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1 Introduction

During the past thirty years, delay induced instability has been investigated extensively

for homogeneous reaction-diffusion equations with delay effect, and the spatial homo-

geneous and nonhomogeneous periodic solutions can occur through Hopf bifurcation.

For models with the homogeneous Neumann boundary conditions, researchers were

mainly concerned with the Hopf bifurcation near the constant positive equilibrium,

see [9, 13, 15, 18, 19, 22, 26, 28, 31, 32] and the references therein. For models with

the homogeneous Dirichlet boundary conditions, the positive equilibrium is always s-

patially nonhomogeneous. Busenberg and Huang [2] first studied the Hopf bifurcation

near such spatially nonhomogeneous positive equilibrium, and they found that, for the

following prototypical single population model,
∂u(x, t)

∂t
= d∆u(x, t) + λu(x, t) (1− u(x, t− τ)) , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.1)

time delay τ can make the unique spatially nonhomogeneous positive steady state

unstable and induce Hopf bifurcation. Then, many authors investigated the Hopf

bifurcation of models with the homogeneous Dirichlet boundary conditions, see [27,

33, 34, 36, 37]. Moreover, we refer to [8, 10, 20, 21] and the references therein for the

Hopf bifurcation of models with the nonlocal delay effect and the homogenous Dirichlet

boundary conditions.

In model (1.1), all the parameters are constant. However, due to the heterogeneity

of the environment, the population may have a tendency to move up or down along

the gradient of the habitats [1]. Therefore, it is more realistic to have the following

model,
∂u(x, t)

∂t
= ∇ · [d∇u− au∇m] + u(x, t) [m(x)− u(x, t− r)] , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

where u(x, t) represents the population density at location x and time t, d > 0 is

the diffusion coefficient, time delay r > 0 represents the maturation time, and Ω
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is a bounded domain in Rn (1 ≤ n ≤ 3) with a smooth boundary ∂Ω. Moreover,

the intrinsic growth rate m(x) is spatially dependent and may change sign, which

means that, the intrinsic growth rate of the population is positive on favorable habitats

and negative on unfavorable ones, and a measures the tendency of the population to

move up or down along the gradient of m(x). For r = 0, Cantrell and Cosner [3, 4]

investigated the effects of spatial heterogeneity on the dynamics of model (1.2) for the

case of a = 0, and Belgacem and Cosner [1] considered the case of a ̸= 0. We also refer

to [5, 11, 12, 25, 29, 30] and the references therein for the effects of spatial heterogeneity

on single population and two competing populations models.

In this paper, we mainly investigate whether time delay r can induce Hopf bifur-

cation for reaction-diffusion-advection model (1.2). As in [1], letting v = e(−a/d)m(x)u,

t = t̃/d, dropping the tilde sign, and denoting λ = 1/d, α = a/d, τ = dr, system (1.2)

can be transformed as follows:
∂v

∂t
= e−αm(x)∇ · [eαm(x)∇v] + λv

[
m(x)− eαm(x)v(x, t− τ)

]
, x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.3)

Throughout the paper, unless otherwise specified, m(x) satisfies the following assump-

tion

(A1) m(x) ∈ C2(Ω), and maxx∈Ωm(x) > 0.

The following eigenvalue problem−e−αm(x)∇ · [eαm(x)∇v] = −∆v − α∇m · ∇v = λm(x)v, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,

(1.4)

is crucial to derive our main results. It follows from [1, 6, 30] that, under assumption

(A1), (1.4) has a unique principal eigenvalue λ∗ > 0 admitting a strictly positive

eigenfunction ϕ ∈ C1+δ
0 (Ω) for some δ ∈ (0, 1). Then, we can obtain the similar results

as the case of spatial homogeneity [2, 33]: for λ ∈ (λ∗, λ
∗], where 0 < λ∗ − λ∗ ≪ 1,

there exists a sequence of values {τn(λ)}∞n=0, such that, when τ = τn(λ), Eq. (1.3)
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occurs Hopf bifurcation at the unique spatially nonhomogeneous positive steady state.

Note that λ = 1/d, where d is the diffusion coefficient of model (1.2). Then, we see

that there exists d∗ < 1/λ∗, such that for d ∈ [d∗, 1/λ∗), there exists a sequence of

values {rn(d)}∞n=0, such that Eq. (1.2) occurs Hopf bifurcation when delay r = rn(d).

The rest of the paper is organized as follows. In Section 2, we study the stability

and Hopf bifurcation of the spatially nonhomogeneous positive steady state for Eq.

(1.3). In Section 3, we derive an explicit formula, which can be used to determine the

direction of the Hopf bifurcation and the stability of the bifurcating periodic orbits. In

Section 4, we give some remarks on the model with zero-flux boundary condition, and

some numerical simulations are illustrated to support the obtained theoretical results.

As in [8, 10], throughout the paper, we also denote the spaces X = H2(Ω) ∩ H1
0 (Ω),

Y = L2(Ω), C = C([−τ, 0], Y ), and C = C([−1, 0], Y ). Moreover, we denote the

complexification of a linear space Z to be ZC := Z ⊕ iZ = {x1 + ix2| x1, x2 ∈ Z}, the

domain of a linear operator L by D(L), the kernel of L by N (L), and the range of L by

R(L). For Hilbert space YC, we use the standard inner product ⟨u, v⟩ =
∫
Ω

u(x)v(x)dx.

2 Stability and Hopf bifurcation

In this section, we first consider the existence of positive steady states of Eq. (1.3),

which satisfy:∇ · [eαm(x)∇v] + λeαm(x)v
[
m(x)− eαm(x)v

]
= 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

(2.1)

Actually, it follows from [1, 30] that, for τ = 0, model (1.3) has a unique positive steady

state which is global attractive among non-trivial nonnegative solutions if λ > λ∗, and

the trivial steady state is global attractive if λ ≤ λ∗. Denote

L := ∇ · [eαm(x)∇] + λ∗e
αm(x)m(x), (2.2)
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where λ∗ > 0 is the unique principal eigenvalue of problem (1.4) admitting a strictly

positive eigenfunction ϕ. Note that

X = N (L)⊕X1, Y = N (L)⊕ Y1,

where

N (L) =span{ϕ}, X1 =

{
y ∈ X :

∫
Ω

ϕ(x)y(x)dx = 0

}
,

Y1 =R (L) =

{
y ∈ Y :

∫
Ω

ϕ(x)y(x)dx = 0

}
.

(2.3)

Then we can give a profile of the unique positive steady state near λ∗.

Theorem 2.1. There exist λ∗ > λ∗ and a continuously differential mapping λ 7→

(ξλ, βλ) from [λ∗, λ
∗] to X1 × R+ such that, for λ ∈ (λ∗, λ

∗], the unique positive steady

state of Eq. (1.3) has the following form

uλ = βλ(λ− λ∗)[ϕ+ (λ− λ∗)ξλ]. (2.4)

Moreover, for λ = λ∗,

βλ∗ =

∫
Ω

m(x)eαm(x)ϕ2(x)dx

λ∗

∫
Ω

e2αm(x)ϕ3(x)dx

, (2.5)

and ξλ∗ ∈ X1 is the unique solution of the following equation

Lξ + ϕ
(
m(x)eαm(x) − λ∗βλ∗e

2αm(x)ϕ
)
= 0, (2.6)

where L is defined as in Eq. (2.2).

