\qquad

1. [10] Determine the order of the given differential equations, and state whether the equation is linear or nonlinear.

$$
\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t t, \quad \quad y^{\prime \prime \prime}+t y^{\prime}+\left(\cos ^{2} t\right) y=t^{3}
$$

Answer: (2, nonlinear), (3, linear).
2. [10] Find the solution of the given initial value problem.

$$
y^{\prime}-y=1, \quad y(0)=-2 .
$$

Answer: Using the method of integrating factor:
Solving $\frac{d \ln \mu(t)}{d t}=-1$, we take $\mu(t)=e^{-t}$. Next, multiply both sides by $\mu(t)=e^{-t}$:

$$
\frac{d}{d t}\left[e^{-t} y\right]=e^{-t} \frac{d y}{d t}-e^{-t} y=e^{-t}
$$

Integrate from 0 to t :

$$
e^{-t} y-e^{0} y(0)=-\left(e^{-t}-1\right)=1-e^{-t}
$$

Hence

$$
y=e^{t} y(0)+e^{t}-1=-2 e^{t}+e^{t}-1=-e^{t}-1
$$

(Don't forget to just plug-in the solution to check your answer.)
3. [10] Find the solution of the given initial value problem and state the maximum interval of definition determined by the given initial data,

$$
\frac{d y}{d x}=-\frac{x}{2 y}, \quad y(0)=1
$$

Answer: Rewrite the DE:

$$
x+2 y \frac{d y}{d x}=0
$$

i.e. The DE is separable.

$$
\frac{d}{d x}\left[\frac{x^{2}}{2}+y^{2}\right]=0 \quad \Longrightarrow \quad \frac{x^{2}}{2}+y^{2}=C
$$

To determine the constant C, plug in $\left(x_{0}, y_{0}\right)=(0,1): C=\frac{0}{2}+1=1$. Hence the integral curve is given implicitly by

$$
\frac{x^{2}}{2}+y^{2}=1
$$

The maximum interval of definition is $-\sqrt{2}<x<\sqrt{2}$ (the solution being the upper half of the ellipse).

