On the Equation $\nabla \cdot (\nabla u^{p-2} \nabla u) + \lambda u^{p-2} u = 0$

Peter Lindqvist

Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28199005%29109%3A1%3C157%3AOTE%3E2.0.CO%3B2-2

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society
©1990 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Tue May 21 15:30:08 2002
ON THE EQUATION
\[\text{div}(|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0 \]

PETER LINDQVIST

(Communicated by Barbara L. Keyfitz)

Abstract. The first eigenvalue \(\lambda = \lambda_1 \) for the equation
\[\text{div}(|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0 \]
is simple in any bounded domain. (Through the nonlinear counterpart to the Rayleigh quotient \(\lambda_1 \) is related to the Poincaré inequality.)

1. Introduction

The first eigenvalue of the operator \(\text{div}(|\nabla u|^{p-2} \nabla u) \) is here defined as the least real number \(\lambda \) for which the equation

\[(1.1) \quad \text{div}(|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0 \]

has a nontrivial solution \(u \) with zero boundary data in a given bounded domain in the \(n \)-dimensional Euclidean space. The first eigenvalue is the minimum of the Rayleigh quotient:

\[(1.2) \quad \lambda = \min_u \frac{\int |\nabla u|^p \, dx}{\int |u|^p \, dx} \]

Here \(1 < p < \infty \), and in the linear case \(p = 2 \) one obtains "the principal frequency"; the associated first eigenfunction \(u \) describes the shape of a membrane when it vibrates emitting its gravest tone, cf. [6]. (We shall often use the term principal frequency for the nonlinear cases as well.)

1.3. Theorem. The first eigenvalue is simple in any bounded domain \(\Omega \) in \(\mathbb{R}^n \), i.e., all the associated first eigenfunctions \(u \) are merely constant multiples of each other.

In the classical linear case, i.e., when \(p = 2 \), this is a well-known result [4, Theorem 8.38, p. 214]. This phenomenon is a reflection of the distinguishing feature of the first eigenfunctions: they never change signs in \(\Omega \). Higher eigenvalues are not simple even in the case \(\Delta u + \lambda u = 0 \), cf. [6, §§5.9B and 7.8].

Received by the editors February 16, 1989 and, in revised form, July 4, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 35J70, 35J60, 35P30, 49A22.
Various versions of Theorem 1.3 are known for general exponents \(p \), but, so far as we know, only for a very restricted class of domains. Our contribution is to prove the same result for any bounded domain.

F. de Thélin has observed that there exists essentially only one first eigenfunction among the radial functions in a ball [11]. An immediate consequence of the interesting work [8] of Sakaguchi is that the first eigenvalue is simple in convex domains.\(^1\) Theorem 1.3 has been extended to domains of Hölder class \(C^{2,\alpha} \) by Anane [1]. We have been informed that Bhattacharya has further extended this to \(C^2 \)-domains. This simplicity of the first eigenvalue in \(C^2 \)-domains has been proved in a slightly more general setting by Veron and Guedda, cf. [14]. Unfortunately, these proofs rely heavily on deep global regularity results for the gradients of the first eigenfunctions [3], [12]. As this kind of global estimate cannot hold in arbitrary domains, such an approach will artificially restrict the class of domains.

The objective of this note is to present a natural proof for Theorem 1.3. Our method is direct, and no advanced tools are needed. In fact, the proof is based on a few immediate observations and a refined choice of the test-functions in [1].

The analysis can be readily extended to homogeneous eigenvalue problems of the form

\[
\text{div} \mathbf{A}(x, \nabla u(x)) + \lambda \rho(x)|u(x)|^{p-2}u(x) = 0
\]

where \(\mathbf{A}(x, w) \approx |w|^{p-2}w \) fulfills certain restrictive structural conditions and \(\rho(x) \geq 0 \). The proof is a simple adaptation of the arguments presented here.

Finally, we want to mention that to any bounded domain \(\Omega \) there is a constant \(c(\Omega) \) such that the Poincaré inequality

\[
(1.4) \quad \int_{\Omega} |u|^p \, dx \leq c(\Omega) \int_{\Omega} |\nabla u|^p \, dx
\]

is valid for every \(u \in C_{\infty}^0(\Omega) \) or, more generally, for every \(u \in W^{1,p}_0(\Omega) \). The best constant \(c(\Omega) \) is the reciprocal of the first eigenvalue in \(\Omega \).