Proof. Noticing that

λ∗

∫
ω

m(x)eαm(x)ϕ2(x)dx =

∫
Ω

eαm(x)|∇ϕ(x)|2dx > 0, (2.7)

we see that βλ∗ is well defined and positive. It follows that

ϕ
(
m(x)eαm(x) − λ∗βλ∗e

2αm(x)ϕ
)
∈ R(L) = Y1,
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and hence ξλ∗ is well defined. Substituting u = β(λ−λ∗) [ϕ+ (λ− λ∗)ξ] into Eq. (2.1),

we see that (β, ξ) satisfies

m(ξ, β, λ) = Lξ +m(x)eαm(x) [ϕ+ (λ− λ∗)ξ] − λβe2αm(x)[ϕ+ (λ− λ∗)ξ]
2 = 0.

Noticing that Ω is a bounded domain in Rn(1 ≤ n ≤ 3) with a smooth boundary

∂Ω, we see that X1 is compactly imbedded into Cγ(Ω) for some γ ∈ (0, 1), and hence

m(ξ, β, λ) is a function from X1 × R2 to Y . It follows from Eqs. (2.5) and (2.6) that

m(ξλ∗ , βλ∗ , λ∗) = 0, and

D(ξ,β)m(ξλ∗ , βλ∗ , λ∗)[η, ϵ] = Lη − λ∗ϵe
2αm(x)ϕ2,

where D(ξ,β)m(ξλ∗ , βλ∗ , λ∗)[η, ϵ] is the Fréchet derivative of m with respect to (ξ, β) at

(ξλ∗ , βλ∗ , λ∗). One can easily check that D(ξ,β)m(ξλ∗ , βλ∗ , λ∗) is a bijection from X1×R

to Y . Then, it follows from the implicit function theorem that there exist λ∗ > λ∗ and

a continuously differentiable mapping λ 7→ (ξλ, βλ) ∈ X1 × R+ such that

m(ξλ, βλ, λ) = 0, λ ∈ [λ∗, λ
∗].

Therefore, βλ(λ− λ∗)[ϕ+ (λ− λ∗)ξλ] is a positive solution of Eq. (2.1).

Linearizing system (1.3) at uλ, we have

∂v

∂t
= e−αm(x)∇ · [eαm(x)∇v] + λ

[
m(x)− eαm(x)uλ

]
v

− λeαm(x)uλv(x, t− τ), x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(2.8)

It follows from [35] that the solution semigroup of Eq. (2.8) has the infinitesimal

generator Aτ (λ) satisfying

Aτ (λ)Ψ = Ψ̇, (2.9)

where

D(Aτ (λ)) = {Ψ ∈ CC ∩ C1
C : Ψ(0) ∈ XC, Ψ̇(0) = e−αm(x)∇ · [eαm(x)∇Ψ(0)]

+ λ
[
m(x)− eαm(x)uλ

]
Ψ(0)− λeαm(x)uλΨ(−τ)},
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and C1
C = C1([−τ, 0], YC). Moreover, µ ∈ C is an eigenvalue of Aτ (λ), if and only if

there exists ψ( ̸= 0) ∈ XC such that ∆(λ, µ, τ)ψ = 0, where

∆(λ, µ, τ)ψ :

=e−αm(x)∇ · [eαm(x)∇ψ] + λ
[
m(x)− eαm(x)uλ

]
ψ − λeαm(x)uλψe

−µτ − µψ.
(2.10)

We will show that the eigenvalues of Aτ (λ) could pass through the imaginary axis

when time delay τ increases. Actually, one can easily check that Aτ (λ) has a purely

imaginary eigenvalue µ = iν (ν > 0) for some τ ≥ 0, if and only if

e−αm(x)∇ · [eαm(x)∇ψ] + λ
[
m(x)− eαm(x)uλ

]
ψ − λeαm(x)uλψe

−iθ − iνψ = 0 (2.11)

is solvable for some value of ν > 0, θ ∈ [0, 2π), and ψ( ̸= 0) ∈ XC. First, we give the

following estimates for solutions of (2.11).

Lemma 2.2. If (νλ, θλ, ψλ) solves Eq. (2.11) with νλ > 0, θλ ∈ [0, 2π), and ψλ( ̸= 0) ∈

XC, then

νλ

∫
Ω

eαm(x)|ψλ|2dx = λ sin θλ

∫
Ω

e2αm(x)uλ|ψλ|2dx, (2.12)

and
νλ

λ− λ∗
is bounded for λ ∈ (λ∗, λ

∗].

Proof. Substituting (νλ, θλ, ψλ) into Eq. (2.11), multiplying (2.11) by eαm(x)ψλ, and

integrating the result over Ω, we have⟨
ψλ,∇ · [eαm(x)∇ψλ]

⟩
+ λ

∫
Ω

[
m(x)eαm(x) − e2αm(x)uλ

]
|ψλ|2dx

− λ

∫
Ω

e2αm(x)uλ|ψλ|2dxe−iθλ − iνλ

∫
Ω

eαm(x)|ψλ|2dx = 0.

Noticing that ⟨
ψλ,∇ · [eαm(x)∇ψλ]

⟩
= −

∫
Ω

eαm(x)|∇ψλ|2dx < 0,

we see that Eq. (2.12) holds. Therefore,

νλ
λ− λ∗

=
λ sin θλ

∫
Ω
e2αm(x)uλ|ψλ|2dx

(λ− λ∗)
∫
Ω
eαm(x)|ψλ|2dx

≤ λ|βλ|eαmaxΩ m(x) [∥ϕ∥∞ + (λ− λ∗)∥ξλ∥∞] .

It follows from the continuity of λ 7→ (∥ξλ∥∞, βλ) that
νλ

λ− λ∗
is bounded for λ ∈

(λ∗, λ
∗].
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The following result is similar to Lemma 2.3 of [2] and we omit the proof here.

Lemma 2.3. If z ∈ XC and ⟨ϕ, z⟩ = 0, then |⟨Lz, z⟩| ≥ λ2∥z∥2YC
, where λ2 is the

second eigenvalue of operator −L.

Now, for λ ∈ (λ∗, λ
∗], letting

ψ = rϕ+ (λ− λ∗)z, z ∈ (X1)C, r ≥ 0,

∥ψ∥2YC
= r2∥ϕ∥2YC

+ (λ− λ∗)
2∥z∥2YC

= ∥ϕ∥2YC
,

(2.13)

and substituting (2.4), (2.13) and ν = (λ − λ∗)h into Eq. (2.11), we see that (ν, θ, ψ)

solves Eq. (2.11), where ν > 0, θ ∈ [0, 2π) and ψ ∈ XC(∥ψ∥2YC
= ∥ϕ∥2YC

), if and only if

the following system:
g1(z, r, h, θ, λ) := Lz − λβλe

2αm(x) [ϕ+ (λ− λ∗)ξλ] [rϕ+ (λ− λ∗)z] e
−iθ

+[rϕ+ (λ− λ∗)z]
{
m(x)eαm(x) − λβλe

2αm(x) [ϕ+ (λ− λ∗)ξλ]− iheαm(x)
}
= 0

g2(z, r, λ) := (r2 − 1)∥ϕ∥2YC
+ (λ− λ∗)

2∥z∥2YC
= 0

(2.14)

is solvable for some value of z ∈ (X1)C, h > 0, r ≥ 0, and θ ∈ [0, 2π). Define

G : (X1)C × R4 → YC × R by G = (g1, g2), and we find that G(z, r, h, θ, λ) = 0 is

uniquely solvable for λ = λ∗.

