Math 2255, Spring 2017, Quiz 2, Feb 1

Name:

1. [10] Determine the interval of definition of the solution to the following differential equation.

$$
\frac{d y}{d x}=\frac{x^{3}-2 y}{x}, \quad y(1)=1
$$

Answer: Rewrite the DE as $\frac{d y}{d x}+\frac{2}{x} y=x^{2}$. The DE is linear. Hence, by Theorem 2.4.1, the solution exists in the interval where $p(x)=\frac{2}{x}$ and $g(x)=x^{2}$ are continuous. The maximal interval for which $p(x)$ and $g(x)$ are continuous, and which includes the point $x_{0}=1$, is

$$
0<x<\infty
$$

2. [10] Use Euler's method with $h=0.1$ to compute the approximate values of the solution at $t=0.1,0.2$.

$$
y^{\prime}-y=1, \quad y(4)=-2+\sqrt{3}
$$

Answer:

$$
f(y)=1+y, \quad h=0.1, \quad t_{0}=0, \quad t_{1}=0.1, \quad t_{2}=0.2
$$

And by Euler's method with stepsize $h=0.1$:

$$
\begin{aligned}
y_{0} & =y(0)=-2 \\
y(0.1) \approx y_{1} & =y_{0}+f\left(y_{0}\right) h=-2+(1-2)(0.1)=-2.1 \\
y(0.2) \approx y_{2} & =y_{1}+f\left(y_{1}\right) h=-2.1+(1-2.1)(0.1)=-2.21
\end{aligned}
$$

3. [10] Solve the given differential equation, and solve for an explicit formula for y in terms of x.

$$
\frac{d y}{d x}=-\frac{2 x y+y^{2}+1}{x^{2}+2 x y}, \quad y(0)=1 .
$$

Answer: Since it is not linear and not (clearly) separable, we check whether it is an exact equation. TO this end, rewrite the DE as

$$
\underbrace{\left(2 x y+y^{2}+1\right)}_{M(x, y)}+\underbrace{\left(x^{2}+2 x y\right)}_{N(x, y)} \frac{d y}{d x}=0 .
$$

Now,

$$
M_{y}=2 x+2 y \quad \text { and } \quad N_{x}=2 x+2 y
$$

are equal, so the DE is exact. Next, we need to find $\varphi(x, y)$ so that $\varphi_{x}(x, y)=M(x, y)=2 x y+y^{2}+1, \quad$ and $\quad \varphi_{y}(x, y)=N(x, y)=x^{2}+2 x y$.

Integrating the first relation with respect to x, we have

$$
\varphi(x, y)=x^{2} y+x y^{2}+x+h(y)
$$

Differentiating, we have $\varphi_{y}=x^{2}+2 x y+h^{\prime}(y)$. Comparing with (1), we deduce that $h^{\prime}(y)=0$ and we may choose $h(y)=0$. Hence, solutions are given by

$$
\varphi(x, y)=x^{2} y+x y^{2}+x=C .
$$

And

$$
C=\varphi(4,-2+\sqrt{3})=16(-2+\sqrt{3})+4(7-4 \sqrt{3})+4)=0 .
$$

Hence $0=x^{2} y+x y^{2}+x=x\left(x y+y^{2}+1\right)$. Since $x_{0}=4$, we deduce that $y^{2}+x y+1=0$. i.e.

$$
y=\frac{-x \pm \sqrt{x^{2}-4}}{2} .
$$

Using $y(4)=-2+\sqrt{3}$ again, we deduce that

$$
y=\frac{-x+\sqrt{x^{2}-4}}{2}, \quad \text { for } x>4 .
$$