Throughout this paper, \(\Omega \) denotes an arbitrary bounded domain in \(\mathbb{R}^n \).

2. The Rayleigh quotient

Among the equations

\[
\text{div}(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{q-2}u = 0,
\]

\(1 < p, q < \infty \), only the homogeneous case \(q = p \) has the proper structure of a “typical eigenvalue problem”, to quote an expression in [2], where this phenomenon has been studied. In defining the eigenvalues for the operator \(\text{div}(|\nabla u|^{p-2}\nabla u) \) in a given domain \(\Omega \subset \mathbb{R}^n \) we shall interpret equation (1.1) in the weak sense.

\(^1\)Note added in proof. B. Kawohl has kindly pointed out to us that Sakaguchi’s proof is valid in \(C^2 \)-domains.
2.1. **Definition.** We say that \(\lambda \) is an eigenvalue, if there exists a continuous function \(u \in W_0^{1, p}(\Omega), \ u \neq 0, \) such that

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \eta \ dx = \lambda \int_{\Omega} |u|^{p-2} u \eta \ dx
\]

whenever \(\eta \in W_0^{1, p}(\Omega). \) The function \(u \) is called an eigenfunction.

The continuity of \(u \) is a redundant requirement in the definition: the weak solutions of (2.2) can be made continuous after a redefinition in a set of measure zero. This is standard elliptic regularity theory. (As a matter of fact, one even has \(u \in C_{\text{loc}}^{1, \alpha}(\Omega) \) for some \(\alpha > 0, \) cf. [12] and [3].)

The least eigenvalue, say \(\lambda_1 = \lambda_1(\Omega), \) is obtained as the minimum of the Rayleigh quotients, i.e.,

\[
\lambda_1 = \inf_v \frac{\int_{\Omega} |\nabla v|^p \ dx}{\int_{\Omega} |v|^p \ dx},
\]

the infimum being taken among all \(v \in W_0^{1, p}(\Omega), \ v \neq 0. \) Alternatively, one can further restrict the admissible functions to those in \(C_0^\infty(\Omega). \) It is easily seen that this minimization problem is equivalent to equation (2.2) with \(\lambda = \lambda_1 \).

We say that \(\lambda_1 \) is the *first eigenvalue* or the *principal frequency* and the corresponding eigenfunction is called the *first eigenfunction*. In a *bounded* domain \(\Omega \) the existence of a first eigenfunction (and of the principal frequency \(\lambda_1 > 0 \)) is established via a minimizing sequence \(u_1, u_2, \ldots \) for the Rayleigh quotient. By homogeneity the normalization

\[
\int_{\Omega} |u_k|^p \ dx = 1 \quad (k = 1, 2, \ldots)
\]

is possible. In this standard procedure one usually uses the Rellich-Kondraczov imbedding theorem [9, §11, pp. 82–85] and the Radon-Riesz theorem [7, §37, p. 71] related to the uniform convexity of \(L^p(\Omega). \) See [10].

If \(u \) minimizes (2.3), so does \(|u|. \) Thus the existence of a first eigenfunction not changing signs in \(\Omega \) is proved:

2.4. **Lemma.** *In any bounded domain there is a first eigenfunction \(u_{\lambda_1} \geq 0 \) corresponding to the principal frequency \(\lambda_1 > 0. \)*

Furthermore, \(u_{\lambda_1} > 0 \) if \(u_{\lambda_1} \geq 0. \) This is a finer point following from the Harnack inequality [13, Theorem 1.1, p. 724].

3. **The first eigenfunctions**

As before, \(\Omega \) denotes an arbitrary bounded domain. The crucial part of the proof for Theorem 1.3 is to establish that positive eigenfunctions are essentially unique. The general case can be reduced to this situation. To this end, note that if \(u \) is a first eigenfunction, so is \(|u|. \) By Harnack's inequality [13, Theorem 1.1, p. 724] either \(|u| > 0 \) in the whole domain or \(|u| \equiv 0, \) the latter case being excluded for eigenfunctions. By continuity, either \(u \) or \(-u \) is positive in the whole domain. Hence Theorem 1.3 follows from the following lemma.
3.1. **Lemma.** Suppose that \(u \geq 0 \) and \(v \geq 0 \) are eigenfunctions both corresponding to \(\lambda_1 \). Then \(u \) and \(v \) are proportional.