Lemma 2.4. The following equationG(z, r, h, θ, λ∗) = 0

z ∈ (X1)C, h > 0 r ≥ 0, θ ∈ [0, 2π)

(2.15)

has a unique solution (zλ∗ , rλ∗ , hλ∗ , θλ∗). Here

rλ∗ = 1, θλ∗ = π/2, hλ∗ =

∫
Ω
m(x)eαm(x)ϕ2dx∫
Ω
eαm(x)ϕ2(x)dx

, (2.16)

and zλ∗ ∈ (X1)C is the unique solution of

Lz = −iλ∗βλ∗e
2αm(x)ϕ2 + ihλ∗e

αm(x)ϕ− ϕ
(
m(x)eαm(x) − λ∗βλ∗e

2αm(x)ϕ
)
, (2.17)

where L is defined as in Eq. (2.2).
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Proof. From Eq. (2.14), we see that g2(z, r, λ∗) = 0 if and only if r = rλ∗ = 1. Note

that

g1(z, rλ∗ , h, θ, λ∗) =Lz − λ∗βλ∗e
2αm(x)ϕ2e−iθ

−iheαm(x)ϕ+ ϕ
(
m(x)eαm(x) − λ∗βλ∗e

2αm(x)ϕ
)
.

(2.18)

Then g1(z, rλ∗ , h, θ, λ∗) = 0

z ∈ (X1)C, h > 0 r ≥ 0, θ ∈ [0, 2π)

is solvable if and only ifλ∗βλ∗

∫
Ω
e2αm(x)ϕ3dx sin θ = h

∫
Ω
eαm(x)ϕ2dx

λ∗βλ∗

∫
Ω
e2αm(x)ϕ3dx cos θ = 0

(2.19)

is solvable for a pair (θ, h) with h > 0 and θ ∈ [0, 2π). This, combined with Eq. (2.5),

leads to

θ = θλ∗ = π/2, h = hλ∗ =
λ∗βλ∗

∫
Ω
e2αm(x)ϕ3dx∫

Ω
eαm(x)ϕ2dx

=

∫
Ω
m(x)eαm(x)ϕ2dx∫
Ω
eαm(x)ϕ2dx

. (2.20)

Consequently, g1(z, rλ∗ , hλ∗ , θλ∗ , λ∗) = 0 has a unique solution zλ∗ , which satisfies Eq.

(2.17).

Then we solve G = 0 for λ ∈ (λ∗, λ
∗].

Theorem 2.5. There exist λ̃∗ > λ∗ and a continuously differentiable mapping λ 7→

(zλ, rλ, hλ, θλ) from [λ∗, λ̃
∗] to (X1)C × R3 such that G(zλ, rλ, rλ, θλ, λ) = 0. Moreover,

for λ ∈ [λ∗, λ̃
∗], G(z, r, h, θ, λ) = 0

z ∈ (X1)C, h, r ≥ 0, θ ∈ [0, 2π)

(2.21)

has a unique solution (zλ, rλ, hλ, θλ).

Proof. Let T = (T1, T2) : (X1)C × R3 7→ YC × R be the Fréchet derivative of G with

respect to (z, r, h, θ) at (zλ∗ , rλ∗ , hλ∗ , θλ∗ , λ∗). Then,

T1(χ, κ, ϵ, ϑ) =Lχ− iϵeαm(x)ϕ+ ϑλ∗βλ∗e
2αm(x)ϕ2

+κϕ
[
m(x)eαm(x) − λ∗βλ∗e

2αm(x)ϕ− ihλ∗e
αm(x) + iλ∗βλ∗e

2αm(x)ϕ
]
,

T2(κ) =2κ∥ϕ∥2YC
.
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One can easily check that T is a bijection from (X1)C × R3 to YC × R. This, com-

bined with the implicit function theorem, implies that there exist λ̃∗ > λ∗ and a

continuously differentiable mapping λ 7→ (zλ, rλ, hλ, θλ) from [λ∗, λ̃
∗] to XC × R3 such

that G(zλ, rλ, hλ, θλ, λ) = 0. To prove the uniqueness, we only need to verify that if

z ∈ (X1)C, r
λ, hλ > 0, θλ ∈ [0, 2π), and G(zλ, rλ, hλ, θλ, λ) = 0, then

(zλ, rλ, hλ, θλ) → (zλ∗ , rλ∗ , hλ∗ , θλ∗) =
(
zλ∗ , 1, hλ∗ ,

π

2

)
as λ → λ∗ in the norm of XC × R3. It follows from Lemma 2.2 and Eq. (2.14) that

{hλ}, {rλ} and {θλ} are bounded for λ ∈ [λ∗, λ̃
∗]. Note that {βλ} and {ξλ} are bounded

for λ ∈ [λ∗, λ̃
∗]. As in Theorem 2.4 of [2], we can obtain that there exist M1,M2 > 0

such that

λ2∥zλ∥2YC
≤ |⟨Lz, z⟩| ≤M1∥ϕ∥YC∥zλ∥YC +M2(λ− λ∗)∥zλ∥2YC

,

where λ2 is defined as in Lemma 2.3. Therefore, if λ̃∗ is sufficiently small, {zλ} is

bounded in YC for λ ∈ [λ∗, λ̃
∗]. Since the operator L−1 is bounded, we see that {zλ} is

also bounded in (X1)C, which implies that {(zλ, rλ, hλ, θλ) : λ ∈ (λ∗, λ̃
∗]} is precompact

in YC × R3. Then, there exists a subsequence {(zλn
, rλ

n
, hλ

n
, θλ

n
)} such that

(zλ
n

, rλ
n

, hλ
n

, θλ
n

) → (zλ∗ , rλ∗ , hλ∗ , θλ∗) in YC × R3, λn → λ∗ as n→ ∞.

Taking the limit of the equation L−1g1(z
λn
, rλ

n
, hλ

n
, θλ

n
, λn) = 0 as n → ∞, we see

that G(zλ∗ , rλ∗ , hλ∗ , θλ∗ , λ∗) = 0. It follows from Lemma 2.4 that

(zλ∗ , rλ∗ , hλ∗ , θλ∗) = (zλ∗ , rλ∗ , hλ∗ , θλ∗).

This completes the proof.

From Theorem 2.5, we derive the following result.

Theorem 2.6. For each λ ∈ (λ∗, λ̃
∗], the following equation∆(λ, iν, τ)ψ = 0

ν ≥ 0, τ ≥ 0, ψ( ̸= 0) ∈ XC
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has a solution (ν, τ, ψ), if and only if

ν = νλ = (λ− λ∗)hλ, ψ = cψλ, τ = τn =
θλ + 2nπ

νλ
, n = 0, 1, 2, · · · , (2.22)

where ψλ = rλϕ+ (λ− λ∗)zλ, c is a nonzero constant, and zλ, rλ, hλ, θλ are defined as

in Theorem 2.5.

