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UNIQUENESS AND COMPLETE DYNAMICS IN
HETEROGENEOUS COMPETITION-DIFFUSION SYSTEMS∗

KING-YEUNG LAM† AND WEI-MING NI‡

Abstract. In this paper we study the interactions between diffusion and heterogeneity of the
environment in the classical diffusive Lotka–Volterra competition systems. In the weak competition
case, we establish the uniqueness, hence the global asymptotic stability, of coexistence steady states
under various circumstances, and thereby we obtain a complete understanding of the change in
dynamics when one of the interspecific competition coefficients is small.
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1. Introduction. Spatial characteristics of the environment play an important
role in ecology and evolution. Using a competition-diffusion model, we shall illustrate
the significant changes in dynamics caused by the introduction of spatial heterogene-
ity. More precisely, we study in this paper the following two-species Lotka–Volterra
competition-diffusion model:

(1)






Ut = d1∆U + U(m(x)− U − cV ) in Ω×R+,
Vt = d2∆V + V (m(x) − bU − V ) in Ω×R+,
∂νU = ∂νV = 0 on ∂Ω×R+,
U(x, 0) = U0(x), V (x, 0) = V0(x) in Ω,

where U(x, t) and V (x, t) represent the population densities of two competing species
and are therefore assumed to be nonnegative, with corresponding migration rates d1
and d2. For simplicity we assume that both U0 and V0 are nonnegative and not iden-
tically zero. The function m(x) represents their common (spatially inhomogeneous)
intrinsic growth rate or carrying capacity, and b and c are interspecific competition
coefficients. The habitat Ω is a bounded region in RN with smooth boundary ∂Ω.
The zero Neumann (no-flux) boundary condition means that no individual crosses
the boundary of the habitat; ∂ν = ν · ∇, where ν denotes the outward unit normal
vector on ∂Ω. We shall assume that d1, d2 are positive constants; b, c are nonnegative
constants; and the carrying capacity satisfies

(M) m(x) ∈ C(Ω̄) is nonconstant and m(x) > 0 on Ω̄.
The model (1) has attracted considerable interest in the past two decades; see

[CC, DHMP, HLBV, HLM1, HLM2, LWW, Lo, L1, L2, SK] and references therein.
Let θd be the unique positive solution of

(2)

{
d∆θ + [m(x)− θ]θ = 0 in Ω,
∂νθ = 0 on ∂Ω.
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(See, e.g., [CC] for the proof of existence and uniqueness results for (2).) System (1)
has a trivial steady state (0, 0) and two semitrivial steady states (θd1 , 0) and (0, θd2).
If a steady state (U, V ) satisfying U ≥ 0 and V ≥ 0 is neither a trivial nor a semitrivial
steady state, then by the maximum principle we must have U > 0 and V > 0 in Ω̄.
In this case, we call (U, V ) a coexistence steady state.

As (1) generates a monotone dynamical system [He, Hi, HiS] which preserves the
order

(U1, V1) & (U2, V2) if U1 ≤ U2 and V1 ≥ V2 in Ω,

it is well known that, to a large extent, the dynamics of (1) is determined by its steady
states and their stability properties.

To motivate our discussion, we first consider the special case b = c = 1 with
homogeneous intrinsic growth rate m(x) ≡ m̄. In this case, it is easy to see that, for
any d1, d2 > 0, (1) has a compact global attractor consisting of a continuum of steady
states {((1− t)m̄, tm̄) : t ∈ [0, 1]} connecting the two semitrivial steady states.

If we incorporate spatial inhomogeneity into the model, then the difference in
diffusion rates takes effect, as the following well-known result in [DHMP] illustrates.
Note that the positivity assumption on m(x) can be relaxed here.

Theorem 1.1 (see [DHMP]). Suppose that m(x) is nonconstant,
∫
Ω m ≥ 0, and

b = c = 1. Then the semitrivial steady state (θd1 , 0) of (1) is globally asymptotically
stable when d1 < d2; i.e., every solution (U, V ) of (1) converges to (θd1 , 0) as t → ∞,
regardless of initial conditions.

This suggests that, in a spatially heterogeneous but temporally constant environ-
ment, a slower diffuser is competitively superior to its faster-moving counterpart.

To understand this phenomenon from a different angle, we turn to the weak
competition case (0 < b, c < 1). This approach first started with [L1], where among
other things the local stability of the semitrivial steady state (θd1 , 0) is completely
determined. To describe the result more precisely, we define as in [L1]

(3)
Σb = {(d1, d2) ∈ R+ ×R+ : (θd1 , 0) is linearly stable},
Σ̄b = {(d1, d2) ∈ R+ ×R+ : (θd1 , 0) is linearly neutrally stable},

where R+ = (0,∞).
Remark 1.2. (i) We will state the precise definition of linear stability and linear

neutral stability and prove that Σ̄b is in fact the closure of Σb in R+ ×R+. (See (14)
and (15) below.)

(ii) It can be proved [L1] that the linear stability of (θd1 , 0) does not depend on
c (see Proposition 2.8 below), and hence Σb is well defined.

Theorem 1.3 (see [L1]). Let b∗ := infd>0

∫
Ωm/

∫
Ω θd; then the following hold:

(i) if b ∈ (0, b∗], then (θd1 , 0) is unstable for all d1, d2 > 0 (i.e., Σb = ∅);
(ii) if b ∈ (b∗, 1), then (θd1 , 0) is linearly stable if (d1, d2) ∈ Σb and unstable if

(d1, d2) ,∈ Σ̄b.
An outstanding problem regarding the dynamics of (1) is the following.
Conjecture 1.4. For all b ∈ (b∗, 1) and all c ∈ [0, 1],
(i) (θd1 , 0) is globally asymptotically stable if (d1, d2) ∈ Σb;
(ii) there exists a coexistence steady state which is globally asymptotically stable

if (d1, d2) ,∈ Σ̄b and d1 ≤ d2.
Our first main result establishes this conjecture when c is small.
Theorem 1.5. There exists c̄ > 0 such that for all c ∈ (0, c̄) and for all b ∈ [0, 1],
(i) (θd1 , 0) is globally asymptotically stable for all (d1, d2) in Σ̄b, and
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(ii) for any d1 ≤ d2 such that (d1, d2) ,∈ Σ̄b, (1) has a unique coexistence steady
state which is globally asymptotically stable.

Remark 1.6. For c sufficiently small, the first part of Conjecture 1.4 is proved
in [L1, Theorem 1.9], with the smallness of c depending on b ∈ (b∗, 1). Here c̄ is
independent of b ∈ [0, 1].

Since the structure of Σb can be quite nontrivial (e.g., it may have multiple
connected components [LiL]), Theorem 1.5 suggests that the conclusions do not rely
on the specific structure of Σb.

Concerning the second part of Conjecture 1.4, the following was shown previously
in the case where the diffusion rates are both very small or both very large.

Theorem 1.7 (see [HLM2]). Given b, c ∈ (0, 1), for all d1, d2 sufficiently small,
(1) has a unique coexistence steady state which is globally asymptotically stable.

Theorem 1.8 (see [L3]). Given b, c ∈ (0, 1), for all d1, d2 sufficiently large, (1)
has a unique coexistence steady state which is globally asymptotically stable.

Our next result says that there exists a strip in the d1-d2 plane which connects
the two above-mentioned regions. This gives a clearer picture of the dynamics of (1).

