NOTES ON COMPLETE LYAPUNOV FUNCTIONS

KING-YEUNGG LAM

ABSTRACT. In this note we presents a self-contained proof for the existence of complete Lyapunov function for semiflow admitting a Morse decomposition. The main references are C. Conley’s CBMS lecture notes and the monograph by K.P. Rybakowski.

Definition 1. Let X be a complete metric space and $\varphi : [0, \infty) \times X$ be a semiflow, i.e. (i) $(t, u) \to \varphi(t, u_0)$ is continuous; (ii) $\varphi(0, u) = u$ for all $u \in X$; (iii) $\varphi(t, \varphi(s, u)) = \varphi(t + s, u)$ for $t, s \geq 0$.

1. A function $\gamma : \mathbb{R} \to X$ is a total trajectory if $\gamma(t + t_0) = \varphi(t, \gamma(t_0))$ for all $t \geq 0$ and $t_0 \in \mathbb{R}$.

2. A subset $A \subseteq X$ is said to be invariant if for each $u \in A$, there exists a total trajectory γ such that $\gamma(0) = u$.

3. Define the omega limit set of a subset B of X by

$$\omega(B) := \cap_{t > 0} \varphi([t, \infty), B),$$

and define the omega limit set of a point $u \in X$ by $\omega(u) = \omega(\{u\})$.

4. For u lying on some total trajectory γ, we define the alpha limit set

$$\alpha(u) = \alpha(\gamma) = \cap_{t < 0} \varphi((-\infty, t]).$$

5. A invariant subset A is said to be an attractor if there exists a neighborhood U of A such that $\omega(U) = A$.

6. For an attractor A, define the repeller dual to A by

$$A^* := \{u \in X : \omega(u) \cap A = \emptyset\}.$$

And the pair (A, A^*) is called a attractor-repeller pair.

7. φ is point-dissipative on X if there exists a bounded set B_p of X such that $\omega(u) \subset B_p$ for all $u \in X$.

8. φ is eventually bounded on a set B if $\varphi([t_0, \infty), B)$ is bounded for some $t_0 > 0$.

9. φ is asymptotically compact on B for some subset $B \subset X$ if, for any $t_i \to \infty$ and $u_i \in B$, $\varphi(t_i, u_i)$ has a convergent subsequence.

10. φ is asymptotically smooth if it is asymptotically compact on every forward invariant bounded closed set. [By Remark 2.26(b) of [3], a sufficient condition is: the mapping $u \mapsto \varphi(t, u)$ is compact for each $t > 0$.]

Date: August 6, 2021.
(11) A nonempty, compact, invariant subset S is a compact attractor of neighborhood of compact sets if S is a compact subset of X and every compact set has a neighborhood U such that that $\omega(U) \subset S$.

Theorem 2 (Theorem 2.30 of [3]). Assuming in addition that φ is point-dissipative, asymptotically smooth, and eventually bounded on every compact subset B of X, then φ has a compact attractor S of neighborhood of compact sets. In particular, there exists a neighborhood U of S such that $\omega(U) = S$.

Definition 3 (Morse decomposition of the compact attractor). Given a finite ordered collection $\{M_1, ..., M_m\}$ of pairwise disjoint compact invariant subsets of S. We say that $\{M_1, ..., M_m\}$ is a Morse decomposition of the compact attractor S of X (or simply, a Morse decomposition of S) if (i) for every $u \in X$ there is an i such that $\omega(u) \subset M_i$, and (ii) if u lies on some total trajectory γ, then $\alpha(u) \subset M_j$ for some $i < j \leq m$.

Our main theorem is as follows.

Theorem 4. Given a Morse decomposition $\{M_1, ..., M_m\}$ of S. Then there exists a continuous function $V : X \to [0, \infty)$ such that

- $V^{-1}(i) = M_i$ for $1 \leq i \leq m$, and,
- For each $u \in X \setminus \bigcup_{i=1}^m M_i$, the mapping $t \mapsto V(\varphi(t, u))$ is strictly decreasing in $t \geq 0$.