In the following, we will always assume λ ∈ (λ∗, λ̃
∗] for simplicity, where 0 <

λ∗−λ∗ ≪ 1. Actually, the value of λ̃∗ may be chosen smaller than the one in Theorem

2.5, since further perturbation arguments are used. Now, we give some estimates to

prove the simplicity of iνλ.

Lemma 2.7. Assume that λ ∈ (λ∗, λ̃
∗]. Then, for n = 0, 1, 2, · · · ,

Sn(λ) :=

∫
Ω

eαm(x)ψ2
λdx− λτne

−iθλ

∫
Ω

e2αm(x)uλψ
2
λdx ̸= 0, (2.23)

where ψλ is defined as in Theorem 2.6.

Proof. It follows from Theorems 2.5 and 2.6 that θλ → π/2, τn(λ−λ∗) → (
π

2
+2nπ)/hλ∗ ,

ψλ → ϕ in XC as λ→ λ∗. This, combined with Eq. (2.20), yields

lim
λ→λ∗

Sn(λ)

=

∫
Ω

eαm(x)ϕ2dx+
iβλ∗λ∗
hλ∗

(π
2
+ 2nπ

)∫
Ω

e2αm(x)ϕ3dx

=
[
1 + i(

π

2
+ 2nπ)

] ∫
Ω

eαm(x)ϕ2dx ̸= 0.

(2.24)

This completes the proof.

Then, by virtue of Lemma 2.7, we obtain that iν is simple as follows.

Theorem 2.8. Assume that λ ∈ (λ∗, λ̃
∗]. Then µ = iνλ is a simple eigenvalue of Aτn

for n = 0, 1, 2, · · · , where iνλ and τn are defined as in Theorem 2.6.

Proof. It follows from Theorem 2.6 that N [Aτn(λ) − iνλ] = Span[eiνλθψλ], where θ ∈

[−τn, 0] and ψλ is defined as in Theorem 2.6. If ϕ1 ∈ N [Aτn(λ)− iνλ]
2, then

[Aτn(λ)− iνλ]ϕ1 ∈ N [Aτn(λ)− iνλ] = Span[eiνλθψλ].

11



Therefore, there exists a constant a such that

[Aτn(λ)− iνλ]ϕ1 = aeiνλθψλ,

which yields

ϕ̇1(θ) = iνλϕ1(θ) + aeiνλθψλ, θ ∈ [−τn, 0],

ϕ̇1(0) = e−αm(x)∇ · [eαm(x)∇ϕ1(0)]

+ λ
[
m(x)− eαm(x)uλ

]
ϕ1(0)− λeαm(x)uλϕ1(−τn).

(2.25)

From the first equation of Eq. (2.25), we see that

ϕ1(θ) = ϕ1(0)e
iνλθ + aθeiνλθψλ,

ϕ̇1(0) = iνλϕ1(0) + aψλ.
(2.26)

Eq. (2.25) and Eq. (2.26) imply that

eαm(x)∆(λ, iνλ, τn)ϕ1(0)

=∇ · [eαm(x)∇ϕ1(0)]− iνλe
αm(x)ψ1(0)

+λ
[
m(x)eαm(x) − e2αm(x)uλ

]
ϕ1(0)− λe2αm(x)uλϕ1(0)e

−iθλ

=aeαm(x)
(
ψλ − λτnuλψλe

αm(x)e−iθλ
)
.

(2.27)

Since ∆(λ, iνλ, τn)ψλ = 0, we have ∆(λ,−iνλ, τn)ψλ = 0. This, combined with Eq.

(2.27), yields

0 =
⟨
eαm(x)∆(λ,−iνλ, τn)ψλ, ϕ1(0)

⟩
=

⟨
ψλ, e

αm(x)∆(λ, iνλ, τn)ϕ1(0)
⟩

= a

(∫
Ω

eαm(x)ψ2
λdx− λτne

−iθλ

∫
Ω

∫
Ω

uλψ
2
λe

2αm(x)dx

)
,

which implies that a = 0 from Lemma 2.7. Therefore,

N [Aτn(λ)− iνλ]
j = N [Aτn(λ)− iνλ], j = 2, 3, · · · , n = 0, 1, 2, · · · ,

and λ = iνλ is a simple eigenvalue of Aτn for n = 0, 1, 2, · · · .

Note that µ = iνλ is a simple eigenvalue of Aτn . It follows from the implicit function

theorem that there are a neighborhood On × Dn × Hn ⊂ R × C × XC of (τn, iνλ, ψλ)
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and a continuously differential function (µ(τ), ψ(τ)) : On → Dn × Hn such that for

each τ ∈ On, the only eigenvalue of Aτ (λ) in Dn is µ(τ), and

eαm(x)∆(λ, µ(τ), τ)ψ(τ) = ∇ · [eαm(x)∇ψ(τ)]− eαm(x)µ(τ)ψ(τ)

+ λ
[
m(x)eαm(x) − e2αm(x)uλ

]
ψ(τ)− λe2αm(x)uλψ(τ)e

−µ(τ)τ = 0.
(2.28)

Moreover, µ(τn) = iνλ, and ψ(τn) = ψλ. Then we have the following transversality

condition.

Theorem 2.9. Assume that λ ∈ (λ∗, λ̃
∗]. Then

dRe[µ(τn)]
dτ

> 0, n = 0, 1, 2, · · · .

Proof. Differentiating Eq.(2.28) with respect to τ at τ = τn yields

dµ(τn)

dτ

[
−eαm(x)ψλ + λτne

2αm(x)uλψλe
−iθλ

]
+ eαm(x)∆(λ, iνλ, τn)

dψ(τn)

dτ
+ iνλλe

2αm(x)uλψλe
−iθλ = 0.

(2.29)

Note that⟨
ψλ, e

αm(x)∆(λ, iνλ, τn)
ψ(τn)

dτ

⟩
=

⟨
eαm(x)∆(λ,−iνλ, τn)ψλ,

ψ(τn)

dτ

⟩
= 0. (2.30)

Then, multiplying Eq. (2.29) by ψλ and integrating the result over Ω, we have

dµ(τn)

dτ
=

iνλλe
−iθλ

∫
Ω

e2αm(x)uλψ
2
λdx∫

Ω
eαm(x)ψ2

λdx− λτne−iθλ
∫
Ω
e2αm(x)uλψ2

λdx

=
1

|Sn(λ)|2

(
iνλλe

−iθλ

∫
Ω

eαm(x)ψ2
λdx

∫
Ω

e2αm(x)uλψ
2
λdx

−iνλλ2τn
[∫

Ω

e2αm(x)uλψ
2
λdx

]2)
.

(2.31)

It follows from Eq. (2.20) and the expression of uλ, θλ, νλ and ψλ that

lim
λ→λ∗

1

(λ− λ∗)2
dRe[µ(τn)]

dτ
=

h2λ∗

limλ→λ∗ |Sn(λ)|2

(∫
Ω

eαm(x)ϕ2dx

)2

> 0.

