Solutions to Homework 1

Math 5590H

A1. Let G be a semigroup with a left-neutral element e, that is, ea = a for all $a \in G$.

10pt (a) Suppose that every element in G has a left inverse with respect to e: for every $a \in G$ there exists $b \in G$ such that ba = e. Prove that G is a group.

Solution. Let $a \in G$ and let b be a left inverse of a, ba = e; I'll show that b is a right inverse of a as well. Indeed, we have

$$(ab)(ab) = a(ba)b = aeb = ab;$$

cancelling ab (multiplying both parts by the inverse of ab from the left), we get that ab = e.

Now, let's show that e is a right neutral element in S. Indeed, for any $a \in G$,

$$ae = aa^{-1}a = ea = a$$

 $_{5pt}$ (b) Show by example that it may be the case that every element in G has a right inverse with respect to e, but G is not a group.

Solution. Let G be a set with ≥ 2 elements with operation defined by ab = b for all $a, b \in G$. Every element of G is left-neutral; left e be one of them. Then for every $a \in S$, ae = e, so e is the right inverse of a. Clearly, G is not a group (it has no right neutral elements).

10pt A2. Prove that every finite cancellative semigroup is a group.

Solution. Let G be a cancellative semigroup. This means that for any $a \in G$, the left multiplication by a, $L_a(b) = ab$, and the right multiplication by a, $R_a(b) = ba$, are injective mappings: $ab_1 = ab_2$ implies that $b_1 = b_2$, and $b_1a = b_2a$ implies that $b_1 = b_2$. Since G is finite, this implies that, for any $a \in G$, these mappings are also surjective: for any $c \in G$ there exists $b \in G$ such that ab = c and $d \in G$ such that da = c.

Fix any $a \in G$ and find $e \in G$ such that ae = a. Then for any $b \in G$, aeb = ab, and since G is cancellative, eb = b. Hence, e is a left neutral element in G. Similarly, we obtain that G has a right neutral element, so has a unique neutral element e.

Now, for any $a \in G$ there exists $b \in G$ such that ab = e and there is $d \in G$ such that da = e, so a has a left and a right inverses. So, a has an inverse, and G is a group.

A3. Let G be a group. Introduce the binary operation * on G by a * b = ba.

10pt (a) Prove that (G, *) is a group.

Solution. First of all, * is associative: for any $a, b, c \in G$,

$$(a * b) * c = (ba) * c = c(ba) = (cb)a = a * (cb) = a * (b * c).$$

With respect to *, the identity 1 of G is still the identity: for any $a \in G$, 1 * a = a1 = a and a * 1 = 1a = a. And for any $a \in G$, $a * (a^{-1}) = a^{-1}a = 1$, $a^{-1} * a = aa^{-1} = 1$, so, with respect to *, a^{-1} is still an inverse of a.

_{5pt} (b) Prove that the mapping $a \mapsto a^{-1}$ defines an isomorphism between G and (G, *).

Solution. If G is nonabelian, the identity mapping $G \longrightarrow G$, $a \mapsto a$, is not an isomorphism of groups G and (G, *)! (For $a, b \in G$, $ab \mapsto ab \neq a * b = ba$, generally speaking.) Consider, however, the mapping $\varphi(a) = a^{-1}$. φ is bijective. (It is the inverse of itself, $\varphi^{-1} = \varphi$, since $(a^{-1})^{-1} = a$ for all $a \in G$.) And for any $a, b \in G$, $\varphi(ab) = (ab)^{-1} = b^{-1}a^{-1} = \varphi(b)\varphi(a) = \varphi(a) * \varphi(b)$.

10pt **A4.** The symmetric group S_3 (the group of permutations of the set $\{1, 2, 3\}$) has 6 elements: 1 = Id, $\sigma: \begin{vmatrix} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{vmatrix}, \sigma^2: \begin{vmatrix} 1 \mapsto 3 \\ 2 \mapsto 1 \\ 3 \mapsto 2 \end{vmatrix}, \tau_1: \begin{vmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{vmatrix}, \tau_2: \begin{vmatrix} 1 \mapsto 3 \\ 2 \mapsto 3 \\ 3 \mapsto 2 \end{vmatrix}$. Write out the multiplication table for S_3 and find the orders of its elements. (Notice that S_3 is not commutative.) Solution. The multiplication table of S_3 is

	1	τ_1	τ_2	$ au_3$	σ	σ^2
1	1	$ au_1$	τ_2	τ_3	σ	σ^2
$ au_1$	τ_1	1	σ	σ^2	τ_2	$ au_3$
τ_2	τ_2	σ^2	1	σ	τ_3	$ au_1$
$ au_3$	τ_3	σ	σ^2	1	$ au_1$	τ_2
σ	σ	$ au_3$	$ au_1$	τ_2	σ^2	1
σ^2	σ^2	τ_2	$ au_3$	$ au_1$	1	σ

(Recall that for two permutations φ and ψ , $\varphi\psi = \varphi \circ \psi$, that is, " ψ acts first", $(\varphi\psi)(x) = \varphi(\psi(x))$.) Clearly, The orders of 1 is 1, of σ and $\sigma^2 = \tau_2^3$ and $\sigma^2 = \tau_2^3 = \tau_1^3 = \tau_2^2 = \tau_1^2 = \tau_1$

- **1.1.25.** If G is a group such that $a^2 = 1$ for all $a \in G$, prove that G is abelian. 5pt Solution. For any $a \in G$, since aa = 1, we have $a^{-1} = a$. In particular, for any $a, b \in G$ we have $(ab)^{-1} = ab$; but also $(ab)^{-1} = b^{-1}a^{-1} = ba$, so ba = ab.
- **1.1.31.** Prove that any finite group G of even order contains an element of order 2. 5pt

Solution. Let $A = \{b \in G : b^{-1} \neq b\}$. Then A is partitioned into pairs of inverses, $\{b, b^{-1}\}$, so |A| is even. Hence, $G \setminus A$ also has an even number of elements. One of these elements is 1, so there must be at least one more element $a \neq 1$ in $G \setminus A$, for which $a^{-1} = a$. For such a we have |a| = 2.