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Solutions to Homework 11 Math 5590H

Cf. 7.3.22. Let R be a ring, C be a subset of R, and A = Ann(C).

(a) Prove that A is a left ideal in R.

Solution. (A—A)C C AC — AC =0 and (RA)C = R(AC) =0,s0 A— A, RAC A.

(b) If C is a left ideal of R, prove that A is a two-sided ideal.

Solution. (AR)C = A(RC) C AC =0, so AR C A, thus A is a right ideal as well.

7.3.20. (a) If I is a left ideal in a ring R and S is a subring of R, prove that I NS is a left ideal in S.

Solution. This is a special case of the fact that the preimage of any ideal under a homomorphism of rings
is an ideal: 1N S = ¢~ 1(I) where ¢ is the imbedding S — R: p(x) = x, z € S. Or directly: 1N S is a
subgroup of S under addition, and for any s € S, s(INS)CsINsSCINS.

(b) Show by example that not every left ideal of a subring S of a ring R needs to be of the form I NS for
some left ideal I of R.

Solution. Consider Z as a subring of the ring (the field) Q. Q has no ideals, except 0 and itself, but Z has
many ideals.

7.4.6. Prove that a unital ring R is a division ring iff it has no nontrivial (# 0, R) left ideals.

Solution. R is a division ring iff all its nonzero elements have left inverses. If R possesses a nonzero element
a that doesn’t have a left inverse, then Ra is a nontrivial left ideal. (Ra # 0 since Ra 3 a, and Ra # R since
Ra Z1.)

Conversely, if R has a nontrivial left ideal I, then any nonzero a € I has no left inverse. (If b € R is
such that ba =1, then 1 € I, so I = R.)

7.4.15. Let xzi—x—i—l be an element of the polynomial ring E = Fa[x] and let E = E/(g) where g = x> +x+1.
For f € E, let f be the image of f in E.

(a) Prove that E = {0,1,%,z + 1}.

Solution. m E, 7> = —T—1=T+1,507" = (T+1)T =7+ T =T+ 1 +Z = 1, and by induction on the
degree, every element of £ can be written in the form aZ + b for some a,b € Z, that is, E' = {0,1,7, 2 + 1},
No two of the polynomials 0,1, z,x + 1 are equal modulo g, so F has exactly 4 elements.

(b) Write the 4 x 4 addition table for E and deduce that (E,+) = Vj.

Solution.
+ | 0 1 T z+1
0 0 1 T r+1
1 1 0 r+1 T
T T z+1 0 1
z+1 xz+1 x 1 0

So, E under addition is a group with 4 elements in which every element has order 2; hence, under addition,
E=V,.
(c) Write the 4 x 4 multiplication table for E and deduce that (E,-) = Zs. Deduce that E is a field.

Solution. Since 22 = —z —1=x+ 1, z(z+1) =22 +2 =1, and (z + 1)? = 22 + 22 + 1 = z, we have

- 1.0 1 T rz+1
0 0 0 0 0
1 0 1 T rz+1
T 0 T z+1 1
z+1] 0 x+1 1 T

Under multiplication, F is commutative and all nonzero elements of E are invertible (every row contains 1),
hence, E is a field. The multiplicative group E" has 3 elements, so it is isomorphic to Zs. (E* is generated
by x: 22 =z + 1 and 2® = 1.)
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Al. LetI,J, L be ideals in R. Prove that
(a) if I| J|L then I|L;
Solution. If L C J C I, then L C I.
(b) if I'|J and I |L then I|ged(J,L);
Solution. If J,L C I, then J+ L C I since J + L is the minimal ideal containing J and L.
(c)if I'|L and J ’ L, thenlem(I, J)| L;
Solution. If L C I,J, then LC INJ.
(d) I.J | ged(I, J)lem(1, J).
Solution. The ideal (I + J)(I N J) is generated by elements of the form a = (b + ¢)d = bd + ¢d where b € I,
ceJ,andde InNJ. Since bd € IJ and c¢d € JI = I.J, we have a € 1.J.
(e) In the ring Zlx] (of polynomials with integer coefficients) let I = (4) and J = (2x). Prove that 1J #
ged(I, J)lem(1, J).
Solution. We have IJ = (8x), [ +J = (4,2x), INJ = (4x), and (I +J)(INJ) = (16x,8z2). The polynomial
8z is contained in I.J but is not contained in L = (16x,822) (since every nonzero element of L has form
16a1x + 8agx? + - - - + 8a,x™ for some ay, ..., a, € Z).
Cf. 7.4.13. Let R be a commutative unital rings and S be a subring of R.
(a) If P is a prime ideal in R, prove that PN S is either S or a prime ideal in S.
Solution. Under the embedding S — R, SN P is the preimage of P, and so, is either .S or a prime ideal of
S.
Or directly: for any a,b € S, if abe Pthenae€ Porbe P,soac SNPorbe SNP.
(b) Give an example of a ring R with a subring S and a mazimal ideal M such that M NS is neither S nor
a mazximal ideal of S.

Solution. Z is a subring of Q, 0 is a maximal ideal in Q, but 0 = 0N Z is not a maximal ideal in Z.

7.4.33.  Let R be the ring C([0,1]) of continuous functions f:[0,1] — R, and for each ¢ € [0,1] let
Mc:{f€R|f(C):O}-
(a) Prove that if M is a mazximal ideal in R then M = M, for some c € [0, 1].

Solution. Assume that for every ¢ € [0,1] there is f. € M such that f.(c) # 0. Since f. are continuous,
for every ¢ € C, there is an open interval U, containing ¢ such that f.(z) # 0 for all x € U.. The intervals
U. form an open cover of [0, 1], so there are points c1,...,¢, € [0,1] such that |J;_, U; = [0,1]. Then the
function f = fZ +...+ f2 € M is positive on [0, 1], and so, is a unit in R, so that M = (1).

Hence, there is ¢ € [0,1] such that f(¢) = 0 for all ¢ € [0,1]. Then M C M,; but since M is maximal,
M = M,.
(d) Prove that, for c € [0,1], M, is not finitely generated.

Solution. Let fi,..., fn € M.; we need to show that M. # (f1,..., fn). Put f = |f1| + -+ + |fal], then
f(c)=0and f(z) >0 for all z # ¢, so /f € M, with \/f(x) > 0 for all z # c. Let hq,...,h, € R, and let
C = max{sup |hy|,...,sup |h,|}; then for g = hyfi + -+ + hy fr we have |g| < C|f], so |g|/V/F < CV/f, and
(9/VF)(@) — 0 as 2 —> c. Hence, /f # g, and so, V'f € (f1,---, fn)-