From Theorems 2.6, 2.8 and 2.9, we have the result on the distribution of eigenvalues

of Aτ (λ).
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Theorem 2.10. For λ ∈ (λ∗, λ̃
∗], the infinitesimal generator Aτ (λ) has exactly 2(n+1)

eigenvalues with positive real parts when τ ∈ (τn, τn+1], n = 0, 1, 2, · · · .

Then we obtain the stability and associated Hopf bifurcations of the positive steady

state solution uλ. We remark that the local Hopf bifurcation theorem for partial

functional differential equations was proved in [35] (see Theorem 4.5 on page 208).

Theorem 2.11. For λ ∈ (λ∗, λ̃
∗], the positive steady state uλ of Eq. (1.3) is locally

asymptotically stable when τ ∈ [0, τ0), and unstable when τ ∈ (τ0,∞). Moreover, when

τ = τn, (n = 0, 1, 2, · · · ), system (1.3) occurs Hopf bifurcation at the positive steady

state uλ.

3 The direction of the Hopf bifurcation

In this section, we combine the methods in [14, 16, 17, 24] to analyze the direction of

the Hopf bifurcation of Eq. (1.3). Letting U(t) = u(·, t)− uλ, t = τ t̃, τ = τn + γ, and

dropping the tilde sign, system (1.3) can be transformed as follows:

dU(t)

dt
= τne

−αm(x)∇ · [eαm(x)∇U(t)] + τnL0(Ut) + J(Ut, γ), (3.1)

where Ut ∈ C = C([−1, 0], Y ), and

L0(Ut) = λ
[
m(x)− eαm(x)uλ

]
U(t)− λeαm(x)uλU(t− 1),

J(Ut, γ) = γτne
−αm(x)∇ · [eαm(x)∇U(t)] + γL0(Ut)− (γ + τn)λe

αm(x)U(t)U(t− 1).

Then Eq. (3.1) occurs Hopf bifurcation near the zero equilibrium when γ = 0. Let Aτn

be the infinitesimal generator of the linearized equation

dU(t)

dt
= τne

−αm(x)∇ · [eαm(x)∇U(t)] + τnL0(Ut). (3.2)

It follows from [35] that

AτnΨ =Ψ̇,

D(Aτn) =
{
Ψ ∈ CC ∩ C1

C : Ψ(0) ∈ XC, Ψ̇(0) = τne
−αm(x)∇ · [eαm(x)∇Ψ(0)]

+ λτn
[
m(x)− eαm(x)uλ

]
Ψ(0)− λτne

αm(x)uλΨ(−1)
}
,
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where C1
C = C1([−1, 0], YC), and Eq. (3.1) can be written in the following abstract form

dUt

dt
= AτnUt +X0J(Ut, γ), (3.3)

where

X0(θ) =

0, θ ∈ [−1, 0),

I, θ = 0.

It follows from Theorem 2.10 that Aτn has only one pair of purely imaginary eigenvalues

±iνλτn, which are simple, and the corresponding eigenfunction with respect to iνλτn

(respectively, −iνλτn) is ψλe
iνλτnθ (respectively, ψλe

−iνλτnθ) for θ ∈ [−1, 0], where ψλ is

defined as in Theorem 2.6.

Following [16, 34], we introduce the formal duality ⟨⟨·, ·⟩⟩ in C by

⟨⟨Ψ̃,Ψ⟩⟩ = ⟨Ψ̃(0),Ψ(0)⟩1 − λτn

∫ 0

−1

⟨
Ψ̃(s+ 1), uλe

αm(x)Ψ(s)
⟩
1
ds, (3.4)

for Ψ ∈ CC and Ψ̃ ∈ C∗
C := C([0, 1], YC), where

⟨u, v⟩1 =
∫
Ω

eαm(x)u(x)v(x)dx.

Since m(x) is bounded and eαm(x) is positive, we see that YC is also a Hilbert space

with this product, and

eαminΩ m(x)⟨v, v⟩ ≤ ⟨v, v⟩1 ≤ eαmaxΩ m(x)⟨v, v⟩.

As in [23], we can compute the formal adjoint operator A∗
τn of Aτn with respect to the

formal duality.

Lemma 3.1. The formal adjoint operator A∗
τn of Aτn is defined by

A∗
τnΨ̃(s) = − ˙̃Ψ(s),

and the domain

D(A∗
τn) =

{
Ψ̃ ∈ C∗

C ∩ (C∗
C)

1 : Ψ̃(0) ∈ XC,− ˙̃Ψ(0) = τne
−αm(x)∇ · [eαm(x)∇Ψ̃(0)]

+ λτn
[
m(x)− eαm(x)uλ

]
Ψ̃(0)− λτne

αm(x)uλΨ̃(1)
}
,

where (C∗
C)

1 = C1([0, 1], YC). Moreover, A∗
τn and Aτn satisfy

⟨⟨A∗
τnΨ̃,Ψ⟩⟩ = ⟨⟨Ψ̃,AτnΨ⟩⟩ for Ψ ∈ D(Aτn) and Ψ̃ ∈ D(A∗

τn). (3.5)
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Proof. For Ψ ∈ D(Aτn) and Ψ̃ ∈ D(A∗
τn),

⟨⟨Ψ̃,AτnΨ⟩⟩ =
⟨
Ψ̃(0), (AτnΨ)(0)

⟩
1
− λτn

∫ 0

−1

⟨
Ψ̃(s+ 1), uλe

αm(x)Ψ̇(s)
⟩
1
ds

=
⟨
Ψ̃(0), τne

−αm(x)∇ · [eαm(x)∇Ψ(0)]
⟩
1
− λτn

[⟨
Ψ̃(s+ 1), uλe

αm(x)Ψ(s)
⟩
1

]0
−1

+
⟨
Ψ̃(0), λτn

[
m(x)− eαm(x)uλ

]
Ψ(0)− λτne

αm(x)uλΨ(−1)
⟩
1

+λτn

∫ 0

−1

⟨
˙̃Ψ(s+ 1), uλe

αm(x)Ψ(s)
⟩
1
ds

=
⟨
(A∗

τnΨ̃)(0),Ψ(0)
⟩
1
− λτn

∫ 0

−1

⟨
− ˙̃Ψ(s+ 1), uλe

αm(x)Ψ(s)
⟩
1
ds

=⟨⟨A∗
τnΨ̃,Ψ⟩⟩.

Similarly, it follows from Theorem 2.10 that the operator A∗
τn has only one pair of

purely imaginary eigenvalues ±iνλτn, which are simple, and the associated eigenfunc-

tion with respect to −iνλτn (respectively, iνλτn) is ψλe
iνλτns (respectively, ψλe

−iνλτns)

for s ∈ [0, 1], where ψλ is defined as in Theorem 2.6. From [35], we see that the

center subspace of Eq. (3.1) is P = span{p(θ), p(θ)}, where p(θ) = ψλe
iνλτnθ is the

eigenfunction of Aτn with respect to iνλτn. The formal adjoint subspace of P is

P ∗ = span{q(s), q(s)}, where q(s) = ψλe
iνλτns is the eigenfunction of A∗

τn with respect

to −iνλτn. Let Φp = (p(θ), p(θ)), ΨP =
1

Sn(λ)
(q(s), q(s))T , where Sn(λ) is defined

in Lemma 2.7, and one can easily check that ⟨⟨Ψp,Φp⟩⟩ = I, where I is the identity

matrix in R2×2. Moreover, CC can be decomposed as CC = P ⊕Q, where

Q = {Ψ ∈ CC : ⟨⟨Ψ̃,Ψ⟩⟩ = 0 for all Ψ̃ ∈ P ∗}.

