Convergence of the Neumann Laplacian on shrinking domains. (English summary)

Saitô, Yoshi (1-AL2)

Analysis (Munich) 21 (2001), no. 2, 171–204.

The author considers a family of Neumann Laplacians $H_{\Omega_{\varepsilon}}$, $0 < \varepsilon \leq 1$, on domains Ω_{ε} of \mathbb{R}^2 such that $\{\Omega_{\varepsilon}\}$ shrinks to a tree Γ in the sense that
\[
\begin{align*}
\Omega = \Omega_1 \supset \Omega_{\varepsilon_2} \supset \Omega_{\varepsilon_1} \quad (1 > \varepsilon_2 > \varepsilon_1), \\
\lim_{\varepsilon \to 0} \Omega_{\varepsilon} &= \Gamma.
\end{align*}
\]

The main question of this paper is in what sense the operator $H_{\Omega_{\varepsilon}}$ converges to the corresponding differential operator H_{Γ} on the tree Γ.

Throughout this work, the author assumes that there exists a map τ from the domain Ω to the tree Γ which is locally Lipschitz continuous except on a null set. Using this map, it is possible to introduce two weighted Hilbert spaces $L^2(\Gamma)$ and $H^1(\Gamma)$. Then the “Neumann Laplacian” H_Γ in $L^2(\Gamma)$ is defined from a natural sesquilinear form on $H^1(\Gamma)$. Similarly, for each $\varepsilon \in (0, 1]$, starting with the subdomain Ω_{ε} and a map $\tau^{(\varepsilon)}$ from Ω_{ε} to the tree Γ, the “Neumann Laplacian” $H^{(\varepsilon)}_\Gamma$ in $L^2(\Gamma)$ is also defined.

Under some additional conditions on each $\tau^{(\varepsilon)}$ it is shown that, for any family of approximating subdomains Ω_{ε}, there exists a subsequence $\{\Omega_{\varepsilon_n}\}_{n=1}^\infty$, $\varepsilon_n \downarrow 0$ ($n \to \infty$) of $\{\Omega_{\varepsilon}\}_{0 < \varepsilon \leq 1}$ such that the weak limits
\[
\tilde{w} - \lim_{n \to \infty} Q^{(\varepsilon_n)}_{\mu}(H_{\Omega_{\varepsilon_n}} - z)^{-1}(f_{\varepsilon_n}) = \tilde{w} - \lim_{n \to \infty} (H^{(\varepsilon_n)}_\Gamma - z)^{-1}(\gamma f)
\]
exist in $L^2(\Gamma)$, where $Q^{(\varepsilon_n)}_{\mu}$ is a bounded linear operator from $L^2(\Omega_{\varepsilon})$ into $L^2(\Gamma)$; $f \in H^1(\Omega)$ and f_{ε} is the restriction of f; γ is the trace operator from $H^1(\Omega)$ into the weighted L^2 space on the tree Γ; and $z \in \mathbb{C} \setminus [0, \infty)$.

Reviewed by *Taras A. Mel’nyk*

© Copyright American Mathematical Society 2002, 2006