Theorem 1.9. For any b, c ∈ (0, 1), there exists δ1 > 0 such that whenever
|d1 − d2| < δ1, (1) has a unique coexistence steady state (U∗, V ∗) which is globally
asymptotically stable. Moreover, (U∗(x), V ∗(x)) → ( 1−c

1−bcθd(x),
1−b
1−bcθd(x)) uniformly

in Ω̄ as d1, d2 → d > 0.
Finally, we consider the case when b ↗ 1. We have the following description of

Σb as b ↗ 1.
Proposition 1.10. For all b ∈ (0, 1), Σb is increasing in b and Σb ⊂ Σ̄b ⊂

{(d1, d2) ∈ R+ ×R+ : d1 < d2}. Moreover, for any ε > 0,

{(d1, d2) : d1 ∈ [ε, 1/ε] and d2 ≥ d1 + ε} ⊂ Σb

for all b sufficiently close to 1. In particular, Σb ↗ {(d1, d2) ∈ R+ ×R+ : d1 < d2}
as b tends to 1.

Remark 1.11. In fact, it is also proved in [L1] that for each b ∈ (0, 1), if d1 is
sufficiently small, then (θd1 , 0) becomes unstable and (1) has at least one coexistence
steady state which is locally asymptotically stable. (See Claim 2.13 below.) Therefore,
in general Σb is bounded away from the d2-axis {(d1, d2) : d1 = 0}.

Define

Γb,c = {(d1, d2) ∈ R+ ×R+ : (θd1 , 0) is globally asymptotically stable}.

It is obvious that Γb,c ⊂ Σ̄b for any b, c > 0. By Theorem 1.5 (or Theorem 1.9 in
[L1]), when c is small, Γb,c = Σ̄b. The following theorem shows that for all c ∈ (0, 1),

Γb,c ↗ {(d1, d2) ∈ R+ ×R+ : d1 < d2} when b ↗ 1.

Theorem 1.12. For any ε > 0, there exists δ2 > 0 such that for all d1 ∈ [ε, 1/ε],
d2 ∈ [d1+ε,∞), b ∈ (1−δ2, 1], and all c ∈ [0, 1+δ2), (θd1 , 0) is globally asymptotically
stable.

Remark 1.13. A version of this result for fixed d1 < d2 was mentioned in passing
in [HLM1]. Also, it would be interesting to inquire whether (i) Γb,c is nonempty for
all b ∈ (b∗, 1) and c ∈ (0, 1); (ii) there exists some b, c in (0, 1) such that Γb,c is a
proper subset of Σ̄b. The latter is equivalent to the existence of multiple coexistence
steady states for (1).
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By Theorem 1.12, there exists some b < c so that for some d1 < d2, (θd1 , 0) is
globally asymptotically stable. In other words, with a suitably smaller diffusion rate,
a species with weaker competition abilities may still dominate.

Finally, let us fix d2 > 0 and b = c ∈ (b∗, 1) close to 1 and observe the change in
dynamics when we decrease d1 from d2 to 0. (See Figure 1.) Initially, when d1 ∼ d2,
i.e., when the diffusion rates are similar, coexistence is guaranteed (for any initial
values) by Theorem 1.9. If we decrease d1, then we enter the shaded region, where for
some intermediate range of 0 < d1 < d2, U dominates V (Theorem 1.12). However,
if we further decrease d1, then we have coexistence again (Remark 1.11). Although
the two species can still be regarded as equal in competition abilities (as b = c), the
slower diffuser U is no longer being favored. This is in stark contrast to the case
b = c = 1 (see [DHMP]), when the slower diffuser always prevails. This suggests
that in the context of weak competition, a diffusion rate that is too slow might not
be advantageous to a species. It also suggests that in this context a better strategy
for winning against a certain species is to adopt a slower, yet somewhat comparable
diffusion rate.

Fig. 1. Intermediate slower diffuser wins.

The rest of this paper is organized as follows. In section 2 we will give a charac-
terization of Σb and Σ̄b, and prove Proposition 1.10. Then we will prove Theorem 1.9
in section 3. Finally, section 4 is devoted to the proofs of Theorems 1.12 and 1.5.

2. Preliminaries. We now define the notion of linear stability of a given steady
state (U, V ). Linearizing the steady state problem of (1) at (U, V ), we have

(4)






d1∆Φ+ (m− 2U − cV )Φ− cUΨ+ λΦ = 0 in Ω,
d2∆Ψ + (m− bU − 2V )Ψ− bVΦ+ λΨ = 0 in Ω,
∂νΦ = ∂νΨ = 0 on ∂Ω.

If (U, V ) is a coexistence steady state, then according to the Krein–Rutman theorem
[KR, Sm], (4) has a principal eigenvalue λ1 ∈ R; i.e., λ1 is simple and has the least
real part among all eigenvalues. Moreover, we may choose the corresponding eigen-
function (Φ1,Ψ1) to satisfy Φ1 > 0 > Ψ1 in Ω̄. If (U, V ) is a trivial or semitrivial
steady state, then the sign of the principal eigenvalue can be determined according
to Corollary 2.10 below. In the following, we call a steady state (U, V ) of (1) linearly
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stable (resp., linearly unstable) if the principal eigenvalue λ1 of (4) is positive (resp.,
negative). And we call a steady state linearly neutrally stable if λ1 is nonnegative.
It is well known that if a steady state of (1) is linearly stable (resp., linearly unsta-
ble), then it is asymptotically stable (resp., unstable). (See, e.g., Theorem 7.6.2 in
[Sm], or Proposition 2.15 below. Here the notions of stability and asymptotic stability
are defined in the standard dynamical systems sense with the C(Ω̄) × C(Ω̄) topol-
ogy.) However, linearly neutral stability is in general not enough to imply asymptotic
stability, or even stability.

Next, we collect some facts concerning the elliptic eigenvalue problem with an
indefinite weight.

Definition 2.1. Given a positive constant d and a function h ∈ L∞(Ω), we
define µk(d, h) to be the kth eigenvalue (counting multiplicities) of

(5)

{
d∆ψ + hψ + µψ = 0 in Ω,
∂νψ = 0 on ∂Ω.

In particular, we call µ1(d, h) the first eigenvalue of (5).
The following eigenvalue comparison result is standard. (See, e.g., p. 95 in [CC]

or p. 69 in [N].)
Proposition 2.2. If h1(x) ≤ h2(x) in Ω, then µ1(d, h1) ≥ µ1(d, h2) with equality

holds if and only if h1 = h2 a.e. in Ω. Assume in addition that h is nonconstant; then
µ1(d1, h) < µ1(d2, h) if d1 < d2.

We also collect some useful facts.
Lemma 2.3.
(a) µ1(d, h) depends smoothly on d > 0 and continuously on h ∈ L∞(Ω).
(b) d 0→ θd is continuous from R+ to W 2,p(Ω) ∩ C1,γ(Ω̄).
(c) µ1(d2,m− bθd1) depends continuously on d1, d2.
Proof. Part (a) is classical. (See, e.g., p. 418 in [CoH] and p. 93 in [CC].) Part (b)

can be proved by an application of the implicit function theorem. (See Proposition
3.6 in [CC] and remarks there.) Part (c) follows readily from (a) and (b).

Proposition 2.4. Let θd be the positive solution to (2); then ‖θd‖L∞(Ω) <
‖m‖L∞(Ω). Moreover, if (U, V ) is any coexistence steady state of (1), then ‖U‖L∞(Ω) <
‖m‖L∞(Ω) and ‖V ‖L∞(Ω) < ‖m‖L∞(Ω).

Proof. Let w := θd − ‖m‖L∞(Ω). Then w satisfies

d∆w + w(m− θd − ‖m‖L∞(Ω)) ≥ 0 in Ω and ∂νw = 0 on ∂Ω.