Proof. See Theorem 9. \qed

Proposition 5. Given a Morse decomposition $\{M_1, ..., M_m\}$ of S. Set $A_0 = \emptyset$ and $A_k = \{u \in S : \alpha(u) \subset \bigcup_{i=1}^k M_i\}$ for $1 \leq k \leq m$.

Then $A_0 \subseteq A_1 \subseteq ... \subseteq A_m$ is a sequence of attractors in S such that $A_i \cap A_{i-1} = M_i$.

Proof. The proof is taken from Theorem 3.1.8 in [2].

Step 1: The sets A_k ($1 \leq k \leq m$) are closed.

Since by definition $A_m = S$, the set A_m is closed (in fact compact). We now proceed inductively and assume A_{k+1} to be closed for some $1 \leq k \leq m-1$. Let $u_j \in A_k$ with $u_j \to u$ for some $u \in S$. Then $u \in A_{k+1}$, since $A_k \subset A_{k+1}$ and A_{k+1} is closed.

There are total trajectories $\gamma_j : \mathbb{R} \to S$ with $\gamma_j(0) = u_j$ and $\alpha(\gamma_j) \subset M_1 \cup ... \cup M_k$.

Using the compactness of S we can pass to a subsequence and assume WLOG that $\lim_{j \to \infty} \gamma_j(t) \to \gamma(t)$ for each t, for some total trajectory σ through u. We claim that $\alpha(\gamma) \subset (M_1 \cup ... \cup M_k)$. Indeed, since $\gamma_j(\mathbb{R}) \subset A_k \subset A_{k+1}$ and A_{k+1} is closed, it follows that $\gamma(\mathbb{R}) \subset A_{k+1}$ and so $\alpha(\gamma) \subset A_{k+1}$. Observe that $M_i \cap A_{k+1} = \emptyset$ for $i > k + 1$ since M_i is invariant. On the other hand, $\alpha(\gamma) \subset M_i$ for some i by our assumptions and therefore $\alpha(\gamma) \subset M_1 \cup ... \cup M_k \cup M_{k+1}$. Consequently, either $\alpha(\gamma) \subset M_1 \cup ... \cup M_k$ in which case we are done, or else $\alpha(\gamma) \subset M_{k+1}$. In the latter case, let $V \supset M_{k+1}$ be an open neighborhood of M_{k+1} such that $\gamma \cap M_i \neq \emptyset$ for $i \neq k + 1$. There is a sequence $t_v \to \infty$ and a $z \in M_{k+1}$ such that $\gamma(-t_v) \in V$ and $\text{dist}(\gamma(-t_v), z) \leq 1/v$ for all $v \in \mathbb{N}$. Therefore, for every v there is a $j_v \geq v$ such that $\gamma_{j_v}(-t_v) \in V$ and $\text{dist}(\gamma_{j_v}(-t_v), z) \leq 2/v$. Since $(\alpha(\gamma_j) \cup \omega(\gamma_j)) \subset (M_1 \cup ... \cup M_k)$ for every j, there are $\tau_v \leq t_v \leq s_v$ such that...
\(\gamma_{j_\nu}(-s_\nu), \gamma_{j_\nu}(-\tau_\nu) \in \partial V \) and \(\gamma_{j_\nu}(-t) \in \overline{V} \) for \(t \in [\tau_\nu, s_\nu] \). The invariance of \(M_{k+1} \) now implies that \(t_\nu - \tau_\nu \to \infty \). Let \(\tilde{u}_\nu := \gamma_{j_\nu}(-s_\nu) \), then \(\tilde{u}_\nu \in S \) and since \(S \) is compact we may assume \(\tilde{u}_\nu \to \tilde{u} \in \partial V \). It then follows that \(\varphi(t, \tilde{u}) \in \overline{V} \) for all \(t \geq 0 \) and so \(\omega(\tilde{u}) \subseteq \overline{V} \) which implies by our hypotheses that \(\omega(\tilde{u}) \subseteq M_{k+1} \). Since \(\tilde{u}_\nu \in A_{k+1} \) and \(A_{k+1} \) is closed, we have \(\tilde{u} \in A_{k+1} \) and so there is a full solution \(\tilde{\gamma} : \mathbb{R} \to \overline{S} \) through \(\tilde{u} \) with \(\alpha(\tilde{\gamma}) \subseteq M_1 \cup \ldots \cup M_{k+1} \). The ordering of the sets \(M_i \) implies that \((\alpha(\tilde{\gamma}) \cup \omega(\tilde{\gamma})) \subseteq M_{k+1} \). By definition of \(\{M_i\} \) being a Morse decomposition, we deduce \(\tilde{\gamma}(\mathbb{R}) \subseteq M_{k+1} \) and so \(\tilde{u} \in M_{k+1} \). This contradicts \(\tilde{u} \in \partial V \) as \(M_{k+1} \cap \partial V = \emptyset \). Step 1 is proved.

