
Solutions to Homework 1 Math 5590H

A1. Let G be a semigroup with a left-neutral element e, that is, ea = a for all a ∈ G.

(a) Suppose that every element in G has a left inverse with respect to e: for every a ∈ G there exists b ∈ G10pt

such that ba = e. Prove that G is a group.

Solution. Let a ∈ G and let b be a left inverse of a, ba = e; I’ll show that b is a right inverse of a as well.
Indeed, we have

(ab)(ab) = a(ba)b = aeb = ab;

cancelling ab (multiplying both parts by the inverse of ab from the left), we get that ab = e.

Now, let’s show that e is a right neutral element in S. Indeed, for any a ∈ G,

ae = aa−1a = ea = a.

(b) Show by example that it may be the case that every element in G has a right inverse with respect to e,5pt

but G is not a group.

Solution. Let G be a set with ≥ 2 elements with operation defined by ab = b for all a, b ∈ G. Every element
of G is left-neutral; left e be one of them. Then for every a ∈ S, ae = e, so e is the right inverse of a. Clearly,
G is not a group (it has no right neutral elements).

A2. Prove that every finite cancellative semigroup is a group.10pt

Solution. Let G be a cancellative semigroup. This means that for any a ∈ G, the left multiplication by
a, La(b) = ab, and the right multiplication by a, Ra(b) = ba, are injective mappings: ab1 = ab2 implies
that b1 = b2, and b1a = b2a implies that b1 = b2. Since G is finite, this implies that, for any a ∈ G, these
mappings are also surjective: for any c ∈ G there exists b ∈ G such that ab = c and d ∈ G such that da = c.

Fix any a ∈ G and find e ∈ G such that ae = a. Then for any b ∈ G, aeb = ab, and since G is
cancellative, eb = b. Hence, e is a left neutral element in G. Similarly, we obtain that G has a right neutral
element, so has a unique neutral element e.

Now, for any a ∈ G there exists b ∈ G such that ab = e and there is d ∈ G such that da = e, so a has a
left and a right inverses. So, a has an inverse, and G is a group.

A3. Let G be a group. Introduce the binary operation ∗ on G by a ∗ b = ba.

(a) Prove that (G, ∗) is a group.10pt

Solution. First of all, ∗ is associaitve: for any a, b, c ∈ G,

(a ∗ b) ∗ c = (ba) ∗ c = c(ba) = (cb)a = a ∗ (cb) = a ∗ (b ∗ c).

With respect to ∗, the identity 1 of G is still the identity: for any a ∈ G, 1 ∗ a = a1 = a and a ∗ 1 = 1a = a.
And for any a ∈ G, a ∗ (a−1) = a−1a = 1, a−1 ∗ a = aa−1 = 1, so, with respect to ∗, a−1 is still an inverse
of a.

(b) Prove that the mapping a 7→ a−1 defines an isomorphism between G and (G, ∗).5pt

Solution. If G is nonabelian, the identity mapping G −→ G, a 7→ a, is not an isomorphism of groups G and
(G, ∗)! (For a, b ∈ G, ab 7→ ab 6= a∗b = ba, generally speaking.) Consider, however, the mapping ϕ(a) = a−1.
ϕ is bijective. (It is the inverse of itself, ϕ−1 = ϕ, since (a−1)−1 = a for all a ∈ G.) And for any a, b ∈ G,
ϕ(ab) = (ab)−1 = b−1a−1 = ϕ(b)ϕ(a) = ϕ(a) ∗ ϕ(b).

A4. The symmetric group S3 (the group of permutations of the set {1, 2, 3}) has 6 elements: 1 = Id,10pt

σ:
∣

∣

∣

1 7→2

2 7→3

3 7→1

, σ2:
∣

∣

∣

1 7→3

2 7→1

3 7→2

, τ1:
∣

∣

∣

1 7→2

2 7→1

3 7→3

, τ2:
∣

∣

∣

1 7→1

2 7→3

3 7→2

, τ3:
∣

∣

∣

1 7→3

2 7→2

3 7→1

. Write out the multiplication table for S3 and find the orders

of its elements. (Notice that S3 is not commutative.)
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Solution. The multiplication table of S3 is

1 τ1 τ2 τ3 σ σ
2

1 1 τ1 τ2 τ3 σ σ
2

τ1 τ1 1 σ σ
2

τ2 τ3

τ2 τ2 σ
2

1 σ τ3 τ1

τ3 τ3 σ σ
2

1 τ1 τ2

σ σ τ3 τ1 τ2 σ
2

1

σ
2

σ
2

τ2 τ3 τ1 1 σ

(Recall that for two permutations ϕ and ψ, ϕψ = ϕ◦ψ, that is, “ψ acts first”, (ϕψ)(x) = ϕ(ψ(x)).) Clearly,
τ2
1
= τ2

2
= τ2

3
= 1 and σσ2 = σ3 = 1. To compute, say, τ1τ2, notice that (τ1τ2)(1) = τ1(τ2(1)) = τ1(1) = 2.

Since τ1τ2 6= τ1, the only option is τ1τ2 = σ. Similarly, τ2τ1(1) = 3, so τ2τ1 = σ2. Next, τ1σ = τ1τ1τ2 = τ2;
or: τ1σ(1) = 1 and σ 6= τ−1

1
, so τ1σ = τ2. And so on.

The orders of 1 is 1, of σ and σ2 is 3, and of τ1, τ2, τ3 is 2.

1.1.25. If G is a group such that a2 = 1 for all a ∈ G, prove that G is abelian.5pt

Solution. For any a ∈ G, since aa = 1, we have a−1 = a. In particular, for any a, b ∈ G we have (ab)−1 = ab;
but also (ab)−1 = b−1a−1 = ba, so ba = ab.

1.1.31. Prove that any finite group G of even order contains an element of order 2.5pt

Solution. Let A = {b ∈ G : b−1 6= b}. Then A is partitioned into pairs of inverses, {b, b−1}, so |A| is even.
Hence, G \A also has an even number of elements. One of these elements is 1, so there must be at least one
more element a 6= 1 in G \A, for which a−1 = a. For such a we have |a| = 2.
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