Notice that m− θd − ‖m‖L∞(Ω) < 0, so the strong maximum principle (Theorem 9.6
of [GT]) applies. Since w is nonconstant, we see that w cannot attain a nonnegative
maximum in Ω. It also cannot attain a nonnegative maximum on ∂Ω, by the Hopf
boundary point lemma. Hence θd − ‖m‖L∞(Ω) = w < 0 in Ω̄. Similar arguments
yield ‖U‖L∞(Ω) < ‖m‖L∞(Ω) and ‖V ‖L∞(Ω) < ‖m‖L∞(Ω) for any steady state (U, V )
of (1).

For d > 0 and h ∈ L∞(Ω) with h > 0 in a set of positive measure in Ω, define
ϑ(d, h) to be the unique positive solution (if it exists) of

(6) d∆ϑ+ ϑ(h− ϑ) = 0 in Ω and ∂νϑ = 0 on ∂Ω.

It is well known that

(7) ϑ(d, h) > 0 exists if and only if µ1(d, h) < 0.
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(See, e.g., Proposition 3.2 in [CC] or section 4.1 in [N].) We have the following useful
result.

Proposition 2.5. Let {hk} be a sequence of functions in C(Ω̄), and {dk} be a
sequence of positive constants such that µ1(dk, hk) < 0 for all k (i.e., ϑk := ϑ(dk, hk) >
0 exists) and limk→∞ hk = h∞ in C(Ω̄). Then

(a) if dk → 0, then ϑk → max{h∞, 0} in L∞(Ω);
(b) if dk → ∞, then ϑk → 1

|Ω|
∫
Ω h∞ and ϑ̃k := ϑk/‖ϑk‖L∞(Ω) → 1 in L∞(Ω);

(c) if dk → d∞ ∈ R+, then µ1(d∞, h∞) ≤ 0. Moreover,
(i) if µ1(d∞, h∞) = 0, then ϑk → 0 and ϑk/‖ϑk‖L∞(Ω) → ψ1 in L∞(Ω),

where ψ1 is the first eigenfunction corresponding to µ1(d∞, h∞), nor-
malized by ψ1 > 0 and ‖ψ1‖L∞(Ω) = 1;

(ii) if µ1(d∞, h∞) < 0, then ϑk → ϑ(d∞, h∞). In particular, since µ1(d,m) <
0 for all d > 0, ϑk → θd in L∞(Ω) whenever dk → d and hk → m in
L∞(Ω).

Remark 2.6. In (b), if we merely assume ‖hk‖L∞(Ω) to be bounded uniformly, then
we can still obtain ϑk/‖ϑk‖L∞(Ω) → 1 in L∞(Ω) and, by passing to a subsequence,
ϑk → c for some nonnegative constant c.

Proof. First, we prove (a). If h∞ ≤ 0, then for any ε > 0, hk ≤ ε in Ω for all k
large. Hence as in the proof of Proposition 2.4, we deduce by the strong maximum
principle that ϑk(x) < ‖hk‖L∞(Ω) ≤ ε in Ω̄ for k sufficiently large; i.e., ϑk → 0 in
L∞(Ω).

If h∞ > 0 on a set of positive measure, then so is h∞ − ε for some ε > 0. It
is standard (see, e.g., p. 184 in [CC]) that ϑ(dk, h∞ ± ε) exist for k large. And by
Lemma A.1 of [HLM2],

lim
k→∞

ϑ(dk, h∞ ± ε) = max{h∞ ± ε, 0} in L∞(Ω).

By comparison,

ϑ(dk, h∞ − ε) ≤ ϑk ≤ ϑ(dk, h∞ + ε) in Ω

for all k large. Hence, by letting k → ∞,

max{h∞ − ε, 0} ≤ lim inf
k→∞

ϑk ≤ lim sup
k→∞

ϑk ≤ max{h∞ + ε, 0} in Ω.

Letting ε→ 0, we have proved (a).
Now we prove (b). By Proposition 2.4, ‖ϑk‖L∞(Ω) < ‖hk‖L∞(Ω) is bounded uni-

formly in k. Therefore by Lp estimates, ‖ϑk‖W 2,p(Ω) is bounded uniformly. Dividing

(8) dk∆ϑk + ϑk(hk − ϑk) = 0 in Ω and ∂νϑk = 0 on ∂Ω,

by dk, from elliptic regularity estimates, we deduce that a subsequence, still denoted
by ϑk, converges to ϑ̄ weakly in W 2,p(Ω) and strongly in C1,γ(Ω) for some non-
negative constant ϑ̄ ≥ 0. Moreover, if we divide (8) by dk‖ϑk‖L∞(Ω), then ϑ̃k :=

ϑk/‖ϑk‖L∞(Ω) → 1 weakly in W 2,p(Ω) and strongly in C1,γ(Ω̄) as ‖ϑ̃k‖L∞(Ω) = 1.
Next, dividing (8) by ‖ϑk‖L∞(Ω), integrating over Ω, and passing to the limit,

we have
∫
Ω ϑk →

∫
Ω h∞. Hence ϑk → 1

|Ω|
∫
Ω h∞ weakly in W 2,p(Ω) and strongly in

C1,γ(Ω̄). Since the limit is independent of subsequences, this proves (b).
Finally, we prove (c). By Lemma 2.3, µ1(d∞, h∞) ≤ 0. As in (b), ‖ϑk‖W 2,p(Ω) is

bounded uniformly in k. So we deduce again, up to a subsequence, that ϑk → ϑ∞ ≥ 0,



UNIQUENESS IN HETEROGENEOUS SYSTEMS 1701

which must satisfy

(9) d∞∆ϑ∞ + ϑ∞(h∞ − ϑ∞) = 0 in Ω and ∂νϑ∞ = 0 on ∂Ω.

Assume µ1(d∞, h∞) = 0; then multiplying (9) by the first eigenfunction ψ′
1 corre-

sponding to µ1(d∞, h∞), and integrating by parts, we have
∫
Ω ψ

′
1ϑ

2
∞ = 0, which

implies ϑk → 0 weakly in W 2,p(Ω) and strongly in C1,γ(Ω̄).
Now dividing (8) by ‖ϑk‖L∞(Ω), we see that ϑ̃k = ϑk/‖ϑk‖L∞(Ω) → ϑ̃∞ weakly

in W 2,p(Ω) and strongly in C1,γ(Ω̄), up to a subsequence. ϑ̃∞ ≥ 0 is nontrivial since
‖ϑ̃∞‖L∞(Ω) = 1 for all k, and ϑ̃∞ satisfies

d∞∆ϑ̃∞ + h∞ϑ̃∞ = 0 in Ω and ∂νϑ∞ = 0 on ∂Ω.

So ϑ̃∞ must coincide with a multiple of the eigenfunction corresponding to the eigen-
value µ1(d∞, h∞) = 0.

On the other hand, if µ1(d∞, h∞) < 0, by Lemma 2.3, there exists ε0 > 0 such
that µ1(dk, h∞ − ε0) < 0 for all k large. Hence the equation

dk∆ϑ+ ϑ(h∞ − ε0 − ϑ) = 0 in Ω and ∂νϑ = 0 on ∂Ω,

has a unique positive solution ϑk for all k large, or θ∞ for k = ∞. By comparison,

ϑk ≥ ϑk ≥ 1

2
ϑ∞ > 0 in Ω̄,

where the second inequality follows from Lemma 2.3(b) (by taking h = h∞ − ε0).
Therefore, ϑk ,→ 0 and must converge to the unique positive solution ϑ(d∞, h∞) of
the limiting equation (9).

To study the linear stability of a steady state (U, V ) of (1), it suffices to look at
(4). We first note that λ is bounded from below independent of d1, d2, b, c.

Lemma 2.7. There exists C1 > 0 such that for any d1, d2 > 0 and b, c ∈ [0, 1],
and any steady state (U, V ) of (1), the principal eigenvalue λ1 given by (4) satisfies
λ1 ≥ −C1.

