2

, we can find two numbers 0 ≤ x∗1 < x∗ < x∗2 ≤ L such that

S(x∗1) = S(x∗2) =
α

d2
, S(x) >

α

d2
in (x∗1, x

∗
2),

which implies that S must attain a positive local maximum in (x∗1, x
∗
2). Clearly, T ≥ 0

in [x∗1, x
∗
2] due to ux ≥ 0 in [0, L]. But Lemma 3.5 tells us this is impossible. Hence,

ux must change sign in [0, L].

The conclusion for vx can be established by the identity (3.10) and a similar

argument as above, so we omit the details.

Claim 2. vx must reach the first zero point before ux.

Lemma 6.6 in [20] indicates that ux and vx cannot be zero at the same time, so,

if Claim 2 is not true, then there exists x0 ∈ (0, L) such that

ux > 0 in [0, x0), ux(x0) = 0, vx(x) > 0 in [0, x0].

Evaluating the identity (3.10) at (y1, y2) = (0, x0), one attains

0 < d2u(x0)vx(x0)e
− α
d1
x0 = [d2 − d1]

∫ x0

0
vx[e

− α
d1
x
u]xdx. (3.15)

On the other hand, we integrate the equation of u from 0 to x0 to see
∫ x0
0 u[r − u−

v]dx = αu(x0) > 0, which implies that r − u − v must be positive somewhere in

[0, x0]. Observing that r − u− v is a strictly decreasing function in [0, x0], there are

two possibilities of r − u − v: (i): r − u − v > 0 in [0, x0); or (ii): r − u − v > 0 in
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[0, x′) and r − u − v < 0 in (x′, x0]. Case (i) shows that [d1ux − αu]x < 0 in [0, x0),

and hence d1ux − αu < 0 in (0, x0] due to d1ux − αu|x=0 = 0; Case (ii) shows that

d1ux−αu first declines and then increases to d1ux−αu|x=x0 = −αu(x0) < 0, so again,

we obtain d1ux−αu < 0 in (0, x0]. Clearly, this immediately leads to a contradiction

with inequality (3.15). Thus, the proof for Claim 2 is finished.

Let us now denote the first zero point of vx by z1 ∈ (0, L); also we can choose

(z1 <) z2 < z3 < L such that

ux ≥ 0 in [0, z2], ux < 0 in (z2, z3), and ux(z3) = 0.

(The existence of such zi (i = 1, 2, 3) is guaranteed by Claims 1 and 2 and ux(L) > 0.)

Claim 3. vx cannot be nonnegative in [z1, z2].

Otherwise, vx ≥ 0 in [z1, z2]. By an integration of the equation of u over [0, z2],

we find
∫ z2
0 u[r − u − v]dx = αu(z2) > 0. Note that in [0, z2], ux ≥ 0 and vx ≥ 0.

Hence, one can apply a similar argument as in Claim 2 to establish d1ux − αu < 0 in

(0, z2], that is, [e
− α
d1
x
u]x < 0 in (0, z2].

Recall the identity (3.10) and let (y1, y2) = (0, z2). Then

0 < d2u(z2)vx(z2)e
− α
d1
z2 = [d2 − d1]

∫ z2

0
vx[e

− α
d1
x
u]xdx < 0,

a contradiction. (We point out here that vx(z2) in the above inequality must be

positive due to Lemma 6.6 in [20].) This contradiction completes the proof of this

claim.

Claim 4. vx cannot be non-positive in [z1, z2].

Arguing indirectly, we suppose vx ≤ 0 in [z1, z2]. Using Lemma 6.6 in [20] again,

we actually have vx(z2) < 0. Since vx(L) = (1− b) αd2 v(L) > 0, vx must have at least

one zero point in (z2, L). Let z4 be the one that is closest to z2.

We first prove z4 ∈ (z2, z3). If not, then z4 ≥ z3, and we have

ux < 0 in (z2, z3), ux(z2) = ux(z3) = 0, vx ≤ 0 in [z2, z3].

This immediately tells us that T must attain a negative local minimum in (z2, z3),

and S ≤ 0 in [z2, z3], which is impossible in view of Lemma 3.5. Hence, z4 ∈ (z2, z3).

It is easy to see that

T (z2) = 0, T ′(z2) ≤ 0, and S(z2) < 0.

Restricting the identity (3.14) at x = z2, one finds

d2S
′(z2) = d1T

′(z2) + αS(z2)− d2S2(z2) < 0, i.e., S′(z2) < 0.
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Clearly, S′(z4) ≥ 0. Hence, S must achieve a negative local minimum in (z2, z4) ⊂
(z2, z3), in which T is non-positive. This contradicts Lemma 3.5 again, so the above

claim holds.

