1. [10] Consider a linear, homogeneous, second order differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ where $p(t), q(t)$ are continuous functions for all real number t. Which of the following is not true? No explanation is needed.
(a) There is exactly one solution to the $\mathrm{DE} y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ together with the initial condition $y(0)=0, y^{\prime}(0)=0$.
(b) There is at most one solution to the DE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ together with the initial condition $y(0)=1$.
(c) There are at least two solutions to the $\mathrm{DE} y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ together with the initial condition $y(0)=2$.
(d) There are at least eleven solutions to the $\mathrm{DE} y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ together with the initial condition $y^{\prime}(0)=3$.

Answer: (b) is false, since for any prescribed values $y(0)=1$ and $y^{\prime}(0)=y_{0}^{\prime}$, the DE has a solution. So in fact the DE has infinitely many solutions if we only prescribe one initial condition of $y(0)=1$
2. [10] Find the general solution of the $\mathrm{DE} y^{\prime \prime}-4 y^{\prime}+\frac{25}{4} y=0$.

Answer: Solving the characteristic equation:

$$
r^{2}-4 r+\frac{25}{4}=0, \quad \Longrightarrow \quad r_{1}=2+\frac{3}{2} i, \quad r_{2}=2-\frac{3}{2} i
$$

And the general solution is

$$
y(t)=e^{2 t}\left(c_{1} \cos \left(\frac{3}{2} t\right)+c_{2} \sin \left(\frac{3}{2} t\right)\right)
$$

3. [10] Solve the $\mathrm{DE} y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=4, y^{\prime}(0)=-6$. Determine the behavior of solutions as t increases.
Solving the characteristic equation:

$$
r^{2}+4 r+3=(r+1)(r+3)=0, \quad \Longrightarrow \quad r_{1}=-1, \quad r_{2}=-3 .
$$

The general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{-3 t}$. It remains to solve for c_{1}, and c_{2}. Compute

$$
y^{\prime}(t)=-c_{1} e^{-t}-3 c_{2} e^{-3 t} .
$$

Then

$$
\begin{array}{lll}
y(0)=4 & \Longrightarrow & c_{1}+c_{2}=4 \\
y^{\prime}(0)=-6 & \Longrightarrow \quad-c_{1}-3 c_{2}=-6
\end{array}
$$

Solving, we get $c_{2}=1$ and $c_{1}=3$. Hence

$$
y(t)=3 e^{-t}+e^{-3 t} .
$$

As t increases, $y(t) \rightarrow 0$.