Proof. Multiplying the first equation of (4) by Φ, and the second equation of (4)
by Ψ, integrating by parts, and adding the results, we have

λ1

∫

Ω
(|Φ|2 + |Ψ|2)

≥
∫

Ω
−(m− 2U − cV )Φ2 +

∫

Ω
(cU + bV )ΦΨ −

∫

Ω
(m− bU − 2V )Ψ2

≥ −C1

∫

Ω
(|Φ|2 + |Ψ|2)

by Young’s inequality and Proposition 2.4.
We turn to Σb and Σ̄b. Recall that

Σb = {(d1, d2) ∈ R+ ×R+ : (θd1 , 0) is linearly stable}

and

Σ̄b = {(d1, d2) ∈ R+ ×R+ : (θd1 , 0) is linearly neutrally stable}.
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Proposition 2.8.

Σb = {(d1, d2) ∈ R+ ×R+ : µ1(d2,m− bθd1) > 0}

and

Σ̄b = {(d1, d2) ∈ R+ ×R+ : µ1(d2,m− bθd1) ≥ 0}.

From the definition of linear stability, it suffices to consider (4) with (U, V ) =
(θd1 , 0):

(10)






d1∆Φ+ (m− 2θd1)Φ+ λΦ = cθd1Ψ in Ω,
d2∆Ψ+ (m− bθd1)Ψ + λΨ = 0 in Ω,
∂νΦ = ∂νΨ = 0 on ∂Ω.

First, by Proposition 2.2,

(11) µ1(d1,m− 2θd1) > µ1(d1,m− θd1) = 0 for any d1 > 0.

Now, Proposition 2.8 follows from (11) and the next result.
Lemma 2.9. Every eigenvalue of (10) is real, and

minS = min{µ1(d1,m− 2θd1), µ1(d2,m− bθd1)},

where S denotes the set of all eigenvalues of (10).
In particular, we see that the principal eigenvalue of (10) exists and has the same

sign as the first eigenvalue µ1(d2,m− bθd1).
Proof of Lemma 2.9. Let λ be an eigenvalue of (10) with eigenfunction (Φ,Ψ). If

Ψ ,≡ 0, then λ, belonging to the spectrum of the self-adjoint operator d2∆+(m−bθd1)
(with zero Neumann boundary condition), must be real and satisfy λ ≥ µ1(d2,m −
bθd1). Alternatively, if Ψ ≡ 0, then Φ ,≡ 0, and λ belongs to the spectrum of d1∆ +
(m − 2θd1) (with zero Neumann boundary condition), which must again be real and
satisfy λ ≥ µ1(d1,m− 2θd1). This shows λ ≥ min{µ1(d1,m− 2θd1), µ1(d2,m− bθd1)}
for any λ ∈ S.

To show that the minimum is assumed, suppose first that µ1(d1,m − 2θd1) ≤
µ1(d2,m− bθd1). Let ψ1 be the first eigenfunction corresponding to µ1(d1,m− 2θd1);
then µ1(d1,m − 2θd1) is an eigenvalue of (10) with eigenfunction (ψ1, 0). Finally
assume µ1(d1,m − 2θd1) > µ1(d2,m − bθd1), and let ψ2 be the first eigenfunction
corresponding to µ1(d2,m− bθd1); then µ1(d2,m− bθd1) is an eigenvalue of (10) with
eigenfunction

(Φ,Ψ) = ([d1∆+ (m− 2θd1 + µ1(d2,m− bθd1))]
−1[cθd1ψ2],ψ2).

Here the operator L = d1∆ + (m − 2θd1 + µ1(d2,m − bθd1)), with zero Neumann
boundary condition, is invertible, since by definition

µ1(d1,m− 2θd1 + µ1(d2,m− bθd1)) = µ1(d1,m− 2θd1)− µ1(d2,m− bθd1) > 0.

Hence every eigenvalue of L is positive. In particular, zero is not an eigenvalue.
By completely analogous arguments, we obtain the following result.
Corollary 2.10. The linear stability of (θd1 , 0), (0, θd2), and (0, 0) is determined

by µ1(d2,m− bθd1), µ1(d1,m− cθd2), and min{µ1(d1,m), µ1(d2,m)}, respectively.
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Remark 2.11. It follows immediately from the variational characterization of the
first eigenvalue that (0, 0) is always linearly unstable for any d1, d2, b, c > 0.

Next, we prove Proposition 1.10.
Proof of Proposition 1.10. If d1 ≥ d2, then by Proposition 2.2 and the definition

of θd1 ,

µ1(d2,m− bθd1) ≤ µ1(d1,m− bθd1) < µ1(d1,m− θd1) = 0;

i.e., (d1, d2) ,∈ Σ̄b for any b ∈ (0, 1), by Proposition 2.8. Therefore,

Σb ⊂ Σ̄b ⊂ {(d1, d2) ∈ R+ ×R+ : d1 < d2},

by Lemma 2.3.
Next, we claim that Σb ⊂ Σb′ if b < b′. This again follows from Propositions 2.2

and 2.8. Namely, for every (d1, d2) ∈ Σb, we have

µ1(d2,m− b′θd1) > µ1(d2,m− bθd1) > 0.

Lastly, given any ε > 0, let Iε := {(d1, d2) : d1 ∈ [ε, 1/ε] and d2 ≥ d1 + ε}. It
suffices to show that (by Proposition 2.8) for all b sufficiently close to 1, Iε ∈ Σb; i.e.,

(12) µ1(d2,m− bθd1) > 0 for all (d1, d2) ∈ Iε.

For each b ∈ [0, 1], define gb : [ε, 1/ε] → R by gb(d1) := µ1(d1+ ε,m− bθd1). Then
(a) for each b ∈ [0, 1], gb is continuous in [ε, 1/ε];
(b) as b ↗ 1, {gb} converges pointwise to g1 (by Lemma 2.3);
(c) gb(x) ≥ gb′(x) in [ε, 1/ε] if b ≥ b′.

It is standard (e.g., see Theorem 7.13 in [R]) that gb → g1 uniformly on [ε, 1/ε] as
b → 1. Since g1(d1) = µ1(d1 + ε,m − θd1) > µ1(d1,m − θd1) = 0 in [ε, 1/ε] (the
inequality is strict as (m − θd1) is nonconstant), we see that gb(x) > 0 in [ε, 1/ε] for
all b sufficiently close to 1. Hence for all b sufficiently close to 1, by Proposition 2.2,

µ1(d2,m− bθd1) ≥ gb(d1) > 0 for all (d1, d2) ∈ Iε.

By symmetry, we have the next claim.
Corollary 2.12. Define Σ′

c = {(d1, d2) ∈ R+ ×R+ : (0, θd2) is linearly stable}
and Σ̄′

c = {(d1, d2) ∈ R+ × R+ : (0, θd2) is linearly neutrally stable}; then for all
c ∈ (0, 1), Σ′

c is increasing and Σ′
c ⊂ Σ̄′

c ⊂ {(d1, d2) ∈ R+×R+ : d1 > d2}. Moreover,
for any ε > 0,

{(d1, d2) : d2 ∈ [ε, 1/ε] and d1 ≥ d2 + ε} ⊂ Σ̃c

for all c sufficiently close to 1. In particular, Σ′
c ↗ {(d1, d2) ∈ R+ ×R+ : d1 > d2}.

We now apply eigenvalue comparison (Proposition 2.2) to show our assertion in
Remark 1.2 that

(13) Σ̄b is the closure of Σb in R2.

In fact, we shall establish that the boundary ∂Σb of Σb in R2 satisfies

(14) ∂Σb = {(d1, d2) ∈ R+ ×R+ : µ1(d2,m− bθd1) = 0} = Σ̄b \ Σb.