Step 2: For \(1 \leq k \leq m \), \(A_k \) is an attractor of certain neighborhood \(U_k \) in \(X \), i.e. \(\omega(U_k) = A_k \).

The claim is automatically true for \(k = m \) since \(A_m = S \) and, by Theorem 2, \(S \) attracts certain neighborhood \(U \) such that \(\omega(U) \subseteq S \). Hence, we proceed by induction and assume \(A_{k+1} \) to be an attractor in \(X \) for some \(k \leq m - 1 \). Choose a neighborhood \(U_{k+1} \cap A_{k+1} \) of \(A_{k+1} \) such that \(\omega(U_{k+1}) = A_{k+1} \). Since \(M_{k+1}, A_k \) are closed and disjoint subsets of the compact set \(A_{k+1} \), we can choose a neighborhood \(U_k \) of \(A_k \) and a neighborhood \(V \) of \(M_{k+1} \) such that \(U_k \cap V = \emptyset \) and \(\overline{U_k} \cup \overline{V} \subset U_{k+1} \). Since \(A_k \) is invariant and contained in \(U_k \) it is clear that \(A_k \subset \omega(U_k) \). It remains to show the reverse inclusion. Suppose \(\omega(U_k) \setminus A_k \neq \emptyset \), and choose \(u \in \omega(U_k) \setminus A_k \). Then there are sequences \(u_n \in U_k \) and \(t_n \to \infty \) such that \(\varphi(t_n, u_n) \to u \). We may assume that \(\varphi(t_n + t, u_n) \to \gamma(t) \) for every \(t \in \mathbb{R} \), where \(\gamma \) is total trajectory through \(u \). By induction assumption, \(\omega(U_k) \subseteq \omega(U_{k+1}) = A_{k+1} \), which implies \(\gamma(\mathbb{R}) \subseteq A_{k+1} \), whence, by step 1, \(\alpha(\gamma) \subseteq A_{k+1} \) and so \(\alpha(\gamma) \subseteq (M_1 \cup \ldots \cup M_{k+1}) \). But \(u \notin A_k \) and so \(\alpha(\gamma) \subseteq M_{k+1} \). There is a sequence \(\rho_v \to \infty \) and \(z \in M_{k+1} \) such that \(\gamma(-\rho_v) \in V \) and \(\text{dist}(\gamma(-\rho_v), z) \leq 1/v \) for every \(v \in \mathbb{N} \). Therefore, for every \(v \) there is \(n_v \geq v \) such that \(t_{n_v} \geq \rho_v + 1 \), \(\varphi(t_{n_v} - \rho_v, u_{n_v}) \in V \) and \(\text{dist}(\varphi(t_{n_v} - \rho_v, u_{n_v}), z) \leq 2/v \). We will show that by choosing \(U_k \) small enough, we can arrange that \(\omega(U_k) = A_k \). In fact, if this is not true, then there is a sequence \(\delta_v \to 0 \) such that \(\overline{U_{\delta_v}} \cap \overline{V} = \emptyset \), \(U_{\delta_v}(A_k) \subset U_{k+1} \) and \(\omega(U_{\delta_v}(A_k)) \setminus A_k \neq \emptyset \), where \(U_{\delta_v}(A_k) \) is the \(\delta_v \)-neighborhood of \(A_k \) in \(X \). Using what we have proved thus far, it is easily seen that there are sequences \(u_v \in U_{\delta_v}(A_k), s_v \geq 1 \) such that \(\varphi(s_v, u_v) \in V \) and \(\text{dist}(\varphi(s_v, u_v), M_{k+1}) \leq 2/v \). There are sequences \(\tau_v \leq s_v \leq \tau_v \leq \infty \) such that \(\varphi(\tau_v, u_v) \in \partial V \), \(\varphi(\tau_v, \tau_v, u_v) \in \overline{V} \) and either \(\tau_v = \infty \) or \(\varphi(\tau_v, u_v) \) is \(\partial V \). Set \(\hat{u}_v = \varphi(\tau_v, u_v) \). We may assume by the compactness of \(\varphi(1, U_{k+1}) \), that \(\hat{u}_v \to \hat{u} \) and the invariance of \(A_k \) and \(u_v \to A_k \) imply \(\tau_v \to \infty \), so \(\hat{u} \in \omega(U_{k+1}) = A_{k+1} \). On the other hand, \(\varphi(s_v, u_v) \to M_{k+1} \) and the invariance of \(M_{k+1} \) implies \(\tilde{\tau}_v \to \infty \) so \(\varphi([0, \infty), \hat{u}) \in \overline{V} \). Therefore \(\omega(\hat{u}) \subset M_{k+1} \) and \(\hat{u} \in A_{k+1} \). Now this obviously implies \(\hat{u} \in M_{k+1} \), a contradiction since \(\hat{u} \in \partial V \). Hence, indeed, \(U_k \) can be chosen such that \(\omega(U_k) = A_k \), i.e. \(A_k \) is an attractor (of a neighborhood in \(X \)).

