

Homework 1
Due by Tuesday, August 29

Math 5590H

- A1.** Let G be a semigroup with a left-neutral element e , that is, $ea = a$ for all $a \in G$.
- (a) Suppose that every element in G has a left inverse with respect to e : for every $a \in G$ there exists $b \in G$ such that $ba = e$. Prove that G is a group.
- (b) Show by example that it may be the case that every element in G has a right inverse with respect to e , but G is not a group.

A semigroup G is said to be *cancellative* if it has the cancellation properties: for any $a, b, c \in G$, if $ac = bc$ or $ca = cb$, then $a = b$.

- A2.** Prove that every finite cancellative semigroup is a group. (*Hint:* The cancellation properties say that for every $c \in G$, the left multiplication by c , $a \mapsto ca$, and the right multiplication by c , $a \mapsto ac$, are injective mappings $G \rightarrow G$.)

- A3.** Let G be a group. Introduce the binary operation $*$ on G by $a * b = ba$.

- (a) Prove that $(G, *)$ is a group.
(b) Prove that the mapping $a \mapsto a^{-1}$ defines an isomorphism between G and $(G, *)$.

- A4.** The symmetric group S_3 (the group of permutations of the set $\{1, 2, 3\}$) has 6 elements: $1 = \text{Id}$, $\sigma: \begin{smallmatrix} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{smallmatrix}$, $\sigma^2: \begin{smallmatrix} 1 \mapsto 3 \\ 2 \mapsto 1 \\ 3 \mapsto 2 \end{smallmatrix}$, $\tau_1: \begin{smallmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{smallmatrix}$, $\tau_2: \begin{smallmatrix} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 2 \end{smallmatrix}$, $\tau_3: \begin{smallmatrix} 1 \mapsto 3 \\ 2 \mapsto 2 \\ 3 \mapsto 1 \end{smallmatrix}$. Write out the multiplication table for S_3 and find the orders of its elements. (Notice that S_3 is not commutative.)

1.1.25. If G is a group such that $a^2 = 1$ for all $a \in G$, prove that G is abelian.

1.1.31. Prove that any finite group G of even order contains an element of order 2.