First, we state the following observation (Remark 1.11 in section 1 above) from
the proof of Theorem 1.7 in [L1].
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Claim 2.13. For each b ∈ (0, 1), there exists δ > 0 such that (d1, d2) ,∈ Σb

whenever 0 < d1 < δ.
To see the claim, by Proposition 2.8, it suffices to show that µ1(d2,m− bθd1) < 0

for d1 sufficiently small, uniformly in d2 > 0. Let ϕ > 0 be the first eigenfunction
corresponding to µ1(d2,m− bθd1), which satisfies

d2∆ϕ+ (m− bθd1)ϕ+ µ1ϕ = 0 in Ω and ∂νϕ = 0 on ∂Ω,

where µ1 = µ1(d2,m− bθd1). Dividing by ϕ and integrating by parts, we have

d2

∫

Ω

|∇ϕ|2

ϕ2
+

∫

Ω
(m− bθd1) + µ1 = 0.

Now the first term is positive, and the second term is also positive if d1 is small
(Proposition 2.5(a)). Hence µ1(d2,m− bθd1) < 0 for d1 small, uniformly in d2.

By the continuous dependence of µ1(d2,m− bθd1) on d1, d2, and by Claim 2.13,
we see that ∂Σb ⊂ {(d1, d2) ∈ R+ ×R+ : µ1(d2,m− bθd1) = 0}. It remains to show
that {(d1, d2) ∈ R+ × R+ : µ1(d2,m − bθd1) = 0} ⊂ ∂Σb. Given any (d1, d2) such
that µ1(d2,m − bθd1) = 0, by Proposition 2.2, it suffices to show that m − bθd1 is
nonconstant, since then for all d′2 > d2, µ1(d′2,m− bθd1) > 0 and hence (d1, d′2) ∈ Σb.
To this end, we suppose to the contrary that m−bθd1 = C for some constant C. Then
w = (1 − b)θd1 > 0 satisfies

d1∆w + w(C − w) = 0 in Ω and ∂νw = 0 in ∂Ω.

Hence C > 0 and w = C (by uniqueness), but then θd1 is constant. This is a
contradiction since m is a nonconstant function, and (14) is proved. This concludes
our discussion of Σb.

We end this section by discussing three well-known results for two-species com-
petition models. First, we recall the following well-known fact.

Lemma 2.14. If (Ũ , Ṽ ) = (0, θd2) (resp., (0, 0), (θd1 , 0)) is a steady state of (1) for
some positive d1, d2, b, c, and the principal eigenvalue λ1 of (4) with (U, V ) = (Ũ , Ṽ ) is
nonzero, then there exist δ > 0 and a neighborhood O of (Ũ , Ṽ ) in {(U, V ) ∈ W 2,p(Ω)×
W 2,p(Ω) : U ≥ 0 and V ≥ 0} such that, for d̂1, d̂2, b̂, ĉ satisfying max{|d̂1 − d1|, |d̂2 −
d2|, |b̂ − b|, |ĉ− c|} < δ, if (Û , V̂ ) ∈ O is a steady state of (1), then (Û , V̂ ) = (0, θd̂2

)
(resp., (0, 0), (θd̂1

, 0)).

Proof. Assume that (Ũ , Ṽ ) = (0, θd2) (with some d1, d2, b, c > 0) is not isolated;
then there exists a sequence of coexistence steady states (Uk, Vk) → (0, θd2), with
corresponding coefficients satisfying d1,k → d1, d2,k → d2, bk → b, and ck → c. By
passing to a subsequence, w = limk→∞ Uk/‖Uk‖L∞(Ω) exists, satisfying w ≥ 0 and

d1∆w + w(m− cθd2) = 0 in Ω

with zero Neumann boundary condition. Since ‖w‖L∞(Ω) = 1, we deduce µ1(d1,m−
cθd2) = 0. Hence the principal eigenvalue λ1 = 0 by Corollary 2.10, a contradiction.
The other cases follow similarly.

Second, we state the standard fact that, for monotone dynamical systems, linear
stability (resp., linear instability) implies asymptotic stability (resp., instability). We
refer to Theorem 7.6.2 of [Sm] for a proof of the result.

Proposition 2.15. If a steady state (Ũ , Ṽ ) of (1) is linearly stable (resp., lin-
early unstable), then it is asymptotically stable (resp., unstable).
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Third, we have the following lemma derived from the theory of monotone dynam-
ical systems, which we are going to use repeatedly. (See, e.g., Proposition 9.1 and
Theorem 9.2 in [He].)

Lemma 2.16. For any d1, d2 > 0 and any b, c ≥ 0, assume every coexistence
steady state of (1), if it exists, is asymptotically stable; then one of the following
alternatives holds:

(a) There exists a unique coexistence steady state of (1) which is globally asymp-
totically stable.

(b) System (1) has no coexistence steady state, and one of (θd1 , 0) or (0, θd2) is
globally asymptotically stable, while the other one is unstable.

3. Proof of Theorem 1.9. We first prove uniqueness in the special case d1 =
d2 = d > 0.

Lemma 3.1. Assume d1 = d2 = d; then for each b, c ∈ (0, 1), (1) has a unique
coexistence steady state which is given by ( 1−c

1−bcθd,
1−b
1−bcθd).

Proof. It is straightforward to verify that ( 1−c
1−bcθd,

1−b
1−bcθd) is a steady state of (1).

For uniqueness, assume that (Û , V̂ ) is any coexistence steady state of (1). We claim
that (1− b)Û = (1− c)V̂ . Assume to the contrary that w := (1− b)Û − (1− c)V̂ ,≡ 0;
then w satisfies

d∆w + (m− Û − V̂ )w = 0 in Ω and ∂νw = 0 on ∂Ω.

In other words, µk(d,m− Û − V̂ ) = 0 for some k ≥ 1. However,

µk(d,m− Û − V̂ ) ≥ µ1(d,m− Û − V̂ ) > µ1(d,m− Û − cV̂ ) = 0,

a contradiction, where the last equality follows from the equation satisfied by Û .
Therefore, (1 − b)Û = (1 − c)V̂ . Setting V̂ = 1−b

1−c Û in the first equation of (1), we
have

{
d∆Û + Û(m− Û − c 1−b

1−c Û) = 0 in Ω,

∂νÛ = 0 on ∂Ω and Û > 0.

Hence by uniqueness, Û = 1−c
1−bcθd and V̂ = 1−b

1−c Û = 1−b
1−bcθd.

Lemma 3.2. When d1 = d2 = d > 0 and 0 < b, c < 1, ( 1−c
1−bcθd,

1−b
1−bcθd) is linearly

stable, while (0, 0), (θd1 , 0), and (0, θd2) are linearly unstable.
Proof. For the stability of ( 1−c

1−bcθd,
1−b
1−bcθd) we consider the eigenvalue problem

(15)






d∆Φ+ [m− 2 1−c
1−bcθd − c 1−b

1−bcθd]Φ− c 1−c
1−bcθdΨ = −λΦ in Ω,

d∆Ψ− b 1−b
1−bcθdΦ+ [m− b 1−c

1−bcθd − 2 1−b
1−bcθd]Ψ = −λΨ in Ω,

∂νΦ = ∂νΨ = 0 on ∂Ω.

Simplifying (15), we get

(16)






d∆Φ+ [m− (1 + 1−c
1−bc )θd]Φ− c 1−c

1−bcθdΨ = −λΦ in Ω,
d∆Ψ− b 1−b

1−bcθdΦ+ [m− (1 + 1−b
1−bc)θd]Ψ = −λΨ in Ω,

∂νΦ = ∂νΨ = 0 on ∂Ω.