Proof. As Anane has observed in [1], the result would follow by certain balanced calculations, if the function \(\eta = u - v^p u^{1-p} \) were, a priori, admissible as test-function in

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \eta \, dx = \lambda_1 \int_{\Omega} |u|^{p-2} u \eta \, dx
\]

and \(v - u^p v^{1-p} \) in the similar equation for \(v \). However, this seems to require some regularity of the boundary \(\partial \Omega \). For "irregular domains" this is the crucial point.

Therefore we use the modified test-functions

\[
\eta = \frac{(u + \varepsilon)^p - (v + \varepsilon)^p}{(u + \varepsilon)^p - 1} \quad \text{and} \quad \frac{(v + \varepsilon)^p - (u + \varepsilon)^p}{(v + \varepsilon)^p - 1},
\]

\(\varepsilon \) being a positive parameter. Then

\[
\nabla \eta = \left\{ 1 + (p - 1) \frac{(v + \varepsilon)^p}{u + \varepsilon} \right\} \nabla u - p \frac{(v + \varepsilon)^p}{u + \varepsilon} \nabla v,
\]

and, by symmetry, the gradient of the test-function in the corresponding equation for \(v \) has a similar expression with \(u \) and \(v \) interchanged. Set

\[
uvarepsilon = u + \varepsilon, \quad v_{\varepsilon} = v + \varepsilon.
\]

Inserting the chosen test-functions into their respective equations and adding these, we obtain the expression

\[
\lambda_1 \int_{\Omega} \left[\frac{u_{\varepsilon}^{p-1} - v_{\varepsilon}^{p-1}}{u_{\varepsilon}^{p-1} - v_{\varepsilon}^{p-1}} \right] (u_{\varepsilon}^p - v_{\varepsilon}^p) \, dx
\]

\[
= \int_{\Omega} \left[\left\{ 1 + (p - 1) \frac{(v_{\varepsilon}^p)}{u_{\varepsilon}^p} \right\} |\nabla u_{\varepsilon}|^p + \left\{ 1 + (p - 1) \frac{(u_{\varepsilon}^p)}{v_{\varepsilon}^p} \right\} |\nabla v_{\varepsilon}|^p \right] \, dx
\]

\[
- \int_{\Omega} \left[p \left(\frac{v_{\varepsilon}^p}{u_{\varepsilon}^p} \right)^{p-1} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon} + p \left(\frac{u_{\varepsilon}^p}{v_{\varepsilon}^p} \right)^{p-1} |\nabla v_{\varepsilon}|^{p-2} \nabla v_{\varepsilon} \cdot \nabla u_{\varepsilon} \right] \, dx
\]

\[
= \int_{\Omega} (u_{\varepsilon}^p - v_{\varepsilon}^p)(|\nabla \log u_{\varepsilon}|^p - |\nabla \log v_{\varepsilon}|^p) \, dx
\]

\[
- \int_{\Omega} p v_{\varepsilon}^p |\nabla \log u_{\varepsilon}|^{p-2} |\nabla \log v_{\varepsilon} - \nabla \log u_{\varepsilon}| d\mathbf{v} = \int_{\Omega} p u_{\varepsilon}^p |\nabla \log v_{\varepsilon}|^{p-2} |\nabla \log u_{\varepsilon} - \nabla \log v_{\varepsilon}| d\mathbf{v}
\]

and here the last member is clearly \(< 0\) by inequality (4.1) in the appendix.

