
Solutions to Homework 11 Math 5590H

Cf. 7.3.22. Let R be a ring, C be a subset of R, and A = Ann(C).

(a) Prove that A is a left ideal in R.5pt

Solution. (A−A)C ⊆ AC −AC = 0 and (RA)C = R(AC) = 0, so A−A,RA ⊆ A.

(b) If C is a left ideal of R, prove that A is a two-sided ideal.5pt

Solution. (AR)C = A(RC) ⊆ AC = 0, so AR ⊆ A, thus A is a right ideal as well.

7.3.20. (a) If I is a left ideal in a ring R and S is a subring of R, prove that I ∩ S is a left ideal in S.5pt

Solution. This is a special case of the fact that the preimage of any ideal under a homomorphism of rings
is an ideal: I ∩ S = ϕ−1(I) where ϕ is the imbedding S −→ R: ϕ(x) = x, x ∈ S. Or directly: I ∩ S is a
subgroup of S under addition, and for any s ∈ S, s(I ∩ S) ⊆ sI ∩ sS ⊆ I ∩ S.

(b) Show by example that not every left ideal of a subring S of a ring R needs to be of the form I ∩ S for5pt

some left ideal I of R.

Solution. Consider Z as a subring of the ring (the field) Q. Q has no ideals, except 0 and itself, but Z has
many ideals.

7.4.6. Prove that a unital ring R is a division ring iff it has no nontrivial ( 6= 0, R) left ideals.5pt

Solution. R is a division ring iff all its nonzero elements have left inverses. If R possesses a nonzero element
a that doesn’t have a left inverse, then Ra is a nontrivial left ideal. (Ra 6= 0 since Ra ∋ a, and Ra 6= R since
Ra 6∋ 1.)

Conversely, if R has a nontrivial left ideal I, then any nonzero a ∈ I has no left inverse. (If b ∈ R is
such that ba = 1, then 1 ∈ I, so I = R.)

7.4.15. Let x2+x+1 be an element of the polynomial ring E = F2[x] and let E = E/(g) where g = x2+x+1.
For f ∈ E, let f be the image of f in E.

(a) Prove that E = {0, 1, x, x+ 1}.5pt

Solution. In E, x2 = −x− 1 = x+ 1, so x3 = (x+ 1)x = x2 + x = x+ 1 + x = 1, and by induction on the
degree, every element of E can be written in the form ax+ b for some a, b ∈ Z2, that is, E = {0, 1, x, x+ 1},
No two of the polynomials 0, 1, x, x+ 1 are equal modulo g, so E has exactly 4 elements.

(b) Write the 4× 4 addition table for E and deduce that (E,+) ∼= V4.5pt

Solution.
+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

So, E under addition is a group with 4 elements in which every element has order 2; hence, under addition,
E ∼= V4.

(c) Write the 4× 4 multiplication table for E and deduce that (E
∗

, ·) ∼= Z3. Deduce that E is a field.5pt

Solution. Since x2 = −x− 1 = x+ 1, x(x+ 1) = x2 + x = 1, and (x+ 1)2 = x2 + 2x+ 1 = x, we have

· 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Under multiplication, E is commutative and all nonzero elements of E are invertible (every row contains 1),

hence, E is a field. The multiplicative group E
∗

has 3 elements, so it is isomorphic to Z3. (E
∗

is generated
by x: x2 = x+ 1 and x3 = 1.)
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A1. Let I, J, L be ideals in R. Prove that

(a) if I
∣

∣ J
∣

∣L then I
∣

∣L;2pt

Solution. If L ⊆ J ⊆ I, then L ⊆ I.

(b) if I
∣

∣ J and I
∣

∣L then I
∣

∣ gcd(J, L);2pt

Solution. If J, L ⊆ I, then J + L ⊆ I since J + L is the minimal ideal containing J and L.

(c) if I
∣

∣L and J
∣

∣L, then lcm(I, J)
∣

∣L;2pt

Solution. If L ⊆ I, J , then L ⊆ I ∩ J .

(d) IJ
∣

∣ gcd(I, J) lcm(I, J).5pt

Solution. The ideal (I + J)(I ∩ J) is generated by elements of the form a = (b+ c)d = bd+ cd where b ∈ I,
c ∈ J , and d ∈ I ∩ J . Since bd ∈ IJ and cd ∈ JI = IJ , we have a ∈ IJ .

(e) In the ring Z[x] (of polynomials with integer coefficients) let I = (4) and J = (2x). Prove that IJ 6=5pt

gcd(I, J) lcm(I, J).

Solution. We have IJ = (8x), I+J = (4, 2x), I ∩J = (4x), and (I+J)(I ∩J) = (16x, 8x2). The polynomial
8x is contained in IJ but is not contained in L = (16x, 8x2) (since every nonzero element of L has form
16a1x+ 8a2x

2 + · · ·+ 8anx
n for some a1, . . . , an ∈ Z).

Cf. 7.4.13. Let R be a commutative unital rings and S be a subring of R.

(a) If P is a prime ideal in R, prove that P ∩ S is either S or a prime ideal in S.5pt

Solution. Under the embedding S −→ R, S ∩ P is the preimage of P , and so, is either S or a prime ideal of
S.

Or directly: for any a, b ∈ S, if ab ∈ P then a ∈ P or b ∈ P , so a ∈ S ∩ P or b ∈ S ∩ P .

(b) Give an example of a ring R with a subring S and a maximal ideal M such that M ∩ S is neither S nor5pt

a maximal ideal of S.

Solution. Z is a subring of Q, 0 is a maximal ideal in Q, but 0 = 0 ∩ Z is not a maximal ideal in Z.

7.4.33. Let R be the ring C([0, 1]) of continuous functions f : [0, 1] −→ R, and for each c ∈ [0, 1] let
Mc = {f ∈ R

∣

∣ f(c) = 0}.
(a) Prove that if M is a maximal ideal in R then M = Mc for some c ∈ [0, 1].10pt

Solution. Assume that for every c ∈ [0, 1] there is fc ∈ M such that fc(c) 6= 0. Since fc are continuous,
for every c ∈ C, there is an open interval Uc containing c such that fc(x) 6= 0 for all x ∈ Uc. The intervals
Uc form an open cover of [0, 1], so there are points c1, . . . , cn ∈ [0, 1] such that

⋃

n

i=1
Ui = [0, 1]. Then the

function f = f2

1
+ . . .+ f2

n
∈ M is positive on [0, 1], and so, is a unit in R, so that M = (1).

Hence, there is c ∈ [0, 1] such that f(c) = 0 for all c ∈ [0, 1]. Then M ⊆ Mc; but since M is maximal,
M = Mc.

(d) Prove that, for c ∈ [0, 1], Mc is not finitely generated.10pt

Solution. Let f1, . . . , fn ∈ Mc; we need to show that Mc 6= (f1, . . . , fn). Put f = |f1| + · · · + |fn|, then
f(c) = 0 and f(x) > 0 for all x 6= c, so

√
f ∈ Mc with

√

f(x) > 0 for all x 6= c. Let h1, . . . , hn ∈ R, and let
C = max

{

sup |h1|, . . . , sup |hn|
}

; then for g = h1f1 + · · ·+ hnfn we have |g| ≤ C|f |, so |g|/
√
f ≤ C

√
f , and

(g/
√
f)(x) −→ 0 as x −→ c. Hence,

√
f 6= g, and so,

√
f 6∈ (f1, . . . , fn).
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