Since the formulas of Hopf bifurcation are all relative to γ = 0 only, we set γ = 0

in Eq. (3.1). Let

w(z, z) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · (3.6)

be the center manifold with the range in Q, and then the flow of Eq. (3.1) on the

center manifold can be written as:

Ut = Φp · (z(t), z(t))T + w(z(t), z(t)),
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where

ż(t) =
d

dt
⟨⟨q(s), Ut⟩⟩

=⟨⟨q(s),AτnUt⟩⟩+
1

Sn(λ)
⟨⟨q(s), X0J(Ut, 0)⟩⟩

=iνλτnz(t) +
1

Sn(λ)

⟨
q(0), J

(
Φp(z(t), z(t))

T + w(z(t), z(t)), 0
)⟩

1

=iνλτnz(t) + g(z, z).

(3.7)

Then,

g(z, z) =
1

Sn(λ)

⟨
q(0), J

(
Φp(z(t), z(t))

T + w(z(t), z(t)), 0
)⟩

1

=g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · ,

(3.8)

and an easy calculation implies that

g20 =− 2λτn
Sn(λ)

e−iνλτn

∫
Ω

e2αm(x)ψ3
λdx,

g11 =−
[
λτn
Sn(λ)

(eiνλτn + e−iνλτn)

] ∫
Ω

e2αm(x)ψλ|ψλ|2dx,

g02 =− 2λτn
Sn(λ)

eiνλτn
∫
Ω

e2αm(x)ψλψ
2

λdx,

g21 =− 2λτn
Sn(λ)

∫
Ω

e2αm(x)ψ2
λw11(−1)dx− λτn

Sn(λ)

∫
Ω

e2αm(x)|ψλ|2w20(−1)dx

− λτn
Sn(λ)

eiνλτn
∫
Ω

e2αm(x)|ψλ|2w20(0)dx−
2λτn
Sn(λ)

e−iνλτn

∫
Ω

e2αm(x)ψ2
λw11(0)dx.

(3.9)

To compute g21, we need to compute w20(θ) and w11(θ) in the following. As in [8, 24],

we see that w20(θ) and w11(θ) satisfy(2iνλτn −Aτn)w20 = H20,

−Aτnw11 = H11.

(3.10)

Here, for −1 ≤ θ < 0,

H20(θ) = −(g20p(θ) + g02p(θ)), (3.11)

H11(θ) = −(g11p(θ) + g11p(θ)), (3.12)

and, for θ = 0,

H20(0) = − (g20p(0) + g02p(0))− 2λτne
−iνλτneαm(x)ψ2

λ, (3.13)
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H11(0) = − (g11p(0) + g11p(0))− λτn
(
e−iνλτn + eiνλτn

)
eαm(x)|ψλ|2. (3.14)

It follows from Eqs. (3.10)-(3.12) that w20(θ) and w11(θ) can be solved as follows:

w20(θ) =
ig20
νλτn

p(θ) +
ig02
3νλτn

p(θ) + Ee2iνλτnθ, (3.15)

and

w11(θ) = − ig11
νλτn

p(θ) +
ig11
νλτn

p(θ) + F. (3.16)

From Eq. (3.10) with θ = 0, the definition of Aτn and we see that E satisfies

(2iνλτn −Aτn)Ee
2iνλτnθ

∣∣∣∣
θ=0

= −2λτne
−iνλτneαm(x)ψ2

λ,

or equivalently,

∆(λ, 2iνλ, τn)E = 2λe−iνλτneαm(x)ψ2
λ. (3.17)

Note that 2iνλ is not the eigenvalue of Aτn(λ) for λ ∈ (λ∗, λ̃
∗], and hence

E = 2λe−iνλτn∆(λ, 2iνλ, τn)
−1

(
eαm(x)ψ2

λ

)
.

Similarly, from Eqs. (3.10), (3.14), and (3.16), we have

F = λ
(
e−iνλτn + eiνλτn

)
∆(λ, 0, τn)

−1
(
eαm(x)|ψλ|2

)
. (3.18)

In the following, we obtain the similar result as in [8] for the expression of E and F .

Lemma 3.2. Assume that E and F satisfy (3.17) and (3.18), respectively. Then

E =
1

λ− λ∗
(cλuλ + ηλ), F =

η̃λ
λ− λ∗

, (3.19)

where uλ is defined as in (2.4), ηλ and η̃λ satisfy

⟨uλ, ηλ⟩ = 0, lim
λ→λ∗

∥ηλ∥YC = 0, lim
λ→λ∗

∥η̃λ∥YC = 0,

and the constant cλ satisfies lim
λ→λ∗

(λ− λ∗)cλ =
2i

α2
λ∗
(2i− 1)

.
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Proof. We just prove the estimate for E, and that for F can be derived similarly.

Denote the operator

Lλ := ∇ ·
[
eαm(x)∇

]
+ λeαm(x)[m(x)− eαm(x)uλ], (3.20)

and consequently Lλuλ = 0. Substituting E, defined as in Eq. (3.19), into Eq. (3.17),

one can easily have

Lληλ − λe−2iνλτne2αm(x)uλ(cλuλ + ηλ)− 2iνλe
αm(x)(cλuλ + ηλ)

=2(λ− λ∗)λe
−iνλτne2αm(x)ψ2

λ.
(3.21)

Multiplying Eq. (3.21) by uλ, and integrating the result over Ω, we have

cλ

(
λe−2iνλτn

∫
Ω

e2αm(x)u3λdx+ 2iνλ

∫
Ω

eαm(x)u2λdx

)
=− λe−2iνλτn

∫
Ω

e2αm(x)u2ληλdx− 2iνλ

∫
Ω

eαm(x)uληλdx

−2λe−iνλτn(λ− λ∗)

∫
Ω

e2αm(x)uλψ
2
λdx.

(3.22)

Multiplying Eq. (3.21) by ηλ, and integrating the result over Ω, we obtain

⟨ηλ, Lληλ⟩ − λcλ

∫
Ω

e2αm(x)ηλu
2
λdxe

−2iνλτn − 2iνλcλ

∫
Ω

eαm(x)uληλdx

=λ

∫
Ω

e2αm(x)uλ|ηλ|2dxe−2iνλτn + 2iνλ

∫
Ω

eαm(x)|ηλ|2dx

+2λe−iνλτn(λ− λ∗)

∫
Ω

e2αm(x)ηλψ
2
λdx.

(3.23)

It follows from the expression of νλ, uλ, ψλ and τn that

ψλ → ϕ, uλ/(λ− λ∗) → βλ∗ϕ in C(Ω),

νλ/(λ− λ∗) → hλ∗ , νλτn → π

2
+ 2nπ.

