1. [10] Solve the differential equation $y^{\prime}+y=e^{-t}, y(0)=0$.

Answer: The integrating factor satisfies $\frac{\mu^{\prime}}{\mu}=1$. By inspection, we choose $\mu(t)=e^{t}$.

$$
\left(e^{t} y\right)^{\prime}=e^{t}\left(y^{\prime}+y\right)=e^{t} e^{-t}=1
$$

Integrate from 0 to t,

$$
e^{t} y(t)-e^{0} y(0)=t
$$

and hence using $y(0)=0$, we have

$$
y(t)=t e^{-t}
$$

2. [15] Consider the autonomous equation

$$
\frac{d y}{d t}=y(y-1)(y-2), y(0)=y_{0}
$$

where y_{0} is a non-negative constant. Sketch the graph of $f(y)$ versus y, determine the critical (equilibrium) points, and classify each one as asymptotically stable or unstable.

Answer: Graph of $f(y)$ versus y :

$$
0<y<1 \quad \text { ard } \quad y>2
$$

3. [20] Consider the differential equation $y+(2 x-y) y^{\prime}=0$.
(a) (10 points) Show that the following equation is not exact, but becomes exact when multiplied by an integrating factor in the form of $\mu(y)$, a function of y only.
(b) (10 points) Find the equation for its integral curves. You may leave the answer in implicit form.

Answer: $M(x, y)=y, N(x, y)=(2 x-y)$.

$$
M_{y}-N_{x}=1-2 \neq 0 \quad \Longrightarrow \quad \text { not exact. }
$$

Multiply the DE by the integrating factor $\mu(y)$, a function of y only: $y \mu(y)+\mu(y)(2 x-y) y^{\prime}=0$. So

$$
\tilde{M}(x, y)=y \mu(y) \quad N(x, y)=\mu(y)(2 x-y)
$$

and $\tilde{M}_{y}-\tilde{N}_{x}=y \mu^{\prime}(y)+\mu(y)-2 \mu(y)=y \mu^{\prime}(y)-\mu(y)$. Hence we need to choose $\mu(y)$ so that

$$
\frac{\mu^{\prime}}{\mu}=\frac{1}{y} \quad \Longleftrightarrow \quad \frac{d}{d y}(\ln \mu)=\frac{1}{y} .
$$

By inspection, we can choose $\mu(y)=y$. Hence the DE is exact after multiplying by y

$$
\begin{equation*}
y^{2}+\left(2 x y-y^{2}\right) y^{\prime}=0 . \tag{1}
\end{equation*}
$$

Sine the DE (1) is exact, he integral curves are given by $\varphi(x, y)=C$, where $\varphi_{x}=y^{2}$ and $\varphi_{y}=2 x y-y^{2}$. From the latter we have

$$
\varphi(x, y)=x y^{2}-\frac{y^{3}}{3}+h(x) \quad \Longrightarrow \quad \varphi_{x}=y^{2}+h^{\prime}(x)
$$

Since $\varphi_{x}=y^{2}$, we see that $h^{\prime}(x)=0$ and we may choose $h(x)=0$. Hence $\varphi(x, y)=x y^{2}+\frac{y^{3}}{3}$, and the integral curves are given by

$$
x y^{2}-\frac{y^{3}}{3}=C
$$

4. [15] Solve the given initial value problem, and describe its behavior for increasing t.

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0, \quad y(0)=0, y^{\prime}(0)=2
$$

Answer: Solving the characteristic equation

$$
r^{2}-6 r+9=(r-3)^{2}=0 \quad \Longrightarrow \quad r_{1}=r_{2}=3
$$

We have $y_{1}(t)=e^{3 t}$. In general, let $y(t)=v(t) e^{3 t}$, then

$$
\begin{aligned}
y^{\prime \prime}-6 y^{\prime}+9 y & =\left(v^{\prime \prime} e^{3 t}+6 v^{\prime} e^{3 t}+9 v e^{3 t}\right)-6\left(v^{\prime} e^{3 t}+3 v e^{3 t}\right)+9 v e^{3 t} \\
& =e^{3 t}\left[v^{\prime \prime}+6 v^{\prime}+9 v-6 v^{\prime}-18 v+9 v\right]=e^{3 t} v^{\prime \prime}
\end{aligned}
$$

Hence $v^{\prime \prime}=0$ and we deduce that $v(t)=c_{1} t+c_{2}$ and $y(t)=e^{3 t}\left(c_{1} t+\right.$ $\left.c_{2}\right)$. It remains to solve for c_{1} and c_{2}.

$$
y(0)=0 \quad \Longrightarrow \quad c_{2}=0 \quad \text { and } \quad y(t)=c_{1} t e^{3 t}
$$

Hence $y^{\prime}(t)=c_{1}(1-3 t) e^{3 t}$ and

$$
y^{\prime}(0)=2 \quad \Longrightarrow \quad c_{1}=2
$$

Hence $y(t)=2 t e^{3 t} . y(t) \rightarrow \infty$ as t increases.
5. [10] Consider the first order difference equation $y_{n+1}=f\left(y_{n}\right)$, where $f(s)=1-2 s$. Find $y_{1}, y_{2}, \ldots, y_{5}$ in terms of y_{0} and also y_{n} in terms of y_{0}.

Answer:

$$
\begin{aligned}
& y_{1}=1-2 y_{0} \\
& y_{2}=1-2\left(1-2 y_{0}\right)=1-2+2^{2} y_{0} \\
& y_{3}=1-2\left(1-2+2^{2} y_{0}\right)=1-2+2^{2}-2^{3} y_{0} \\
& y_{4}=1-2\left(1-2+2^{2}-2^{3} y_{0}\right)=1-2+2^{2}-2^{3}+2^{4} y_{0} \\
& y_{5}=1-2\left(1-2+2^{2}-2^{3}+2^{4} y_{0}\right)=1-2+2^{2}-2^{3}+2^{4}-2^{5} y_{0}
\end{aligned}
$$

Hence, the general formula for y_{n} reads

$$
\begin{aligned}
y_{n} & =1-2+2^{2}-2^{3}+\cdots+(-2)^{n-1}+(-2)^{n} y_{0} \\
& =\frac{(-2)^{n}-1}{-2-1}+(-2)^{n} y_{0} \\
& =\frac{1-(-2)^{n}}{3}+(-2)^{n} y_{0}
\end{aligned}
$$