In view of Claims 3 and 4, vx must change sign in [z1, z2]. By Lemma 6.6 in [20],

vx(z2) 6= 0, so

either vx(z2) > 0 or vx(z2) < 0. (3.16)

Claim 5. vx(z2) cannot be negative.

Suppose for contradiction that vx(z2) < 0. Since now vx changes sign in [z1, z2],

let z∗ ∈ (z1, z2) be such that vx(z∗) > 0. Observing that vx(z1) = 0 and vx(z2) < 0,

there must be two numbers z1 ≤ z < z < z2 such that

vx(z) = vx(z) = 0, vx > 0 in (z, z).

Again, we find that S has a positive local maximum in (z, z) while T is nonnegative

in [z, z], which is impossible due to Lemma 3.5. This confirms the above claim.

Claim 6. vx(z2) cannot be positive.

If vx(z2) > 0, then S(z2) > 0. This together with the fact that S(z1) = 0,

T (z1) > 0 and T (z2) = 0 implies that T must intersect S at least once in (z1, z2). Let

z̃ be the first intersection point in (z1, z2). Clearly,

T > S in [z1, z̃), T (z̃) = S(z̃) > 0.

(We remark here that T (z̃) = S(z̃) = 0 could not happen due to Lemma 6.6 in [20].)

Therefore,

T ′(z̃) ≤ S′(z̃). (3.17)

Recall the identity (3.14) and evaluate it at x = z̃ to obtain

d2S
′(z̃) = (d1 − d2)T 2(z̃) + d1T

′(z̃). (3.18)

If T ′(z̃) ≤ 0, then S′(z̃) < 0, which together with S(z1) = 0 and S(z̃) > 0 tells us

that S must have a positive local maximum in (z1, z̃). Obviously, T is nonnegative in

[z1, z̃]. These again result in a contradiction with Lemma 3.5.

While if T ′(z̃) > 0, then S′(z̃) > 0 by the virtue of (3.17). Moreover, one can

deduce from (3.18) that

0 > (d1 − d2)T 2(z̃) = d2S
′(z̃)− d1T ′(z̃) ≥ d1S′(z̃)− d1T ′(z̃) ≥ 0.

This contradiction finishes the proof of Claim 6.

The obvious contradiction caused by (3.16) and Claims 5 and 6 shows that the

co-existence steady state (u, v) could not exist. We now complete the whole proof of

this lemma. �
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3.3 Final conclusion for 0 ≤ b < 1

In this subsection, we present our final conclusion for system (1.4).

Theorem 3.1 Assume that 0 < d1 < d2, α, r, L > 0 and 0 ≤ b < 1. If (0, ṽ) exists,

then it must be globally asymptotically stable among all solutions with non-negative

and not identically zero initial data; while if (0, ṽ) does not exist, then (0, 0) is globally

asymptotically stable.

Proof: By the monotone dynamical system theory [25], the first part of Theorem

3.1 follows from Lemmas 3.2, 3.3 and 3.6. To establish the rest of Theorem 3.1, it

suffices to show that if (0, ṽ) does not exist, then (ũ, 0) does not exist, too. If this is

true, then (0, 0) is globally asymptotically stable.

We argue by contradiction. Assume that (0, ṽ) does not exist, but (ũ, 0) exists.

Consider the following two eigenvalue problems
d1ϕxx − αϕx + (r + λ)ϕ = 0, 0 < x < L,
d1ϕx(0)− αϕ(0) = 0,
d1ϕx(L)− αϕ(L) = −bαϕ(L),

(3.19)

and 
d2ψxx − αψx + (r + µ)ψ = 0, 0 < x < L,
d2ψx(0)− αψ(0) = 0,
d2ψx(L)− αψ(L) = −bαψ(L).

(3.20)

Denote by (λ1, ϕ1) and (µ1, ψ1) the first pair of eigenvalue-eigenfunction of problem

(3.19) and problem (3.20), respectively. Then in view of the above assumption,

λ1 < 0 and µ1 ≥ 0.

In addition, by Lemma 3.1 (set m(x) = r in (3.4)), we have

0 > λ1 − µ1 = (d1 − d2)
∫ L
0 ϕ1x[e

− α
d2
x
ψ1]xdx∫ L

0 e
− α
d2
x
ϕ1ψ1dx

. (3.21)

Let z = ϕ1x
ϕ1

and ẑ = ψ1x
ψ1

. Then{
−d1zxx + [α− 2d1z]zx = 0, 0 < x < L,
z(0) = α

d1
> 0, z(L) = (1− b) αd1 > 0,

(3.22)

and {
−d2ẑxx + [α− 2d2ẑ]ẑx = 0, 0 < x < L,
ẑ(0) = α

d2
> 0, ẑ(L) = (1− b) αd2 > 0.

