EXERCISES

Let G be a group.

- 1. Determine which of the following binary operations are associative:
 - (a) the operation \star on \mathbb{Z} defined by $a \star b = a b$
 - (b) the operation \star on \mathbb{R} defined by $a \star b = a + b + ab$
 - (c) the operation \star on \mathbb{Q} defined by $a \star b = \frac{a+b}{5}$
 - (d) the operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \star (c, d) = (ad + bc, bd)$
 - (e) the operation \star on $\mathbb{Q} \{0\}$ defined by $a \star b = \frac{a}{1}$.
- 2. Decide which of the binary operations in the preceding exercise are commutative.
- 3. Prove that addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative (you may assume it is well defined).
- **4.** Prove that multiplication of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative (you may assume it is well defined).
- 5. Prove for all n > 1 that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.
- 6. Determine which of the following sets are groups under addition:
 - (a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd
 - (b) the set of rational numbers in lowest terms whose denominators are even together with 0. G and is closed under inverses, i.e., for all h and k e H. hk and h
 - (c) the set of rational numbers of absolute value < 1
 - (d) the set of rational numbers of absolute value ≥ 1 together with 0
 - (e) the set of rational numbers with denominators equal to 1 or 2
 - (f) the set of rational numbers with denominators equal to 1, 2 or 3.
- 7. Let $G = \{x \in \mathbb{R} \mid 0 \le x < 1\}$ and for $x, y \in G$ let $x \star y$ be the fractional part of x + y(i.e., $x \star y = x + y - [x + y]$ where [a] is the greatest integer less than or equal to a). Prove that \star is a well defined binary operation on G and that G is an abelian group under * (called the real numbers mod 1).

- **8.** Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}$.
 - (a) Prove that G is a group under multiplication (called the group of roots of unity in \mathbb{C}).
 - (b) Prove that G is not a group under addition.
- **9.** Let $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}.$
 - (a) Prove that G is a group under addition.
 - (b) Prove that the nonzero elements of G are a group under multiplication. ["Rationalize the denominators" to find multiplicative inverses.]
- 10. Prove that a finite group is abelian if and only if its group table is a symmetric matrix.
- 11. Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.
- 12. Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$: $\overline{1}$, $\overline{-1}$, $\overline{5}$, $\overline{7}$, $\overline{-7}$, $\overline{13}$.
- 13. Find the orders of the following elements of the additive group $\mathbb{Z}/36\mathbb{Z}$: $\overline{1}$, $\overline{2}$, $\overline{6}$, $\overline{9}$, $\overline{10}$, $\overline{12}$, $\overline{-1}$, $\overline{-10}$, $\overline{-18}$.
- 14. Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/36\mathbb{Z})^{\times}$: $\overline{1}$, $\overline{-1}$, $\overline{5}$, $\overline{13}$, $\overline{-13}$, $\overline{17}$.
- **15.** Prove that $(a_1 a_2 \dots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \dots a_1^{-1}$ for all $a_1, a_2, \dots, a_n \in G$.
- 16. Let x be an element of G. Prove that $x^2 = 1$ if and only if |x| is either 1 or 2.
- 17. Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.
- **18.** Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- 19. Let $x \in G$ and let $a, b \in \mathbb{Z}^+$.
 - (a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.
 - **(b)** Prove that $(x^a)^{-1} = x^{-a}$.
 - (c) Establish part (a) for arbitrary integers a and b (positive, negative or zero).
- 20. For x an element in G show that x and x^{-1} have the same order.
- **21.** Let G be a finite group and let x be an element of G of order n. Prove that if n is odd, then $x = (x^2)^k$ for some integer $k \ge 1$.
- 22. If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.
- 23. Suppose $x \in G$ and $|x| = n < \infty$. If n = st for some positive integers s and t, prove that $|x^s| = t$.
- **24.** If a and b are commuting elements of G, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. [Do this by induction for positive n first.]
- 25. Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.
- **26.** Assume H is a nonempty subset of (G, \star) which is closed under the binary operation on G and is closed under inverses, i.e., for all h and $k \in H$, hk and $h^{-1} \in H$. Prove that H is a group under the operation \star restricted to H (such a subset H is called a *subgroup* of G).
- 27. Prove that if x is an element of the group G then $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup (cf. the preceding exercise) of G (called the cyclic subgroup of G generated by x).
- **28.** Let (A, \star) and (B, \diamond) be groups and let $A \times B$ be their direct product (as defined in Example 6). Verify all the group axioms for $A \times B$:
 - (a) prove that the associative law holds: for all $(a_i, b_i) \in A \times B$, i = 1, 2, 3 $(a_1, b_1)[(a_2, b_2)(a_3, b_3)] = [(a_1, b_1)(a_2, b_2)](a_3, b_3)$,

- (b) prove that (1, 1) is the identity of $A \times B$, and
- (c) prove that the inverse of (a, b) is (a^{-1}, b^{-1}) .
- **29.** Prove that $A \times B$ is an abelian group if and only if both A and B are abelian.
- **30.** Prove that the elements (a, 1) and (1, b) of $A \times B$ commute and deduce that the order of (a, b) is the least common multiple of |a| and |b|.
- 31. Prove that any finite group G of even order contains an element of order 2. [Let t(G) be the set $\{g \in G \mid g \neq g^{-1}\}$. Show that t(G) has an even number of elements and every nonidentity element of G t(G) has order 2.]
- 32. If x is an element of finite order n in G, prove that the elements $1, x, x^2, \dots, x^{n-1}$ are all distinct. Deduce that $|x| \le |G|$.
- 33. Let x be an element of finite order n in G.
 - (a) Prove that if n is odd then $x^i \neq x^{-i}$ for all i = 1, 2, ..., n 1.
 - **(b)** Prove that if n = 2k and $1 \le i < n$ then $x^i = x^{-i}$ if and only if i = k.
- **34.** If x is an element of infinite order in G, prove that the elements x^n , $n \in \mathbb{Z}$ are all distinct.
- 35. If x is an element of finite order n in G, use the Division Algorithm to show that any integral power of x equals one of the elements in the set $\{1, x, x^2, \dots, x^{n-1}\}$ (so these are all the distinct elements of the cyclic subgroup (cf. Exercise 27 above) of G generated by x).
- **36.** Assume $G = \{1, a, b, c\}$ is a group of order 4 with identity 1. Assume also that G has no elements of order 4 (so by Exercise 32, every element has order \leq 3). Use the cancellation laws to show that there is a unique group table for G. Deduce that G is abelian.