This paper is concerned with Sturm-Liouville type problems for the equation
\[L_p u + f(r,u) = 0 \] in \(I = [a,b] \) with boundary conditions
\[\gamma_1 u^{(p-1)}(a) + \gamma_2 (r^\alpha u^{(p-1)})(a) = u_0, \]
\[\gamma_3 u^{(p-1)}(b) + \gamma_4 (r^\alpha u^{(p-1)})(b) = u_1 \] (Bu = (u_0, u_1) for short), where
\[L_p u = -r^{-\alpha} r^\alpha u^{(p-1)}', \]
\[u^{(p-1)} \in \mathbb{R} \] (\(i = 1, \ldots, 4 \), \(j = 1, 2 \)) with \(\gamma_1^2 + \gamma_2^2 > 0, \gamma_3^2 + \gamma_4^2 > 0 \). The eigenvalue problem associated with (1)–(3) is
\[L_p u + (q(r) + \lambda s(r)) u^{(p-1)} = 0 \] in \(I \) with the boundary condition
\[Bu = (0,0) \.] Here \(q, s \in L^\infty(I) \) and ess inf \(s > 0 \). In Theorem 1, by using a concept of Prüfer-type transformation which is new for \(p > 1 \), it is shown that the problem (4),(5) has a countable number of simple eigenvalues \(\lambda_1 < \lambda_2 < \cdots, \lambda_n \to \infty \) as \(n \to \infty \), and there are no other eigenvalues. In addition, the corresponding eigenfunction \(u_n \) has \(n - 1 \) simple zeros in \(I^0 = (a,b) \). These results generalize a classical and well-known theorem for \(p = 2 \) to general \(p > 1 \). In Theorem 2, the global description of the Fučík spectrum \((\mu, \nu)\) of the problem
\[L_p u + q(r) u^{(p-1)} + s(r) (\mu(u^+)^{(p-1)} - \nu(u^-)^{(p-1)}) = 0 \] in \(I \) with the boundary condition
\[Bu = (0,0) \] is discussed. Based on these properties of the Fučík spectrum \((\mu, \nu)\), the existence of a solution to (1)–(3) is proved under appropriate conditions on \(f \) in Theorem 3. The proofs of Theorems 2 and 3 are also based on the Prüfer transformation.

Reviewed by Tetsutaro Shibata

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2000, 2006