A metric graph is a graph where to each edge a length is assigned. The class of rooted metric trees can be thought of as a generalization of, but much richer than, the positive real line \mathbb{R}_+. The goal of this paper is to study spectral asymptotics on such trees. In particular, the authors study the asymptotics of the eigenvalue problem $-\lambda \Delta u = Vu, \ u(\sigma) = 0$, where V is a non-negative function on the metric tree Γ, and σ is the root of Γ.

The authors give sharp asymptotics for the eigenvalues in terms of the potential V and the metric structure of the graph Γ. Their results are particularly sharp when Γ is a regular tree (where all vertices of the same generation have the same branching number, and all edges of the same generation have the same length) and V depends only on the length from the root. In this case, the authors give examples where the asymptotics of the eigenvalues do not obey a Weyl law.

Reviewed by Robert Brooks

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2002, 2006