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Discrete Counter Part of Proposition 6.2.1

Consider the discrete dynamical system generated by G : U → U , where U is
an open set in Rd. We say that a fixed point b∗ of G is unstable if for any
neighborhood N of b∗, there exists b ∈ N and n = n(b) ∈ N such that

Gn(b) ̸∈ N .

Proposition 6.2.1’ Let G : U → U be C1. Suppose b∗ is a fixed point of G
and DG has at least one eigenvalue λ such that |λ| > 1. Then b∗ is unstable.

Proof. We next transform to coordinates in which the fixed point is at the
origin, and using similarity transformation, (replacing x and G by T−1x and
G̃(y) = T−1G(Ty)), we may assume

G̃(y) = By + r(y),

where r(y) = o(|y|) and

B =

(
B(1) 0

0 B(2)

)
.

so that B(1), of dimension n1 (say), consists of Jordan blocks whose eigenvalues
all exceed one in modulus, whereas none of the eigenvalues of B(2) exceeds one
in modulus. We also assume that the Jordan blocks has the structure of (using
Exercise 3(d) in Chapter 2 of the textbook)

Jε =


λ ε 0 · · · 0
0 λ ε · · · 0
...

...
. . .

. . .
...

0 0 · · · λ ε
0 0 · · · 0 λ

 . (9.3)

Let the dimension of B(2) be n2 so that n1 + n2 = n. The mapping, in the new
variable y = S−1x, takes the form

G(y) =

[
B(1)y(1) + k(1)(y(1), y(2))
B(2)y(2) + k(2)(y(1), y(2))

]
.

Here the vector function k(y) satisfies |k(y)| = o(|y|). We may define a norm
for y(j) by the formula

|y(j)| =
nj∑
l=1

|y(j)l |, j = 1, 2.
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In this formula the vertical bars | · | in the sum on the right-hand side represent

the moduli of the (in general) complex numbers y
(j)
l whereas those on the left-

hand side of the equation indicate the norm of the vector y(j). This is the
choice of norm made in equation (8.9) of Chapter 8 and used also in the proof
of Theorem 9.1.1. The norm for the full vector y = (y1, y2)

t is then

|y| = |y1|+ |y2|.

This induces a norm for x: ∥x∥ = |y| where y = T−1x.

Let µ > 1 be a lower bound for the eigenvalues of B1. It is easy to see that
|B(1)y(1)| > (µ−ϵ)|y(1)|. (This part uses (9.3).) Similarly, we find |B(2)y(2)| ≤
(1 + ϵ)|y(2)|. By choosing |y| sufficiently small we can ensure that

|k(y)| < ϵ|y| = ϵ(|y(1)|+ |y(2)|).

Armed with these estimates, we can now show that the origin is unstable.

Assume, to the contrary, that the origin is Lyapunov stable. Denote by
y(0) the initial choice of y, and by y(1), y(2), . . . subsequent iterations under the
mapping G̃(y) = By+k(y). According to the assumption of Lyapunov stability,
given any ϵ > 0 there exists δ > 0 such that, if |y(0)| < δ, then |y(n)| < ϵ for all
n = 1, 2, . . . . With the aid of the estimates above we find that

|y(1)(n+ 1)| ≥ (µ− ϵ)|y(1)(n)| − ϵ(|y(1)(n)|+ |y(2)(n)|),

and
|y(2)(n+ 1)| ≤ (1 + ϵ)|y(2)(n)|+ ϵ(|y(1)(n)|+ |y(2)(n)|).

so
|y(1)(n+ 1)| − |y(2)(n+ 1)| ≥ (µ− 3ϵ)|y(1)(n)| − (1 + 3ϵ)|y(2)(n)|.

We have not as yet specified ϵ: choose it less than 1
6 (µ− 1). Then

|y(n+ 1)| ≥ |y(1)(n+ 1)| − |y(2)(n+ 1)| ≥ (1 + 3ϵ)
(
|y(1)(n)| − |y(2)(n)|

)
.

Now choosing |y(1)(0)| − |y(2)(0)| > 0, we find that

|y(n)| ≥ |y(1)(n)| − |y(2)(n)| ≥ (1 + 3ϵ)n
(
|y(1)(0)| − |y(2)(0)|

)
,

implying that the left-hand side grows without bound as n → ∞. This contra-
dicts the assumption of stability.
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