It is apparent that

\[
\lim_{\varepsilon \to 0^+} \int_{\Omega} \left[\frac{u_{\varepsilon}^{p-1} - v_{\varepsilon}^{p-1}}{u_{\varepsilon}^{p-1} - v_{\varepsilon}^{p-1}} \right] (u_{\varepsilon}^p - v_{\varepsilon}^p) \, dx = 0.
\]
Let us first consider the case \(p \geq 2 \). According to inequality (4.3) in the appendix we have

\[
0 \leq \frac{1}{2^{p-1} - 1} \int_{\Omega} \left(\frac{1}{v_{e}^{p}} + \frac{1}{u_{e}^{p}} \right) |v_{e} \nabla u_{e} - u_{e} \nabla v_{e}|^{p} \, dx \\
\leq -\lambda_{1} \int_{\Omega} \left[\left(\frac{u}{u_{e}} \right)^{p-1} - \left(\frac{v}{v_{e}} \right)^{p-1} \right] (u_{e}^{p} - v_{e}^{p}) \, dx
\]

(3.7)

for every \(\varepsilon > 0 \). (Inequality (4.3) was used with \(w_{1} = \nabla \log u_{e}, w_{2} = \nabla \log v_{e} \) and vice versa.) Recalling (3.6), letting \(\varepsilon \) tend toward zero through any positive sequence \(\varepsilon_{1}, \varepsilon_{2}, \ldots \), and using Fatou’s lemma in (3.7), we finally arrive at the conclusion that \(v \nabla u = u \nabla v \) a.e. in \(\Omega \). Hence there is a constant \(\kappa \) such that \(u = \kappa v \) a.e. in \(\Omega \). By continuity \(u = \kappa v \) at every point in \(\Omega \). This proves the case \(p \geq 2 \).

The case \(1 < p < 2 \) is very similar. Applying inequality (4.4) in the appendix on (3.5) we obtain

\[
0 \leq C(p) \int_{\Omega} (u_{e} v_{e})^{p} (u_{e}^{p} + v_{e}^{p}) |v_{e} \nabla u_{e} - u_{e} \nabla v_{e}|^{2} \frac{1}{(v_{e} |\nabla u_{e}| + u_{e} |\nabla v_{e}|)^{2-p}} \, dx \\
\leq -\lambda_{1} \int_{\Omega} \left[\left(\frac{u}{u_{e}} \right)^{p-1} - \left(\frac{v}{v_{e}} \right)^{p-1} \right] (u_{e}^{p} - v_{e}^{p}) \, dx
\]

(3.8)

for every \(\varepsilon > 0 \). Using (3.6), we again arrive at the desired dependence \(u = \kappa v \) for some constant. This concludes the proof. \(\Box \)

Remarks. (1°) If \(v \geq 0 \) is any eigenfunction in \(\Omega \) corresponding to the eigenvalue \(\lambda \), then \(\lambda = \lambda_{1} \), i.e., only the first eigenfunctions are positive. See [1]. Indeed, if \(u \geq 0 \) denotes a first eigenfunction, then the same procedure as above yields

\[
\int_{\Omega} \left[\lambda_{1} \left(\frac{u}{u_{e}} \right)^{p-1} - \lambda \left(\frac{v}{v_{e}} \right)^{p-1} \right] (u_{e}^{p} - v_{e}^{p}) \, dx \leq 0
\]

and arguing as before, we arrive at

\[
(\lambda_{1} - \lambda) \int_{\Omega} (u_{e}^{p} - v_{e}^{p}) \, dx \leq 0.
\]

This leads to a contradiction, if \(\lambda > \lambda_{1} \), since \(v \) can be replaced by any of the functions \(2v, 3v, 4v, \ldots \). Thus \(\lambda = \lambda_{1} \).

(2°) The first eigenvalue is isolated. This was proved in [1] for sufficiently regular domains, but those proofs can be carried over to general domains. The necessary modifications are suggested by the constructions in the proof for Lemma 3.1.
4. Appendix: An Inequality

The familiar inequality

\[(4.1) \quad |w_2|^p > |w_1|^p + p|w_1|^{p-2}w_1 \cdot (w_2 - w_1)\]

for points in \(\mathbb{R}^n\), \(w_1 \neq w_2\), \(p > 1\), is just a restating of the strict convexity of the mapping \(w \rightarrow |w|^p\). It is sometimes convenient to express this strictness in the following quantitative way:

4.2. Lemma. If \(p \geq 2\), then

\[(4.3) \quad |w_2|^p \geq |w_1|^p + p|w_1|^{p-2}w_1 \cdot (w_2 - w_1) + \frac{|w_2 - w_1|^p}{2^{p-1} - 1}\]

for all points \(w_1\) and \(w_2\) in \(\mathbb{R}^n\).