Step 3: \(M_j = (A_j \cap A_{j-1}^*) \).

We first show \(M_j \subset A_j \cap A_{j-1}^* \). Indeed, if \(u \in M_j \), then there is a solution \(\gamma : \mathbb{R} \to M_j \) through \(u \) and therefore \(u \in A_j \). Suppose \(u \notin A_{j-1}^* \). Then \(\omega(u) \subset A_{j-1}^* \).
and therefore $\omega(u) \subset M_k$ for some $k \leq j - 1$. Since $u \in M_j$, we get $\omega(u) \subset M_j$ and hence $\omega(u) \subseteq (M_k \cap M_j) = \emptyset$, which is impossible. Hence $M_j \subset (A_j \cap A_{j-1}^*)$.

Next, we show $(A_j \cap A_{j-1}^*) \subset M_j$. If $u \in A_j \cap A_{j-1}^*$, then there is a solution $\gamma : \mathbb{R} \to S$ through u such that $\alpha(\gamma) \subset (M_1 \cup \ldots \cup M_j)$. From $u \in A_{j-1}^*$ we conclude $\omega(u) \cap (M_1 \cup \ldots \cup M_{j-1}) = \emptyset$, and hence $\omega(u) \subset M_k$ for some $k \geq j$. Now the assumptions of the proposition imply $k = j$ and $\gamma(\mathbb{R}) \subset M_j$, and so $u \in M_j$, completing the proof.

\textbf{Lemma 6.} Let φ be a semiflow in a complete metric space X satisfying the assumptions of Theorem 2. Let S be the compact global attractor of neighborhoods of compact sets in X, then there is a continuous real-valued function g_0 in a neighborhood U of S such that $g_0^{-1}(0) = A$, $g_0(1) = A^*$ and g_0 is strictly decreasing on orbits that are not contained in S.

