1. [10] Find the solution of the given initial value problem, by the method of undetermined coefficients.

$$
y^{\prime \prime}+y^{\prime}-2 y=3 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Answer: First, the roots to the characteristic equation $r^{2}+r-2$ are $r_{1}=-2, r_{2}=1$. So general solution to the homogeneous problem is

$$
u_{c}(t)=c_{1} e^{-2 t}+c_{2} e^{t}
$$

Next, we find a particular solution. Since $3 e^{t}$ is a solution to the homogeneous problem, we let $Y(t)=A t e^{t}$. Then

$$
Y^{\prime}=A e^{t}(1+t), \quad Y^{\prime \prime}=A e^{t}(2+t)
$$

Hence
$L[Y]=Y^{\prime \prime}+Y^{\prime}-2 Y=A e^{t}[(2+t)+(1+t)-2 t]=3 A e^{t} \Longrightarrow A=1$.
Then the general solution is given by

$$
y(t)=u_{c}(t)+Y(t)=c_{1} e^{-2 t}+c_{2} e^{t}+t e^{t}
$$

differentiating,

$$
y^{\prime}(t)=-2 c_{1} e^{-2 t}+c_{2} e^{t}+\frac{1}{3} e^{t}(1+t)
$$

By the initial value $y(0)=0$ and $y^{\prime}(0)=1$, we have

$$
c_{1}+c_{2}=0, \quad-2 c_{1}+c_{2}+1=1
$$

Hence we have $c_{1}=0$ and $c_{2}=0$, whence

$$
y(t)=t e^{t}
$$

2. [10] Use the method of reduction of order to find a second solution of the given differential equation.

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0, \quad t>0, \quad y_{1}(t)=t^{2} .
$$

Answer: Let $y(t)=v(t) y_{1}(t)=t^{2} v(t)$. Then

$$
y^{\prime}=2 t v+t^{2} v^{\prime}, \quad y^{\prime \prime}=2 v+4 t v^{\prime}+t^{2} v^{\prime \prime} .
$$

Hence

$$
\begin{aligned}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y & =t^{2}\left(2 v+4 t v^{\prime}+t^{2} v^{\prime \prime}\right)-4 t\left(2 t v+t^{2} v^{\prime}\right)+6 t^{2} v \\
& =4 t^{3} v^{\prime}+t^{4} v^{\prime \prime}-4 t^{3} v^{\prime} \\
& =t^{4} v^{\prime \prime}
\end{aligned}
$$

Hence we need $v^{\prime \prime}=0$, i.e. $v(t)=c_{1}+c_{2} t$. Therefore, we deduce $y(t)=\left(c_{1}+c_{2} t\right) t^{2}=c_{1} t^{2}+c_{2} t^{3}$. i.e. the second equation is

$$
y_{2}(t)=t^{3} \text {. }
$$

3. [10] A mass of 5 kg stretches a spring 10 cm . The mass is acted on by an external force of $10 \sin (t / 2) \mathrm{N}$ (where N stands for newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is $4 \mathrm{~cm} / \mathrm{s}$. If the mass is set in motion from its equilibrium position with an initial velocity of $3 \mathrm{~cm} / \mathrm{s}$, formulate (in S.I. units) the initial value problem describing the motion of the mass. [Hint: one newton $N$ produces, for a mass of 1 kg , an acceleration of $1 \mathrm{~ms}^{-2}$; the gravitational constant being $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}$-2 and $1 \mathrm{~m}=100 \mathrm{~cm}$.]

Answer: The mass $m=5 \mathrm{~kg}$. By Hooke's law:

$$
m g=k L \quad \Rightarrow \quad(5 \mathrm{~kg})\left(9.8 \mathrm{~ms}^{-2}\right)=k(0.1 \mathrm{~m}) \quad \Rightarrow \quad k=490 \mathrm{~kg} \mathrm{~s}^{-2} .
$$

Next, to find the damping constant $\gamma$ :

$$
2 N=2 \mathrm{ky} \mathrm{~m} \mathrm{~s}^{-2}=\gamma\left(0.04 \mathrm{~ms}^{-1}\right) \Rightarrow \gamma=50 \mathrm{~kg} \mathrm{~s}^{-1} .
$$

Hence the problem can be formulated as

$$
\left\{\begin{array}{l}
5 u^{\prime \prime}+50 u^{\prime}+490 u=10 \sin \left(\frac{t}{2}\right), \\
u(0)=0, \quad u^{\prime}(0)=0.04,
\end{array}\right.
$$

where the unit for $u$ is $m$ and the unit for $t$ is $s$.

