Uniform convexity. III.

[Parts I and II appeared in the same Bull. 47, 313–317, 504–507 (1941); cf. MR0003446 (2,221b), 314.] It is shown that a Banach space which is locally uniformly convex near some point \(b \) (in the sense that the condition for uniform convexity holds in some sphere about \(b \)) is isomorphic to a uniformly convex space. Another result gives a necessary condition for isomorphism with a uniformly convex space. For a suitably restricted Banach space \(T \) of real functions on a range \(S \) the following result is established. Let \(B_s, s \in S \), be Banach spaces and \(P_T(B_s) \) consist of those functions \(b = b_s \) with \(b_s \in B_s \) and \((\|b_s\|) \in T \). Define a norm in \(P_T(B_s) \) by \(\|b\| = \|\|b_s\|\| \). The space \(P_T(B_s) \) is uniformly convex if and only if \(T \) is uniformly convex and the spaces \(B_s \) have a common modulus of convexity.

Reviewed by N. Dunford

© Copyright American Mathematical Society 1944, 2006