\textbf{Proof.} This proof is due to Ch. II, Result 5.1B in [1]. Define $l : X \to [0, +\infty)$ by

$$l(u) = \text{dist}(u, S).$$

Then l is continuous and $l^{-1}(0) = S$. Define $k : X \to [0, \infty)$ by $k(u) = \sup\{l(\varphi(t, u)) : t \geq 0\}$. Then $k^{-1}(0) = S$, and k is non-increasing on orbits.

Also, k is continuous as will now be shown. Note that $+\infty > k(u) \geq l(u)$. Since S is a compact attractor of neighborhoods of compact sets, and S is compact, there exists $\varepsilon_0 > 0$ such that $\omega(U_\varepsilon) \subset S$ for all $\varepsilon \in (0, \varepsilon_0)$. For each ε, we claim that there is a neighborhood U of S such that $\sup_{U_\varepsilon} k < \varepsilon$. If not, then there exists $\varepsilon > 0$ and a sequence $u_j \in X$ and $t_j > 0$ such that $u_j \to z$ for some $z \in S$ and $l(\varphi(t_j, u_j)) \geq \varepsilon$. By continuous dependence, we can assume that $t_j \to \infty$. But this contradicts that $\sup_{t \geq 0} \varphi([t, \infty), U_\varepsilon) \subset A$ for all sufficiently small ε-neighborhood U_ε of S. Therefore k is continuous at points of S. Given $u \notin S$, let U be a neighborhood of S such that $l(U) < \infty$. Since S attracts certain neighborhood of every compact subsets, we can choose a neighborhood U' of u such that $\omega(U') \subset S$. By shrinking the neighborhood further, we may assume $\sup_{U'} l < \inf_{U_\varepsilon} l$ as well. We claim that, there is some $\tilde{t} > 0$ such that $\varphi([t, \infty), U_\varepsilon') \subset U$. If not, then there exists $\varepsilon > 0$ and a sequence $u_j \in X$ and $t_j > 0$ such that $u_j \to z$ for some $z \in S$ and $\varphi(t_j, u_j) \geq \varepsilon$. By continuous dependence, we can assume that $t_j \to \infty$. But this contradicts that $\sup_{t \geq 0} \varphi([t, \infty), U_\varepsilon) \subset S$ for all sufficiently small ε-neighborhood U_ε of S. With this choice of \tilde{t}, if $u' \in U'$ then $k(u') := \sup_{\varphi([0, \tilde{t}], u')} l = \sup_{\varphi([0, \tilde{t}], u')} l$. Now k is continuous at u because $\sup_{\varphi([0, \tilde{t}], u')} l$ depends continuously on u'.

The function g_0 is defined by $g_0(0) = \int_0^{\infty} e^{-\tau} k(\varphi(\tau, u)) d\tau$. The function g_0 is well defined since the semiflow φ has precompact and thus bounded trajectories. Because k does, g_0 satisfies the conditions $g_0^{-1}(0) = S, g_0$ is continuous and g_0 is nonincreasing on orbits. If $u \notin S$ and $t > 0$, then

$$g_0(\varphi(t, u)) - g(u) = \int_0^{\infty} e^{-\tau} (k(\varphi(\tau + t, u)) - k(\varphi(\tau, u))) d\tau.$$
Lemma 7. Let \(\varphi \) be a semiflow in a complete metric space \(X \) such that \(\varphi(t, \cdot) \) is compact for each \(t > 0 \). Let \(S \) be the compact global attractor of bounded sets in \(X \), and let \(A, A^* \subset S \). If \((A, A^*)\) is an attractor-repeller pair, then there is a continuous real-valued function \(g \) in a neighborhood \(U \) of \(S \) such that \(g^{-1}(0) = A \), \(g^{-1}(1) = A^* \) and \(g \) is strictly decreasing on orbits that are not contained in \(A, A^* \).