If \(1 < p < 2\), then

\[(4.4) \quad |w_2|^p \geq |w_1|^p + p|w_1|^{p-2}w_1 \cdot (w_2 - w_1) + \frac{|w_2 - w_1|^2}{(|w_1| + |w_2|)^{2-p}} \cdot C(p)\]

for all points \(w_1\) and \(w_2\) in \(\mathbb{R}^n\). Here \(C(p)\) is a positive constant depending only on \(p\).

Observe that

\[(4.5) \quad \frac{|w_2 - w_1|^2}{(|w_1| + |w_2|)^{2-p}} \leq |w_2 - w_1|^p \quad (1 \leq p \leq 2).\]

Since we have not been able to find any reference for these natural inequalities, we have included a proof.

Proof. For \(p \geq 2\) inequality (4.3) follows from Clarkson’s inequality

\[(4.6) \quad |w_1|^p + |w_2|^p \geq 2 \left| \frac{w_1 + w_2}{2} \right|^p + 2 \left| \frac{w_1 - w_2}{2} \right|^p.\]

To see this, use (4.1) to get

\[(4.7) \quad \left| \frac{w_1 + w_2}{2} \right|^p \geq |w_1|^p + \frac{1}{2}p|w_1|^{p-2}w_1 \cdot (w_2 - w_1).\]

Combining the two inequalities we arrive at

\[(4.8) \quad |w_2|^p \geq |w_1|^p + p|w_1|^{p-2}w_1 \cdot (w_2 - w_1) + 2 \left| \frac{w_1 - w_2}{2} \right|^p.\]

This is the desired inequality but with the constant \(2^{1-p}\) in place of \(\frac{1}{2^{p-1} - 1}\).

Repeating this procedure, starting again with (4.6) but now using (4.8) instead of (4.1), we get the constant improved to \(2^{1-p} + 4^{1-p} + \ldots\). By iteration one finally obtains the constant

\[2^{1-p} + 4^{1-p} + 8^{1-p} + \ldots = \frac{1}{2^{p-1} - 1}\]

in (4.3). (The best constant is irrelevant for our purpose here.)
ON THE EQUATION \[\text{div}(\nabla \phi \nabla u) + \lambda |u|^{p-2}u = 0 \]

Let us now consider the case \(1 < p < 2 \). In order to derive (4.4) we fix \(w_1 \) and \(w_2 \). Expanding the function
\[f(t) = |w_1 + t(w_2 - w_1)|^p \]
according to Maclaurin's formula
\[f(1) = f(0) + f'(0) + \int_0^1 (1-t)f''(t) \, dt \]
we have
\[(4.9) \quad |w_2|^p = |w_1|^p + p|w_1|^{p-2}w_1 \cdot (w_2 - w_1) + \int_0^1 (1-t)f''(t) \, dt \]
provided that \(|w_1 + t(w_2 - w_1)| \neq 0\), when \(0 \leq t \leq 1 \). But the case when \(w_1 + t(w_2 - w_1) = 0 \) for some \(t \), \(0 \leq t \leq 1 \), is easily checked. By direct calculation
\[f''(t) = p(p-2)|w_1 + t(w_2 - w_1)|^{p-4}\{ (w_1 + t(w_2 - w_1)) \cdot (w_2 - w_1) \}^2 \]
\[+ p|w_1 + t(w_2 - w_1)|^{p-2}|w_2 - w_1|^2, \]
and the Schwarz inequality yields
\[(4.10) \quad f''(t) \geq p(p-1)|w_1 + t(w_2 - w_1)|^{p-2}|w_2 - w_1|^2. \]

Returning to (4.9), we have
\[\int_0^1 (1-t)f''(t) \, dt \geq \frac{3}{4} \int_0^{1/4} f''(t) \, dt \]
and, since \(|w_1| + |w_2| \geq |w_1 + t(w_2 - w_1)|\) we finally arrive at (4.4) with \(C(p) = 3p(p-1)4^{-2} \). Here (4.10) was used.□

References

14. L. Veron and M. Guedda, Quasilinear elliptic equations involving critical Sobolev exponents, Université François Rabelais (Tours), 1988. (to appear in Nonlinear Anal.)

Helsinki University of Technology, Institute of Mathematics, SF-02150 Espoo, Finland