By the Krein–Rutman theorem, the principal eigenvalue (i.e., the simple eigenvalue
with least positive real part) λ1 ∈ R exists, and the corresponding eigenfunction may
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be chosen to satisfy Φ > 0 > Ψ. Now let w := (1 − b)Φ− (1 − c)Ψ > 0. Then w can
be regarded as the principal eigenfunction of

(17)

{
d∆w +

[
m− (1 + (1−b)(1−c)

1−bc )θd
]
w = −λ1w in Ω,

∂νw = 0 on ∂Ω.

Since w > 0 this implies that λ1 = µ1(d,m − (1 + (1−b)(1−c)
1−bc )θd) > µ1(d,m − θd) =

0. This shows that ( 1−c
1−bcθd,

1−b
1−bcθd) is linearly stable, while the linear instability of

(θd1 , 0), (0, θd2), and (0, 0) is a consequence of Proposition 1.10, Corollary 2.12, and
Remark 2.11.

The following corollary is immediate from Lemmas 2.16, 3.1, and 3.2.
Corollary 3.3. If d1 = d2 = d > 0, then for any b, c ∈ (0, 1), ( 1−c

1−bcθd,
1−b
1−bcθd)

is globally asymptotically stable.
For the sake of completeness, we now present the proof, due to Lou [L3], of

Theorem 1.8. This will be needed in establishing our Theorem 1.9 later.
Proof of Theorem 1.8. By Lemma 2.16, it suffices to show that for d1, d2 large,

(θd1 , 0) and (0, θd2) are linearly unstable, and every positive steady state is linearly
stable.

First we show that (θd1 , 0) is unstable. By Corollary 2.10, it suffices to look at
µ1(d2,m− bθd1). Now by setting the test function ϕ =

√
1/|Ω|, we have

µ1(d2,m− bθd1) = inf
H1(Ω)

{∫
Ω[d2|∇ϕ|

2 − (m− bθd1)ϕ
2]∫

Ω ϕ
2

}
≤ − 1

|Ω|

∫

Ω
(m− bθd1),

and the term on the right-hand side tends to b−1
|Ω|

∫
Ωm < 0 since θd → 1

|Ω|
∫
Ω m as

d → ∞ (Proposition 2.5(b)). So (θd1 , 0) is unstable if d1 is large. Similarly, (0, θd2) is
unstable when d2 is large.

We proceed to show that every coexistence steady state is linearly stable. Assume
to the contrary that for d1,k → ∞ and d2,k → ∞, (1) has a coexistence steady state
(Uk, Vk), which is not linearly stable. First we observe that by Remark 2.6, by passing
to a subsequence if necessary, we may assume (Uk, Vk) → (Ū , V̄ ), Uk/|Uk|L∞(Ω) → 1,
and Vk/|Vk|L∞(Ω) → 1 in L∞(Ω) for some nonnegative constants Ū and V̄ .

Moreover, we claim that (Ū , V̄ ) satisfies

(18)

{
m̄− Ū − cV̄ = 0,
m̄− bŪ − V̄ = 0.

In particular, (Ū , V̄ ) = ( 1−c
1−bcm̄, 1−b

1−bcm̄) and Ū , V̄ > 0. To see (18), we first divide
the equation of Uk by |Uk|L∞(Ω), integrate over Ω, and pass to the limit. The first
equation of (18) follows. Similarly, the second equation of (18) can be obtained by
dividing the equation of Vk by |Vk|L∞(Ω) and passing to the limit.

Now, denote the principal eigenvalue of (3) with (U, V ) = (Uk, Vk) by λk and the
corresponding eigenfunction by (Φk,Ψk) (normalized so that |Φk|L∞(Ω)+ |Ψk|L∞(Ω) =
1). Then λk is nonpositive.

By Lemma 2.7, λk is bounded from below uniformly; therefore, by passing to a
subsequence if necessary, we may assume λk → λ̄ ≤ 0. Standard elliptic estimates
guarantee that Φk → Φ̄ and Ψk → Ψ̄ for some constants Φ̄ and Ψ̄ satisfying |Φ̄|+|Ψ̄| =
1. However, integrating (4) over Ω and passing to limit, we have

{
(m̄− 2Ū − cV̄ )Φ̄− cŪΨ̄+ λ̄Φ̄ = 0,
−bV̄ Φ̄+ (m̄− bŪ − 2V̄ )Ψ̄+ λ̄Ψ̄ = 0,
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which, in view of (18), becomes
{

ŪΦ̄+ cŪΨ̄ = λ̄Φ̄,
bV̄ Φ̄+ V̄ Ψ̄ = λ̄Ψ̄.

Since Ū , V̄ > 0 and |Φ̄|+ |Ψ̄| = 1, λ̄ is an eigenvalue of
(

Ū cŪ
bV̄ V̄

)
and must be positive.

This contradicts the fact that λ̄ = limk→∞ λk ≤ 0, and the theorem is proved.
We are now in a position to prove Theorem 1.9.
Proof of Theorem 1.9. Fix b, c ∈ (0, 1). By Proposition 1.10, Corollary 2.12,

and the proof of Theorem 1.8, there exists δ > 0 such that whenever |d1 − d2| < δ,
both (θd1 , 0) and (0, θd2) are linearly unstable. By the theory of monotone dynamical
systems, it suffices to establish the uniqueness of the coexistence steady state. In view
of Theorems 1.7 and 1.8, we need only establish the uniqueness when d1, d2 → d for
some d > 0.

Assume to the contrary that there exist d1 = d1,k and d2 = d2,k such that
d1,k, d2,k → d and (1) has more than one coexistence steady state as k → ∞. By
compactness, as k → ∞, every coexistence steady state must converge to some steady
state of (1) with d1 = d2 = d. Since every trivial and semitrivial steady state
is linearly unstable (Lemma 3.2), by Lemma 2.14 every steady state converges to
( 1−c
1−bcθd,

1−b
1−bcθd).

Next, we apply the implicit function theorem to show that for k large, (Uk, Vk)
must lie on the unique branch emanating from ( 1−c

1−bcθd,
1−b
1−bcθd). We consider F :

W 2,p(Ω)×W 2,p(Ω)×R+ ×R+ → Lp(Ω)× Lp(Ω) (p > N) defined by

(19)

(
F1

F2

)
=

(
d1∆U + U(m− U − cV )
d2∆V + V (m− bU − V )

)
.

By Lemma 3.2, the principal eigenvalue of L = D(U,V )F|(U,V,d1,d2)=( 1−c
1−bc θd,

1−b
1−bc θd,d,d)

is positive, which implies that every eigenvalue of L has positive real part and L is
invertible. Therefore there exists a neighborhood O containing ( 1−c

1−bcθd,
1−b
1−bcθd) and

a function (U∗, V ∗)(d1, d2) defined for all d1, d2 close to d such that if (U, V ) ∈ O
is a steady state of (1) for some d1, d2 close to d, then we must have (U, V ) =
(U∗, V ∗)(d1, d2). This contradicts the assumption that (1) has more than one coexis-
tence steady state as d1,k → d and d2,k → d.

4. Proofs of Theorems 1.12 and 1.5. First we prove the following result.
Lemma 4.1. Let c ∈ [0, 1], b = 1, and d1 < d2; then (θd1 , 0) is linearly stable,

while (0, θd2) and (0, 0) are linearly unstable. Moreover, (θd1 , 0) is globally asymptot-
ically stable.

Proof. Since µ1(d2,m − θd1) > µ1(d1,m − θd1) = 0, (θd1 , 0) is linearly stable
by Corollary 2.10. On the other hand, by Corollary 2.10 again, µ1(d1,m − cθd2) <
µ1(d2,m − θd2) = 0, which gives the instability of (0, θd2). The instability of (0, 0)
follows from Remark 2.11.