(3.23)
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By the maximum principle, one sees from (3.22) and (3.23) that for 0 < x < L,

(1− b) α
d1

< z <
α

d1
and (1− b) α

d2
< ẑ <

α

d2
,

which particularly implies

ϕ1x > 0 and [e
− α
d2
x
ψ1]x < 0, for 0 < x < L. (3.24)

Putting (3.24) into (3.21), one then easily deduces a contradiction 0 > λ1 − µ1 > 0,

and this contradiction ends the proof. �

Combining the results from section 2 with the above theorem, we attain a more

specific and precise version as follows.

Theorem 3.2 Assume that 0 < d1 < d2, α, r, L > 0 and 0 < b < 1. For 0 < α < α∗,

(0, ṽ) is globally asymptotically stable among all solutions with non-negative and not

identically zero initial data, while for α ≥ α∗, (0, 0) is globally asymptotically stable.

Here α∗ is determined in Lemmas 2.1 and 2.2, respectively.

3.4 Global stability of (ũ, 0) when b > 3
2

It is natural to inquire about the dynamics of two-species competition models when

the loss at the downstream end is severe. To this end, we illustrate some major

differences between the cases b < 1 and b > 3
2 .

3.4.1 Non-monotone dependence of L∗ on d

Theorem 2.3 says that if b < 1, the critical habitat size is a decreasing function of the

diffusion rate. However, such conclusion does not hold for general values of loss rate

b. The following result gives an example.

Lemma 3.7 Given any d > 0, r > 0, and α > 0. If b > 3
2 , then L∗ is strictly

increasing in d for sufficiently large d; if b < 3
2 , L∗ is strictly decreasing in d for

sufficiently large d.

In strong contrast to Theorem 2.3, Lemma 3.7 implies that L∗ is strictly increasing

in d for sufficiently large d. For general values of b, the exact dependence of L∗ on d

has not been fully determined. For the special case b = ∞, it is straightforward to

show that L∗, as a function of d with domain (α
2

4r ,+∞), has a unique critical point

(and thus it must be the global minimum), denoted as d∗: L∗ is strictly decreasing in

(α
2

4r , d
∗) and strictly increasing in (d∗,+∞). We suspect that such result also holds

for b > 3
2 .
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Proof: By direct calculations, we have

(4dr − α2)L∗′(d) =2
2dr − α2

√
4dr − α2

· arctan
bα
√

4dr − α2

2dr − bα2
+ α

b(1− b)α2 − 2bdr

dr + (b2 − b)α2

=2
2dr − α2

√
4dr − α2

· [bα
√

4dr − α2

2dr − bα2
− 1

3

b3α3(4dr − α2)
3
2

(2dr − bα2)3
]

+ bα
(1− b)α2 − 2dr

dr + (b2 − b)α2
+ o(

1

d2
)

=2
b2α3

r
· [2

3
b− 1] · 1

d
+ o(

1

d2
).

Clearly, if b > 3
2 , then for sufficiently large d, L∗′(d) > 0; while if b < 3

2 , then

L∗′(d) < 0 for sufficiently large d. �

3.4.2 Global stability of (ũ, 0) when d1 < d2 and b > 3/2

Theorem 3.1 ensures that if b < 1 and d1 < d2, then (ũ, 0), if exists, is always unstable.

That is, when the loss rate is small, the faster diffuser can invade the slower diffuser

when rare. However, as we will show below, the opposite conclusion can hold for

b > 3
2 .

Fix b > 0, r > 0 and α > 0. Define

L∗ = inf
d>0

L∗,

where L∗ is given in Theorem 2.1. In contrast to Theorem 3.1, we have the following

result:

Theorem 3.3 Given r > 0 and α > 0. Suppose that b > 3
2 and L ∈ (L∗,

bα
r ).

Then there exist two constants d∗, d
∗ with d∗ > d∗ >

α2

4r , such that for any d1 ∈
(d∗, d

∗), (ũ, 0) exists. Furthermore, if d2 is sufficiently large, then (ũ, 0) is globally

asymptotically stable.

Theorem 3.3 implies that when the loss of individuals at the downstream end is severe,

larger diffusion rate can be selected against, in contrast to the case when b ≤ 1. It

also supports previous analysis [20] which suggests that some intermediate diffusion

rate is selected when b =∞.