(3.24)

From Eqs. (3.22) and (3.24), we see that there exist constants λ̃ > λ∗ and M0,M1 > 0

such that for, any λ ∈ (λ∗, λ̃),

|(λ− λ∗)cλ| ≤M0∥ηλ∥YC +M1. (3.25)

This, combined with Eqs. (3.23) and (3.24), implies that there exist constantsM2, M3 >

0 such that for any λ ∈ (λ∗, λ̃),

|λ2(λ)| · ∥ηλ∥2YC
≤ (λ− λ∗)M2∥ηλ∥2YC

+M3(λ− λ∗)∥ηλ∥YC ,
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where λ2(λ) is the second eigenvalue of −Lλ. Since limλ→λ∗ λ2(λ) = λ2 > 0, where λ2,

defined as in Lemma 2.3, is the second eigenvalue of −L, we have limλ→λ∗ ∥ηλ∥YC = 0.

This, together with (3.22), implies

lim
λ→λ∗

(λ− λ∗)cλ =
2i

β2
λ∗
(2i− 1)

.

Therefore, by similar arguments to [8], one can easily check

lim
λ→λ∗

(λ− λ∗)g11 = 0,

lim
λ→λ∗

Re[(λ− λ∗)
2g21] < 0.

(3.26)

It is well-known that the real part of the following quantity determines the direction

and stability of bifurcating periodic orbits (see [24, 35]):

C1(0) =
i

2νλτn

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
.

It follows from Eq. (3.26) that limλ→λ∗ Re[(λ − λ∗)
2C1(0)] < 0. Hence we have the

following result.

Theorem 3.3. For λ ∈ (λ∗, λ
∗], where λ∗ − λ∗ ≪ 1, let τn(λ) be the Hopf bifurcation

points of Eq. (1.3) obtained in Theorem 2.6. Then for each n ∈ N ∪ {0}, the direction

of the Hopf bifurcation at τ = τn is forward and the bifurcating periodic solution from

τ = τ0 is orbitally asymptotically stable.

4 No-flux boundary condition and simulation

In this section, we discussion model (1.2) with no-flux boundary condition, that is,
∂u(x, t)

∂t
= ∇ · [d∇u− au∇m] + u(x, t) [m(x)− u(x, t− r)] , x ∈ Ω, t > 0,

d∂nu− au∂nm = 0 x ∈ ∂Ω, t > 0,

(4.1)
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where n is the outward unit normal vector on ∂Ω, and ∂nu = ∇u · n. As in Eq. (1.2),

we also derive an equivalent model of Eq. (4.1) as follows:
∂v

∂t
= e−αm(x)∇ · [eαm(x)∇v] + λv

[
m(x)− eαm(x)v(x, t− τ)

]
, x ∈ Ω, t > 0,

∂nv = 0, x ∈ ∂Ω, t > 0.

(4.2)

Here m(x) satisfies the following assumption:

(A2) m(x) ∈ C2(Ω), maxx∈Ωm(x) > 0, and
∫
Ω
m(x)eαm(x)dx < 0; or

(A3) m(x) ∈ C2(Ω), and
∫
Ω
m(x)eαm(x)dx > 0.

Then the following discussion is divided into two cases.

4.1 Case I

In this case, m(x) satisfies assumption (A2). The method used for this case is similar to

that for Dirichlet problem (1.3). In fact, it follows from [1] that the following problem−e−αm(x)∇ · [eαm(x)∇v] = −∆v − α∇m · ∇v = λm(x)v, x ∈ Ω,

∂nv = 0, x ∈ ∂Ω,

(4.3)

has a unique positive principal eigenvalue λ∗, and model (4.2) admits a unique positive

steady state uλ for λ > λ∗, if m(x) satisfies assumption (A2). Moreover, we comment

that the relation between λ∗ and α was also investigated in [12]: if
∫
Ω
m(x)dx ≥ 0,

then λ∗(α) = 0 for all α ≥ 0; and if m(x) change sign and
∫
Ω
m(x)dx < 0, then there

is a unique α∗ > 0 such that λ∗(α) > 0 for 0 < α < α∗, and λ∗(α) = 0 for α > α∗.

Then, by similar arguments to Sections 2 and 3, we have the following results on

model (4.2).

Theorem 4.1. Assume that m(x) satisfies assumption (A2). Then, for λ ∈ (λ∗, λ
∗],

where λ∗−λ∗ ≪ 1, there exists a sequence {τn}∞n=0 such that the positive steady state uλ

of Eq. (4.2) is locally asymptotically stable when τ ∈ [0, τ0), unstable when τ ∈ (τ0,∞),

and system (4.2) occurs Hopf bifurcation at the positive steady state uλ when τ = τn,
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(n = 0, 1, 2, · · · ). Moreover, the direction of the Hopf bifurcation at τ = τn is forward

and the bifurcating periodic solution from τ = τ0 is orbitally asymptotically stable.

4.2 Case II

Note that assumption (A2) is equivalent tom(x) changing sign,
∫
Ω
m(x)dx < 0 and α <

α∗. Thus λ∗(α) > 0 under assumption (A2). It will be of interest to study the dynamics

of system (4.2) for α > α∗, i.e. to understand the joint effect of strong advection and

time delay. Therefore, in this subsection, we consider the case that m(x) satisfies

assumption (A3). It follows from [7, 12] that, under assumption (A3), the unique

positive principal eigenvalue λ∗(α) of problem (4.3) is zero, and the corresponding

eigenfunction ϕ is constant. Moreover, for any λ > 0, system (1.3) has a unique

positive steady state uλ, which is globally asymptotically stable, and uλ satisfies

lim
λ→0

uλ(x) = m :=

∫
Ω
m(x)eαm(x)dx∫
Ω
e2αm(x)dx

in C1+δ(Ω) (4.4)

for some δ ∈ (0, 1). Let u0(x) = m, and then λ → uλ is continuous from [0,∞) to

C1+δ(Ω). For simplicity, we choose ϕ ≡ m, and then L, X1 and Y1 (defined in Eqs.

(2.2) and (2.3)) have the following forms:

L =∇ · [eαm(x)∇],

X1 =

{
y ∈ X :

∫
Ω

y(x)dx = 0

}
,

Y1 =R (L) =

{
y ∈ Y :

∫
Ω

y(x)dx = 0

}
.

In order to analyze eigenvalue problem (2.11), we first give the following estimates

for solutions of (2.11).

Lemma 4.2. Assume that λ ∈ (0, λ∗]. If (νλ, θλ, ψλ) solves Eq. (2.11) with νλ > 0,

θλ ∈ [0, 2π), and ψλ( ̸= 0) ∈ XC, then νλ/λ is bounded for λ ∈ (0, λ∗].

Proof. It follows from Eq. (2.12) that

νλ/λ =
sin θλ

∫
Ω
e2αm(x)uλ|ψλ|2dx∫

Ω
eαm(x)|ψλ|2dx

≤ eαmaxΩ m(x)∥uλ∥∞.
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Then, from the continuity of λ 7→ ∥uλ∥∞, we see that νλ/λ is bounded for λ ∈ (0, λ∗].