The global asymptotic stability of (θd1 , 0) follows from Lemma 2.16 if we can
rule out coexistence. Assume to the contrary that for some c ∈ [0, 1], b = 1, and
d1 < d2 there exists a coexistence steady state (Ũ , Ṽ ). This means in particular that
µ1(d1,m − Ũ − cṼ ) = µ1(d2,m − Ũ − Ṽ ) = 0. But that is impossible, since it also
holds that µ1(d1,m− Ũ − cṼ ) < µ1(d2,m− Ũ − Ṽ ), by Proposition 2.2.

Next, we prove Theorem 1.12.
Proof of Theorem 1.12. Recall the notation Iε = {(d1, d2) : d1 ∈ [ε, 1/ε], d2 ≥

d1 + ε}. By Proposition 1.10, for all b < 1 sufficiently close to 1, (θd1 , 0) is linearly
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stable for all (d1, d2) ∈ Iε. By Lemma 2.16, it suffices to show that, given ε > 0, for
b < 1 sufficiently close to 1 and any (d1, d2) ∈ Iε, (1) has no coexistence steady state.

Assume to the contrary that for bk ↗ 1, for some ck → c ∈ [0, 1], and for
(d1,k, d2,k) → (d1, d2) (d2 is possibly infinite) such that 0 < d1 < d2, (1) has a
coexistence steady state (Uk, Vk).

First we consider the case d2,k → d2 < ∞. By passing to a subsequence if
necessary, Uk → U ′ and Vk → V ′ in L∞(Ω), where (Uk, Vk) is a steady state of (1).
By Lemma 4.1, (Uk, Vk) must converge to one of (θd1 , 0), (0, θd2), and (0, 0). This is
impossible by Lemma 2.14, since (θd1 , 0) is linearly stable while (0, θd2) and (0, 0) are
linearly unstable.

Secondly, we consider the case d2,k → ∞. By passing to a subsequence, (Uk, Vk) →
(U ′, V̄ ) in L∞(Ω), where

(20) d1∆U ′ + U ′(m− cV̄ − U ′) = 0 in Ω

with zero Neumann boundary condition on U ′, and V̄ = 1
|Ω|

∫
Ω(m − U ′) ≥ 0. Since

µ1(d1,k,m−ckVk) → µ1(d1,m−cV̄ ) < 0 (as
∫
Ω(m−cV̄ ) ≥ 0 and m is not a constant),

we have U ′ = ϑ(d1,m− cV̄ ) > 0 by Proposition 2.5(c)(ii). Now dividing (20) by U ′

and integrating by parts, we have
∫

Ω
(m− cV̄ − U ′) = −d1

∫

Ω

|∇U ′|2

U ′2 < 0.

This contradicts V̄ = 1
|Ω|

∫
Ω(m− U ′) ≥ 0.

Next, we prepare for the proof of Theorem 1.5. We first claim that Theorem 1.5
is a consequence of the following:

(S) there exists some c̄ > 0 such that for any 0 < d1 ≤ d2, b ∈ [0, 1], c ∈ [0, c̄),
every coexistence steady state, if it exists, is linearly stable.

To see the claim, we first assume that (S) is true. Since (0, θd2) is unstable
whenever c ∈ [0, 1) and d1 ≤ d2, we have the following three possibilities, depending
on the linear stability of (θd1 , 0):

(i) (d1, d2) ∈ Σb; i.e., (θd1 , 0) is linearly stable while (0, θd2) is linearly unstable.
(ii) (d1, d2) ,∈ Σ̄b; i.e., both (θd1 , 0) and (0, θd2) are linearly unstable.
(iii) (d1, d2) ∈ ∂Σb; i.e., (0, θd2) is linearly unstable and the principal eigenvalue

of (θd1 , 0) is zero.
Fix any c ∈ [0, c̄) and b ∈ [0, 1]. By Lemma 2.16, (θd1 , 0) is globally asymptotically
stable in case (i). In case (ii), there exists a unique coexistence steady state that
is globally asymptotically stable. We claim that one can rule out the possibility of
coexistence in case (iii); hence (θd1 , 0) is in fact globally asymptotically stable (Lemma
2.16). Assume to the contrary that there exists one coexistence steady state (Ũ , Ṽ ).
By (S), (Ũ , Ṽ ) is linearly stable. By the implicit function theorem, for all (d̃1, d̃2) that
is close to (d1, d2), (1) has a coexistence steady state. In particular this is the case for
all (d̃1, d̃2) ∈ Σb that is close to (d1, d2) ∈ ∂Σb. (The existence of such (d̃1, d̃2) follows
from (14).) But this contradicts case (i). Hence, it suffices to show (S).

Assume to the contrary that for some sequences of bk ∈ [0, 1], bk → b∞ ∈ [0, 1],
ck ↘ 0, and d1,k ≤ d2,k, (1) has a coexistence steady state (Uk, Vk) which is not
linearly stable. In other words, λ = λk ≤ 0 in (4). By the Krein–Rutman theorem,
we may choose the eigenfunctions of (4) to satisfy Φk > 0 > Ψk in Ω̄ and be normalized
by

∫
Ω(Φ

2
k + Ψ2

k) = 1. For simplicity, we suppress the subscript k in the rest of this
proof whenever it does not cause any confusion. We consider the following cases
separately:
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(A) d1 → 0, d2 → 0.
(B) d1 → 0, d2 → d2,∞ ∈ (0,∞].
(C) d1 → ∞, d2 → ∞.
(D) For some d ∈ R+, d1 → d, d2 → d.
(E) d1 → d1,∞ ∈ R+ and d2 → ∞.
(F) b∞ < 1 and d1 → d1,∞, d2 → d2,∞ for some (d1,∞, d2,∞) ∈ ∂Σb∞ .
(G) b∞ < 1 and d1 → d1,∞, d2 → d2,∞ for some (d1,∞, d2,∞) ,∈ ∂Σb∞ .
Note that if b∞ = 1, then by Theorem 1.12, cases (A)–(D) exhaust all the pos-

sibilities. But if b∞ < 1, then we have to consider in addition cases (E), (F), and
(G).

First, we further divide the most delicate case (A) into (A1): d1, d2, b, c → 0, and
(A2): d1, d2, c → 0 and b → b∞ ∈ (0, 1].

We first prepare with two lemmas.
Lemma 4.2. Assume (A2) and that the principal eigenvalue λ of (4) is nonpos-

itive. Then Φ < −Ψ in Ω for all k sufficiently large, where we choose the principal
eigenfunction (Φ,Ψ) of (4) so that Φ > 0 > Ψ.

Proof. Since U → m in L∞(Ω) by Proposition 2.5(a), we see that eventually
(m − 2U − cV + λ) < 0 in Ω̄. By the strong maximum principle (as in the proof of
Proposition 2.4), it is sufficient to show

{
d1∆(Φ+Ψ) + (m− 2U − cV + λ)(Φ+Ψ) > 0 in Ω,
∂ν(Φ+Ψ) ≤ 0 on ∂Ω,

which, in view of the first equation of (4), is equivalent to
{

d1∆(−Ψ) + (m− 2U − cV + λ)(−Ψ) < cUΨ in Ω,
∂ν(−Ψ) ≥ 0 on ∂Ω.

The boundary condition is met immediately. Now

d1∆(−Ψ) + (m− 2U − cV + λ)(−Ψ)− cUΨ

=
d1
d2

[−bV Φ+ (m− bU − 2V )Ψ+ λΨ]− (m− 2U − cV + λ)Ψ − cUΨ

=− d1
d2

bV Φ− λ

(
1− d1

d2

)
Ψ+

[
d1
d2

(m− bU − 2V )− (m− 2U − cV )− cU

]
Ψ

< 0,

since U → m, V → (1−b∞)m, 0 < d1 ≤ d2, and c ↘ 0, the terms in the square bracket
converge to [1− d1

d2
(1−b∞)]m > 0 in Ω̄, while the first two terms are nonpositive.