Proof. Define \(l : X \to [0, +\infty) \) by

\[
 l(u) = \frac{\text{dist}(u, A)}{\text{dist}(u, A) + \text{dist}(u, A^*)}
\]

Then \(l \) is continuous, \(l^{-1}(0) = A \) and \(l^{-1}(1) = A^* \). Define \(k : S \to [0, +\infty) \) by

\[
 k(u) = \sup\{l(\varphi(t, u)) : t \geq 0\}. \quad \text{Then} \quad k^{-1}(0) = A, k^{-1}(1) \cap S = A^*,
\]

and \(k \) is non-increasing on orbits.

Also, \(k \) is continuous as will now be shown. Since \(1 \geq k(u) \geq l(u) \) for all \(u \), and \(l \) is continuous, we deduce that \(k \) is continuous in \(k^{-1}(1) \). For each \(\varepsilon \) sufficiently small, the neighborhood \(U = U_\varepsilon(A) \) satisfies \(\omega(U) = A \). For each \(\varepsilon \), we claim that there is a neighborhood \(U \) of \(A \) such that \(\sup_U k < \varepsilon \). If not, then there exists \(\varepsilon > 0 \) and a sequence \(u_j \in X \) and \(t_j > 0 \) such that \(u_j \to z \) for some \(z \in A \) and \(l(\varphi(t_j, u_j)) \geq \varepsilon \). By continuous dependence, we can assume that \(t_j \to \infty \). But this contradicts that \(\cap_{t \geq 0} \varphi([t, \infty), U_\varepsilon) \subset A \) for all sufficiently small \(\varepsilon \)-neighborhood \(U_\varepsilon \) of \(A \). Therefore \(k \) is continuous at points of \(A \). Given \(u \in k^{-1}((0, 1)) \), then \(\omega(u) \subset A \). Let \(U \) be a neighborhood of \(A \) such that \(\sup_U l < l(u) \). Choose a bounded neighborhood \(U' = U'_\delta(u) \) of \(u \), then there exists \(\delta > 0 \) such that \(\varphi(\delta, U') \subset U \), and hence \(\omega(U') \subset A \) (here we use the fact that \(U' \) is bounded so that \(\varphi(t, U') \) is compact for any \(t > 0 \). Therefore, \(U' \) is disjoint from \(k^{-1}(1) \). With this choice of \(\delta \), if \(u' \in U' \) then \(k(u') := \sup_{\varphi([0, \infty), u')} l = \sup_{\varphi([0, \delta], u')} l \). Now \(k \) is continuous at \(u \) because \(\sup_{\varphi([0, \delta], u')} l \) depends continuously on \(u' \).

Define the function \(g_1 \) by \(g_1(u) = \int_0^\infty e^{-t} k(\varphi(t, u)) \, d\tau \). Because \(k \) does, \(g_1 \) satisfies the conditions \(g_1^{-1}(0) = A \), \(g_1 \) is continuous and \(g_1 \) is non-increasing on orbits. Now,

\[
 g_1(\varphi(t, u)) - g_1(u) = \int_0^\infty e^{-\tau} (k(\varphi(\tau + t, u)) - k(\varphi(\tau, u))) \, d\tau \quad \text{for} \quad t > 0. \quad (1)
\]

If \(u \in S \setminus (A \cup A^*) \), then \(0 < k(\varphi(t, u)) < 1 \) for \(t \geq 0 \) and \(\lim_{t \to \infty} k(\varphi(t, u)) = 0 \), so that the last integral of \((1) \) is strictly negative, so that \(t \mapsto g_1(\varphi(t, u)) \) is strictly decreasing for \(t \geq 0 \).