We remark that Lemma 2.3 still holds for the case that L = ∇ · [eαm(x)∇]. Now,

for λ ∈ (0, λ∗], letting

ψ = rm+ λz, z ∈ (X1)C, r ≥ 0,

∥ψ∥2YC
= r2m2|Ω|+ λ2∥z∥2YC

= m2|Ω|,
(4.5)

and substituting (4.5) and ν = λh into Eq. (2.11), we see that (ν, θ, ψ) solves Eq.

(2.11), where ν > 0, θ ∈ [0, 2π) and ψ ∈ XC(∥ψ∥2YC
= ∥ϕ∥2YC

), if and only if the

following system:
g̃1(z, r, h, θ, λ) := ∇ · [eαm(x)∇z] + eαm(x)

[
m(x)− eαm(x)uλ

]
(rm+ λz)

−e2αm(x)uλ(rm+ λz)e−iθ − iheαm(x)(rm+ λz) = 0

g̃2(z, r, λ) := (r2 − 1)m2|Ω|+ λ2∥z∥2YC
= 0

(4.6)

Define G̃ : (X1)C ×R4 → YC ×R by G̃ = (g1, g2), and we see that G̃(z, r, h, θ, λ) = 0 is

also uniquely solvable for λ = 0.

Lemma 4.3. The following equationG̃(z, r, h, θ, 0) = 0

z ∈ (X1)C, h > 0 r ≥ 0, θ ∈ [0, 2π)

(4.7)

has a unique solution (z0, r0, h0, θ0). Here

r0 = 1, θ0 = π/2, h0 =

∫
Ω
m(x)eαm(x)dx∫
Ω
eαm(x)dx

, (4.8)

and z0 ∈ (X1)C is the unique solution of

−∇ · [eαm(x)∇z] =eαm(x)
[
m(x)− eαm(x)m

]
m− e2αm(x)m2e−iθ0 − ih0e

αm(x)m. (4.9)

Proof. From Eq. (4.6), we see that g̃2(z, r, 0) = 0 if and only if r = r0 = 1. Note that

g̃1(z, r0, h, θ, 0) =∇ · [eαm(x)∇z] + eαm(x)
[
m(x)− eαm(x)m

]
m

−e2αm(x)m2e−iθ − iheαm(x)m = 0
(4.10)
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Then g̃1(z, r0, h, θ, 0) = 0

z ∈ (X1)C, h > 0 r ≥ 0, θ ∈ [0, 2π)

is solvable if and only ifm
2
∫
Ω
e2αm(x)dx sin θ = hm

∫
Ω
eαm(x)dx

m2
∫
Ω
e2αm(x)dx cos θ = 0

(4.11)

is solvable for a pair (θ, h) with h > 0 and θ ∈ [0, 2π). Noticing that

m =

∫
Ω
m(x)eαm(x)dx∫
Ω
e2αm(x)dx

,

we have

θ = θ0 = π/2, h = h0 =

∫
Ω
m(x)eαm(x)dx∫
Ω
eαm(x)dx

. (4.12)

Consequently, g̃1(z, r0, h0, θ0, 0) = 0 has a unique solution z0, which satisfies Eq. (4.9).

Then, we also have the following result on the solvability of G̃ = 0 for λ ∈ (0, λ∗].

Theorem 4.4. There exist λ̃∗ > 0 and a continuously differentiable mapping λ 7→

(zλ, rλ, hλ, θλ) from [0, λ̃∗] to (X1)C × R3 such that G̃(zλ, rλ, rλ, θλ, λ) = 0. Moreover,

for λ ∈ [0, λ̃∗], G̃(z, r, h, θ, λ) = 0

z ∈ (X1)C, h, r ≥ 0, θ ∈ [0, 2π)

(4.13)

has a unique solution (zλ, rλ, hλ, θλ).

Proof. Let T̃ = (T̃1, T̃2) : (X1)C × R3 7→ YC × R be the Fréchet derivative of G̃ with

respect to (z, r, h, θ) at (z0, r0, h0, θ0, 0). An easy calculation yields

T̃1(χ, κ, ϵ, ϑ) =∇ · [eαm(x)∇z] + κeαm(x)
[
m(x)− eαm(x)m

]
m− κe2αm(x)m2e−iθ0

−iκh0eαm(x)m− iϵeαm(x)m+ ϑe2αm(x)m2,

T̃2(κ) =2κm2|Ω|.
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Then, we check that T̃ is a bijection from (X1)C × R3 to YC × R, and we only need

to verify that T is an injective mapping. If T̃2(κ) = 0, then κ = 0, and substituting

κ = 0 into T̃1(χ, κ, ϵ, ϑ) = 0, we obtain ϑ = ϵ = 0. Therefore, T is an an injection.

It follows from the implicit function theorem that there exist λ̃∗ > λ∗ and a contin-

uously differentiable mapping λ 7→ (zλ, rλ, hλ, θλ) from [λ∗, λ̃
∗] to XC × R3 such that

G̃(zλ, rλ, hλ, θλ, λ) = 0. By the arguments similar to Lemma 2.5, the uniqueness can

be proved, and here we omit the proof.

Summarizing the above result, we have the following result.

Theorem 4.5. For each λ ∈ (0, λ̃∗], the following equation∆(λ, iν, τ)ψ = 0

ν ≥ 0, τ ≥ 0, ψ( ̸= 0) ∈ XC

has a solution (ν, τ, ψ), if and only if

ν = νλ = λhλ, ψ = cψλ, τ = τn =
θλ + 2nπ

νλ
, n = 0, 1, 2, · · · , (4.14)

where ψλ = rλm + λzλ, c is a nonzero constant, and zλ, rλ, hλ, θλ are defined as in

Theorem 4.4.

The simplicity of iν and the transversality condition can also be derived as in

Lemma 2.7, Theorems 2.8 and 2.9, and we also omit the proof here. Therefore, for case

II, we also derive the existence of Hopf bifurcation.

Theorem 4.6. Assume that m(x) satisfies assumption (A3). Then, for λ ∈ (0, λ∗],

where 0 < λ∗ ≪ 1, there exists a sequence {τn}∞n=0 such that the positive steady state uλ

of Eq. (4.2) is locally asymptotically stable when τ ∈ [0, τ0), unstable when τ ∈ (τ0,∞),

and system (4.2) occurs Hopf bifurcation at the positive steady state uλ when τ = τn,

(n = 0, 1, 2, · · · ).

At the end of this section, some numerical simulations are given to support our the-

oretical results. We will show that large delay τ can make the spatial nonhomogeneous

positive steady state unstable and induce Hopf bifurcation for models (1.3) and (4.2),

see Fig. 1 and Fig. 2, respectively.
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Figure 1: Eq. (1.3) occurs Hopf bifurcation with the homogeneous Dirichlet boundary

condition. Here we choose m(x) = −2 sin 2x, Ω = (0, π), λ = 1 and α = 1. (Left):

τ = 0.8; (Right): τ = 1.5.

Figure 2: Eq. (4.2) occurs Hopf bifurcation with the homogeneous Neumann boundary

condition. Here we choose m(x) = − sin 2x, Ω = (0, π), λ = 4 and α = −1. (Left):

τ = 0.5; (Right): τ = 1.
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