20 1. Real Numbers

1.28 Theorem. The interval (0,1) in R is not countable.

Proof. Let E be a countable subset of (0,1), say E = {z1,z2,...}. We make
the following practically trivial remark: given a nonempty open interval
(a,b) in R, and z € R, there exist ¢ < d such that [c,d] C (a,b) and T ¢
[c, d]. By this remark, we can choose a; < by such that z; ¢ [a1,b1] C (0,1).
Having chosen ay,b1,a2,b2, .- -, an, by such that ax < by and =x ¢ [ak, bk
for k = 1,2,...,n, and such that [ax+1,bk+1] C (ak, bp)fork=1,...,n—1,
the remark enables us to choose an41 < bny1 such that [@n+1,bns1] C
(@n,by) and Trpi1 & [an+ 1,bn+1]. Thus we have inductively defined for each
n € N a closed interval J, = [an, bn], such that Jo+1 C Jn and =, ¢ J, for
every n € N. According to Theorem 1.27, there exists z € Moy Jn- Since
Tm & (o, Jn for every m € N, we conclude x ¢ E. Thus E # (0,1). #

1.8 Algebraic and Transcendental Numbers

1.29 Definition. A real number z is said to be algebraic if there exists a
positive integer n, and integers ag,ai, - --,0n; On # 0, such that

anx” + An1Z" P+ +a1z+ a0 =0 (1.1)

We say that z is algebraic of degree n if n is the smallest positive inte-
ger for which x satisfies an equation of the form (1.1). We say that z is
transcendental if it is not algebraic.

We were motivated to expand from Q to R in order to be able to solve
the equation z2 = 2. We found that in R we could solve any equation
z™ = a, but that still leaves open the possibility that every real number is
algebraic. There are at least two ways to see that this is not so.

1.30 Proposition. The set of transcendental numbers is uncountable.

It is perhaps a little disappointing that this existence proof for transcen-
dental numbers fails to exhibit a single one. Here is another approach. The
following theorem of Liouville says that algebraic numbers which are not
rational cannot be approximated too closely by rational numbers.
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yeorem. Let © be an algebraic number of degree not more than n.
exists a constant C > 0 such that for any integers p, (g >0)
/q, we have
" c
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f(t) = ant™ + an—1t""1 + -+« + ao, where a; is an integer for
..,n, such that f(z) = 0. Then f(t) = (t - x)g(t), where g is a
1 of degree less than n (with real coefficients). Since g has at most
s, there exists § > 0 such that 0 < |t — z| < § implies g(t) # 0,
‘also f(t) # 0. It is easy to see that there exists M such that
M for all t with [t —z| < 6. For instance, if g(t) = 775 bst, choose
ge enough so that [z—4,2+6] C [~N, N], and take M = pavaral NI ER
pose | — p/q| < 6, = # p/q. Then g(p/q) # 0, so we have

— f(p/Q) _ anp™ + O/n_lp"‘lq + -+ agq”
q"g(p/q)

)

g = glp/g)

;‘umerator of this last fraction is an integer, and it is not 0, since
 for 0 < |t — z| < 6. Hence the numerator has absolute value at
and we have
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» —p/q| > 6, then of course |z — p/q| > 6/q", since ¢ > 1. Thus
r any C smaller than both 6 and 1 /M gives us the theorem. |

Ekample. Let z; = 3, and inductively define

Tp = Tp-1+ %—,

Tppm—Tn = 2~ (D 4. o= (nm)t < 2.2~ (n+1! for every n, m. Let
up{z1,22,...}. We have then z — z, < 2- -+ But z, = pp2~™
e integer p. Let ¢, = 2, so 2(n+1)! = gn+l We have then the
ties 0 < T —Pn/qn =T —Tn < 2- o=+ = (2/q,,)/q? for every
ording to Theorem 1.31, this is impossible if z is algebraic, so z is
dental.

ExiStence of R

ction, we outline the construction first given by Dedekind. Dede-
p;éSented his real numbers as “cuts” of the line, i.e., as pairs of sets
nals, one set lying entirely to the left of the other, the union being
of all rationals. Nowadays, we dispense with one element of the