Finally, let \(g : X \to [0, +\infty) \) be defined by \(g = g_0 + g_1 \), then \(g^{-1}(0) = A \), \(g^{-1}(1) = A^* \). \(g \) is continuous in \(X \), and \(g \) is non-increasing on orbits. In fact, since \(g_0 \) is strictly decreasing for orbits initiating from \(u \in X \setminus S \), and \(g_1 \) is strictly decreasing for orbits initiating from \(u \in S \setminus (A \cup A^*) \), we conclude that \(g \) is strictly decreasing in orbits initiating from \(X \setminus (A \cup A^*) \). This concludes the proof. \(\square \)

Proof of Theorem 4. By Proposition 5, there exists \(m \) attractor-repeller pairs \((A_j, A^*_j)\) \((1 \leq j \leq m)\) such that \(M_j = A_j \cap A^*_{j-1} \) for \(1 \leq j \leq m \) (here \(A_0 = \emptyset \)). For each
1 ≤ j ≤ m, let \(g_j \) be the Lyapunov function corresponding to the attractor-repeller pair \((A_j, A_j^*)\), as guaranteed by Lemma 7. Then \(V(u) : \sum_{j=1}^{m} g_j(u) \) satisfies all the desired properties. \(\square \)

Lemma 8 (Ch. II, Result 6.4A of [1]). If \(S \) is compact there are at most countably many attractor-repeller pairs in \(S \).

Proof. Since \(S \) is compact, the family of compact subsets of \(S \) with the Hausdorff metric is also a compact metric space. An attractor-repeller pair can be considered a point in the product of this subset space with itself.

Let \((A, A^*)\) be such a pair and let \(U \) and \(U^* \) be disjoint open (in \(S \)) sets about \(A \) and \(A^* \) respectively. Then \((A, A^*)\) is the unique attractor-repeller pair with \(A \subset U \) and \(A^* \subset U^* \).

Now \((U, U^*)\) determines an open set in the product of the subset space with itself which contains only one attractor-repeller pair. Thus the set of attractor-repeller pairs is at most countable. \(\square \)

Recall that a subset \(A \) of \(S \) is said to be **internally chain transitive** with respect to the semiflow \(\varphi \) if, for two points \(u_0, v_0 \in A \), and any \(\delta > 0, T > 0 \), there is a finite sequence

\[
C_{\delta, T} = \{u^{(1)} = u_0, u^{(2)}, \ldots, u^{(m)} = v_0; t_1, \ldots, t_{m-1}\}
\]

with \(u^{(j)} \in A \) and \(t_j \geq T \), such that \(\|\varphi(t_j, u^{(j)}) - u^{(j+1)}\| < \delta \) for all \(1 \leq i \leq m - 1 \).

The sequence \(C_{\delta, T} \) is called a \((\delta, T)\)-chain connecting \(u_0 \) and \(v_0 \). Define the **chain recurrent set** \(R(S) \) to be the set of all \(u_0 \in S \) such that for any \(T \gg 1 \), and \(\delta \ll 1 \), there exists a \((\delta, T)\)-chain connecting \(u_0 \) to itself.

Theorem 9 (Ch. II, Result 6.4B of [1]). There exists a continuous function \(G : X \to [0, \infty) \) which is constant on each connected component of the chain recurrent set, and strictly decreasing on orbits outside the chain recurrent set.

Proof. Let \(\{(A_i, A_i^*)\}_i \) be an enumeration of the attractor-repeller pairs, and let \(g_i \) be given by Lemma 7. Define \(G(u) = \sum_{i=1}^{m} 3^{-i} g_i(u) \). \(\square \)

Remark 10. Define a critical value of \(G \) to be one achieved on the chain recurrent set. Since each \(g_i |_{S} \) is either zero or one at a point of the chain recurrent set, each critical value of \(G \) lies in the "middle third" Cantor set, and in particular the critical values are nowhere dense. Furthermore, each critical value of \(G \) determines a unique component of the chain recurrent set: because \(u \) and \(u' \) lie in the same component of \(R(S) \) if and only if \(u \) is chained to \(u' \) and vice versa, and this is true if and only if \(u \) and \(u' \) are in \(R(S) \) and each attractor containing \(u \) also contains \(u' \).

References