Lemma 4.3. Assuming that one of (B)–(G) holds, then passing to a subsequence
if necessary, there exist U∞, Ṽ∞ > 0 in Ω̄ such that

(21) Uk → U∞ and Ṽk := Vk/‖Vk‖L∞(Ω) → Ṽ∞ in L∞(Ω).

Proof. Case (B): By Proposition 2.5(a), U → m in L∞(Ω). On the one hand, V
satisfies the single equation

d2∆V + (m− bU − V )V = 0 in Ω and ∂νV = 0 on ∂Ω.

Hence, by Proposition 2.5,

V →
{

(1− b∞)θ d2,∞
1−b∞

if d2,∞ < ∞,
1−b∞
|Ω|

∫
Ωm if d2,∞ = ∞,
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in L∞(Ω). On the other hand, Ṽ = V/‖V ‖L∞(Ω) satisfies

{
d2∆Ṽ + (m− bU − V )Ṽ = 0 in Ω,
∂ν Ṽ = 0 on ∂Ω and ‖Ṽ ‖L∞(Ω) = 1,

and hence by Proposition 2.5

Ṽ →
{

1 if b∞ = 1 or d2,∞ = ∞,
θ d2,∞

1−b∞
/|θ d2,∞

1−b∞
|L∞(Ω) if b∞ < 1 and d2,∞ < ∞,

in L∞(Ω). This shows that (21) holds in case (B).
Case (C): We claim that U → m̄ := 1

|Ω|
∫
Ωm and Ṽ → 1 in L∞(Ω). That U → m̄

follows from Proposition 2.5(b). Similarly, one can see that Ṽ := V/‖V ‖L∞(Ω) → 1
in L∞(Ω) by Remark 2.6.

Case (D): First we see that U → θd in L∞(Ω) by Proposition 2.5(c)(ii). Next, we
claim that

(22) V → (1− b∞)θd and Ṽ :=
V

‖V ‖L∞(Ω)
→ θd

‖θd‖L∞(Ω)
in W 2,p(Ω).

On the one hand, if b∞ < 1, then m − bU → m − b∞θd with µ1(d,m − b∞θd) <
µ1(d,m − θd) = 0. Hence by Proposition 2.5(c)(ii), (22) is proved. On the other
hand, if b∞ = 1, then m − bU → m − θd with µ1(d,m − θd) = 0, and (22) follows
from Proposition 2.5(c)(i), since θd/‖θd‖L∞(Ω) is the (normalized) first eigenfunction
of µ1(d,m− θd).

Case (E): We claim that U → θd1,∞ and Ṽ → 1 in L∞(Ω). That U → θd1,∞

follows from Proposition 2.5(c)(ii), while Ṽ → 1 follows from Remark 2.6.
Case (F): We claim that U → θd1,∞ , V → 0, and Ṽ → ϕ1 in L∞(Ω), where ϕ1 > 0

is the normalized principal eigenfunction corresponding to µ1(d2,∞,m− bθd1,∞) = 0.
Now U → θd1,∞ by Proposition 2.5(c)(ii). Since (d1,∞, d2,∞) ∈ ∂Σb∞ , µ1(d2,∞,m −
b∞θd1,∞) = 0 (by (14)), by Proposition 2.5(c)(i), V → 0 and Ṽ → ϕ1 in L∞(Ω),
where ϕ1 is the normalized first eigenfunction of µ1(d2,∞,m− b∞θd1,∞).

Case (G): µ1(d2,∞,m− b∞θd1,∞) ,= 0. Then by Proposition 2.5(c), µ1(d2,∞,m−
b∞θd1,∞) < 0, U → θd1,∞ , and V → V ′ in L∞(Ω), where V ′ = ϑ(d2,∞,m− b∞θd1,∞),

following the notation of section 2. Hence Ṽ → V ′/‖V ′‖L∞(Ω), which is positive in
Ω̄.

Finally, we prove (S), which implies Theorem 1.5.
Proof of (S). For (A1), we are going to show that every coexistence steady state

is linearly stable for d1, d2, b, c sufficiently small, which is (S). Although this result
(b, c → 0) was not covered in [HLM2], one can observe that it follows from the same
arguments. For the sake of completeness, we include a simple proof here for the special
case we need.

Multiplying the first equation in (3) by U and the second equation by V , and
integrating by parts, we have

{ ∫
Ω(−U2Φ− cU2Ψ+ λUΦ) = 0,∫
Ω(−bV 2Φ− V 2Ψ+ λV Ψ) = 0.

Subtracting the second equation from the first gives
∫

Ω
(−U2 + bV 2)Φ+

∫

Ω
(V 2 − cU2)Ψ+ λ

∫

Ω
(UΦ− VΨ) = 0.
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Now b, c → 0, and U → m and V → m in L∞(Ω) by Proposition 2.5(i). So the first
two integrals are negative. Since

∫
Ω(UΦ − VΨ) > 0 (because Φ > 0 > Ψ), it follows

that λ > 0. This contradiction proves (S) in case (A1).
Before we treat the remaining cases, multiply the second equation of (4) by Ψ

and integrate by parts. Then we have

(23)

∫

Ω

[
−d2|∇Ψ|2 + (m− bU − V )Ψ2

]
−
∫

Ω
(bV ΦΨ+ VΨ2) + λ

∫

Ω
Ψ2 = 0.

Since µ1(d2,m − bU − V ) = 0 by the equation for V , the first integral involving the
square bracket is nonpositive by variational characterization as µ1(d2,m−bU−V ) = 0.
The last term λ

∫
Ω Ψ2 ≤ 0 since λ ≤ 0 by assumption. We see that a contradiction to

(23) is in order if one can show

(24)

∫

Ω

(
b

V

‖V ‖L∞(Ω)
ΦΨ+

V

‖V ‖L∞(Ω)
Ψ2

)
> 0.

Now we take up case (A2). We are going to show (24), which gives the contra-
diction. It is clear that (24) is a consequence of Φ > 0 > Ψ and Lemma 4.2. We thus
arrive at a contradiction in case (A2).

To show (S) for the remaining cases (B) to (G), we multiply the first equation of
(4) by Φ and integrate by parts:

∫

Ω

[
−d1|∇Φ|2 + (m− U − cV + λ)Φ2

]
=

∫

Ω
UΦ2 +

∫

Ω
(cUΦΨ).

Now by the equation for U , we see that µ1(d1,m−U − cV ) = 0. As it also holds that
λ ≤ 0, the left-hand side of the preceding equation is nonpositive. Hence,

∫

Ω
(UΦ2) ≤ c

∫

Ω
(UΦ|Ψ|) ≤ 1

2

∫

Ω
(UΦ2) +

c2

2

∫

Ω
(UΨ2),

by Young’s inequality. Cancelling, we have

(25)

∫

Ω
(UΦ2) ≤ c2

∫

Ω
(UΨ2).

By Lemma 4.3, there exist positive constants C1, C2 independent of k such that

(26) C1 ≤ U ≤ C2 and C1 ≤ V

‖V ‖L∞(Ω)
≤ C2 in Ω̄.

And by Young’s inequality, we have for k sufficiently large (hence c small)
∫

Ω

(
b

V

‖V ‖L∞(Ω)
Φ|Ψ|

)
≤ 1

2

∫

Ω

V

‖V ‖L∞(Ω)
Ψ2+

b2

2

∫

Ω

V

‖V ‖L∞(Ω)
Φ2 <

∫

Ω

V

‖V ‖L∞(Ω)
Ψ2,

where the strict inequality follows from (25) and (26). Therefore (24) is proved, and
we have a contradiction. This finishes the proof of (S).
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