Proof: We first establish the existence of ũ. By part (a) of Theorem 2.1, ũ exists

if and only if α <
√

4d1r and L > L∗ = L∗(d1, r, b, α). Since limd1→α2/(4r) L
∗ = +∞

and limd1→∞ = bα
r , L∗ is well defined and L∗ ≤ bα

r . By Lemma 3.7, we see that if

b > 3
2 , then

L∗ <
bα

r
.
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Now choose L ∈ (L∗,
bα
r ) (which is no-empty). Then we can find positive constants

d∗, d
∗ such that L > L∗ for any d1 ∈ (d∗, d

∗). Hence, ũ exists provided that b > 3
2 ,

L ∈ (L∗,
bα
r ) and d1 ∈ (d∗, d

∗).

We next claim that if d2 is sufficiently large, then (0, ṽ) does not exist. To establish

this assertion, we note that by part (a) of Theorem 2.1, ṽ exists if and only if α <√
4d2r and L > L∗ = L∗(d2, r, b, α). Since limd2→∞ L

∗ = bα
r , by assumption L < bα

r

and Lemma 3.7, we find that if b > 3
2 , L < L∗(d2, r, b, α) for sufficiently large d2.

Therefore, (0, ṽ) does not exist.

Finally, we show that under the assumption of Theorem 3.3, given any non-

negative and not identically zero initial data (u(x, 0), v(x, 0)), (u(x, t), v(x, t))→ (ũ, 0)

in C([0, L]) as t→∞. By the maximum principle, u(x, t) > 0 and v(x, t) > 0 for any

x ∈ [0, L] and t > 0. Therefore, by (1.4), v(x, t) satisfies
vt < d2vxx − αvx + v[r − v], 0 < x < L, t > 0,
d2vx(0, t)− αv(0, t) = 0, t > 0,
d2vx(L, t)− αv(L, t) = −bαv(L, t), t > 0
v(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L.

That is, v(x, t) is a sub-solution of the equation
wt = d2wxx − αwx + w[r − w], 0 < x < L, t > 0,
d2wx(0, t)− αw(0, t) = 0, t > 0,
d2wx(L, t)− αw(L, t) = −bαw(L, t), t > 0
w(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L.

(3.25)

By the comparison principle for parabolic equations, w(x, t) ≥ v(x, t) for any x and t.

Since ṽ does not exist, i.e., (3.25) has no positive steady state, we have w(x, t)→ 0 in

C([0, L]) as t → ∞. Hence, v(x, t) → 0 in C([0, L]) as t → ∞, which in turn implies

that u(x, t)→ ũ in C([0, L]) as t→∞. This completes the proof. �

4 Discussions

We studied a single species model and a two-species competition model in a one-

dimensional advective homogeneous environment. The species can be exposed to a

net loss of individuals at the downstream end. We first determine necessary and

sufficient conditions for the persistence of a single species, in terms of the critical

habitat size and the critical advection rate. For the competition model, we assume

that two species have the same population dynamics but differ in random diffusion

rate. We show that when the magnitude of the loss at the downstream end is small

(b < 1), the species with higher diffusion rate will always displace the species with

smaller rate; i.e., larger diffusion rate will be selected in this case. On the other hand,

when the loss at the downstream end is severe (b > 3
2), larger diffusion might not be
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favored. It seems that the dynamics of two-species competition model (1.4) has some

major differences between the cases b < 1 and b > 3
2 .

We first offer some intuitive reasoning for the case b ≤ 1, which is closely related

with the ideal free distribution. The ideal free distribution (IFD), introduced by

Fretwell and Lucas in [10], describes how organisms distribute themselves so that

individuals optimize their fitness, assuming that individuals have complete knowledge

of the environment and can move without any cost. For population models with

movement, the IFD corresponds to an equilibrium state where all individuals have

the same fitness, because otherwise some individuals would move to increase their

fitness. For our single species model with population density ũ, the fitness of the

species is measured by the effective growth rate r − ũ. It is easy to see that for any

d1 > 0, the fitness r − ũ is never equal to a constant. For the case b < 1, if L ≤ bα
r ,

then ũ does not exist for any d1, so we restrict to L > bα
r . When L > bα

r , ũ exists for

all sufficiently large d1. Furthermore, as d1 →∞, ũ→ r − bα
L in L∞([0, L]). That is,

the species approaches the IFD as its diffusion rate tends to infinity. It is generally

believed that strategies leading to the ideal free distribution of populations should

be evolutionarily stable; See [6] and references therein. Hence, we expect that faster

diffusion rate will be favored when b < 1.

The case b > 3
2 is different: ũ exists for some intermediate range of d1, but it does

not exist for sufficiently large d1. This suggests that large diffusion rate might be

selected against, and some intermediate diffusion rate is favored in this case. It seems

quite challenging to fully determine the global dynamics of system (1.4) for general

parameter values of b, d, α, r, L.
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