Discrete Counter Part of Proposition 6.2.1

Consider the discrete dynamical system generated by $G: U \to U$, where U is an open set in \mathbb{R}^d . We say that a fixed point b^* of G is <u>unstable</u> if for any neighborhood \mathcal{N} of b^* , there exists $b \in \mathcal{N}$ and $n = n(b) \in \mathbb{N}$ such that

$$G^n(b) \notin \mathcal{N}$$
.

Proposition 6.2.1' Let $G: U \to U$ be C^1 . Suppose b^* is a fixed point of G and DG has at least one eigenvalue λ such that $|\lambda| > 1$. Then b^* is unstable.

Proof. We next transform to coordinates in which the fixed point is at the origin, and using similarity transformation, (replacing x and G by $T^{-1}x$ and $\tilde{G}(y) = T^{-1}G(Ty)$), we may assume

$$\tilde{G}(y) = By + r(y),$$

where r(y) = o(|y|) and

$$B = \begin{pmatrix} B^{(1)} & 0 \\ 0 & B^{(2)} \end{pmatrix}.$$

so that $B^{(1)}$, of dimension n_1 (say), consists of Jordan blocks whose eigenvalues all exceed one in modulus, whereas none of the eigenvalues of $B^{(2)}$ exceeds one in modulus. We also assume that the Jordan blocks has the structure of (using Exercise 3(d) in Chapter 2 of the textbook)

$$J_{\varepsilon} = \begin{pmatrix} \lambda & \varepsilon & 0 & \cdots & 0 \\ 0 & \lambda & \varepsilon & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & \varepsilon \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}. \tag{9.3}$$

Let the dimension of $B^{(2)}$ be n_2 so that $n_1 + n_2 = n$. The mapping, in the new variable $y = S^{-1}x$, takes the form

$$G(y) = \left[\begin{array}{c} B^{(1)}y^{(1)} + k^{(1)}(y^{(1)}, y^{(2)}) \\ B^{(2)}y^{(2)} + k^{(2)}(y^{(1)}, y^{(2)}) \end{array} \right].$$

Here the vector function k(y) satisfies |k(y)| = o(|y|). We may define a norm for $y^{(j)}$ by the formula

$$|y^{(j)}| = \sum_{l=1}^{n_j} |y_l^{(j)}|, \quad j = 1, 2.$$

In this formula the vertical bars $|\cdot|$ in the sum on the right-hand side represent the moduli of the (in general) complex numbers $y_l^{(j)}$ whereas those on the lefthand side of the equation indicate the norm of the vector $y^{(j)}$. This is the choice of norm made in equation (8.9) of Chapter 8 and used also in the proof of Theorem 9.1.1. The norm for the full vector $y = (y_1, y_2)^t$ is then

$$|y| = |y_1| + |y_2|.$$

This induces a norm for x: ||x|| = |y| where $y = T^{-1}x$.

Let $\mu > 1$ be a lower bound for the eigenvalues of B_1 . It is easy to see that $|B^{(1)}y^{(1)}| > (\mu - \epsilon)|y^{(1)}|$. (This part uses (9.3).) Similarly, we find $|B^{(2)}y^{(2)}| \le (1 + \epsilon)|y^{(2)}|$. By choosing |y| sufficiently small we can ensure that

$$|k(y)| < \epsilon |y| = \epsilon (|y^{(1)}| + |y^{(2)}|).$$

Armed with these estimates, we can now show that the origin is unstable.

Assume, to the contrary, that the origin is Lyapunov stable. Denote by y(0) the initial choice of y, and by $y(1), y(2), \ldots$ subsequent iterations under the mapping $\tilde{G}(y) = By + k(y)$. According to the assumption of Lyapunov stability, given any $\epsilon > 0$ there exists $\delta > 0$ such that, if $|y(0)| < \delta$, then $|y(n)| < \epsilon$ for all $n = 1, 2, \ldots$ With the aid of the estimates above we find that

$$|y^{(1)}(n+1)| \ge (\mu - \epsilon)|y^{(1)}(n)| - \epsilon(|y^{(1)}(n)| + |y^{(2)}(n)|),$$

and

$$|y^{(2)}(n+1)| \le (1+\epsilon)|y^{(2)}(n)| + \epsilon(|y^{(1)}(n)| + |y^{(2)}(n)|).$$

so

$$|y^{(1)}(n+1)| - |y^{(2)}(n+1)| \ge (\mu - 3\epsilon)|y^{(1)}(n)| - (1 + 3\epsilon)|y^{(2)}(n)|.$$

We have not as yet specified ϵ : choose it less than $\frac{1}{6}(\mu-1)$. Then

$$|y(n+1)| \ge |y^{(1)}(n+1)| - |y^{(2)}(n+1)| \ge (1+3\epsilon)(|y^{(1)}(n)| - |y^{(2)}(n)|).$$

Now choosing $|y^{(1)}(0)| - |y^{(2)}(0)| > 0$, we find that

$$|y(n)| \ge |y^{(1)}(n)| - |y^{(2)}(n)| \ge (1 + 3\epsilon)^n (|y^{(1)}(0)| - |y^{(2)}(0)|),$$

implying that the left-hand side grows without bound as $n \to \infty$. This contradicts the assumption of stability.