Cf. 7.3.22. Let R be a ring, C be a subset of R, and A = Ann(C).

- $_{5pt}$ (a) Prove that A is a left ideal in R.
 - Solution. $(A A)C \subseteq AC AC = 0$ and (RA)C = R(AC) = 0, so $A A, RA \subseteq A$.
- $_{5pt}$ (b) If C is a left ideal of R, prove that A is a two-sided ideal.

Solution. $(AR)C = A(RC) \subseteq AC = 0$, so $AR \subseteq A$, thus A is a right ideal as well.

- 5pt **7.3.20.** (a) If I is a left ideal in a ring R and S is a subring of R, prove that $I \cap S$ is a left ideal in S. Solution. This is a special case of the fact that the preimage of any ideal under a homomorphism of rings is an ideal: $I \cap S = \varphi^{-1}(I)$ where φ is the imbedding $S \longrightarrow R$: $\varphi(x) = x, x \in S$. Or directly: $I \cap S$ is a subgroup of S under addition, and for any $s \in S$, $s(I \cap S) \subseteq sI \cap sS \subseteq I \cap S$.
- (b) Show by example that not every left ideal of a subring S of a ring R needs to be of the form $I \cap S$ for some left ideal I of R.

Solution. Consider \mathbb{Z} as a subring of the ring (the field) \mathbb{Q} . \mathbb{Q} has no ideals, except 0 and itself, but \mathbb{Z} has many ideals.

5pt **7.4.6.** Prove that a unital ring R is a division ring iff it has no nontrivial $(\neq 0, R)$ left ideals.

Solution. R is a division ring iff all its nonzero elements have left inverses. If R possesses a nonzero element a that doesn't have a left inverse, then Ra is a nontrivial left ideal. $(Ra \neq 0 \text{ since } Ra \ni a, \text{ and } Ra \neq R \text{ since } Ra \not\ni 1.)$

Conversely, if R has a nontrivial left ideal I, then any nonzero $a \in I$ has no left inverse. (If $b \in R$ is such that ba = 1, then $1 \in I$, so I = R.)

7.4.15. Let $x^2 + x + 1$ be an element of the polynomial ring $E = \mathbb{F}_2[x]$ and let $\overline{E} = E/(g)$ where $g = x^2 + x + 1$. For $f \in E$, let \overline{f} be the image of f in \overline{E} .

5pt (a) Prove that $\overline{E} = \{\overline{0}, \overline{1}, \overline{x}, \overline{x+1}\}.$

Solution. In \overline{E} , $\overline{x}^2 = -\overline{x} - \overline{1} = \overline{x} + \overline{1}$, so $\overline{x}^3 = (\overline{x} + \overline{1})\overline{x} = \overline{x}^2 + \overline{x} = \overline{x} + \overline{1} + \overline{x} = \overline{1}$, and by induction on the degree, every element of \overline{E} can be written in the form $a\overline{x} + b$ for some $a, b \in \mathbb{Z}_2$, that is, $\overline{E} = \{\overline{0}, \overline{1}, \overline{x}, \overline{x+1}\}$, No two of the polynomials 0, 1, x, x+1 are equal modulo g, so \overline{E} has exactly 4 elements.

- _{5pt} (b) Write the 4 × 4 addition table for \overline{E} and deduce that $(\overline{E}, +) \cong V_4$.
 - Solution.

_	+	0	1	x	x + 1	
	0	0	1	x	x + 1	
	1	1	0	x + 1	x	
	x	x	x + 1	0	1	
x	+1	x+1	x	1	0	

So, \overline{E} under addition is a group with 4 elements in which every element has order 2; hence, under addition, $\overline{E} \cong V_4$.

5pt (c) Write the 4 × 4 multiplication table for \overline{E} and deduce that $(\overline{E}^*, \cdot) \cong \mathbb{Z}_3$. Deduce that \overline{E} is a field. Solution. Since $x^2 = -x - 1 = x + 1$, $x(x + 1) = x^2 + x = 1$, and $(x + 1)^2 = x^2 + 2x + 1 = x$, we have

	.	0	1	x	x + 1	
0		0	0	0	0	
1		0	1	x	x + 1	
x		0	x	x + 1	1	
x +	1	0	x + 1	1	x	

Under multiplication, \overline{E} is commutative and all nonzero elements of \overline{E} are invertible (every row contains 1), hence, \overline{E} is a field. The multiplicative group \overline{E}^* has 3 elements, so it is isomorphic to \mathbb{Z}_3 . (\overline{E}^* is generated by x: $x^2 = x + 1$ and $x^3 = 1$.) A1. Let I, J, L be ideals in R. Prove that

- $_{2pt} \quad (a) if I \mid J \mid L then I \mid L;$
- Solution. If $L \subseteq J \subseteq I$, then $L \subseteq I$.
- 2pt (b) if $I \mid J$ and $I \mid L$ then $I \mid gcd(J,L)$;

Solution. If $J, L \subseteq I$, then $J + L \subseteq I$ since J + L is the minimal ideal containing J and L.

 $_{2\text{pt}}\quad \text{(c) if }I\mid L \text{ and }J\mid L, \text{ then }\operatorname{lcm}(I,J)\mid L;$

Solution. If $L \subseteq I, J$, then $L \subseteq I \cap J$.

 $_{5\text{pt}}$ (d) $IJ \mid \text{gcd}(I,J) \text{lcm}(I,J)$.

Solution. The ideal $(I + J)(I \cap J)$ is generated by elements of the form a = (b + c)d = bd + cd where $b \in I$, $c \in J$, and $d \in I \cap J$. Since $bd \in IJ$ and $cd \in JI = IJ$, we have $a \in IJ$.

5pt (e) In the ring $\mathbb{Z}[x]$ (of polynomials with integer coefficients) let I = (4) and J = (2x). Prove that $IJ \neq \gcd(I, J) \operatorname{lcm}(I, J)$.

Solution. We have IJ = (8x), I + J = (4, 2x), $I \cap J = (4x)$, and $(I + J)(I \cap J) = (16x, 8x^2)$. The polynomial 8x is contained in IJ but is not contained in $L = (16x, 8x^2)$ (since every nonzero element of L has form $16a_1x + 8a_2x^2 + \cdots + 8a_nx^n$ for some $a_1, \ldots, a_n \in \mathbb{Z}$).

Cf. 7.4.13. Let R be a commutative unital rings and S be a subring of R.

^{5pt} (a) If P is a prime ideal in R, prove that $P \cap S$ is either S or a prime ideal in S.

Solution. Under the embedding $S \longrightarrow R$, $S \cap P$ is the preimage of P, and so, is either S or a prime ideal of S.

Or directly: for any $a, b \in S$, if $ab \in P$ then $a \in P$ or $b \in P$, so $a \in S \cap P$ or $b \in S \cap P$.

5pt (b) Give an example of a ring R with a subring S and a maximal ideal M such that $M \cap S$ is neither S nor a maximal ideal of S.

Solution. \mathbb{Z} is a subring of \mathbb{Q} , 0 is a maximal ideal in \mathbb{Q} , but $0 = 0 \cap \mathbb{Z}$ is not a maximal ideal in \mathbb{Z} .

7.4.33. Let R be the ring C([0,1]) of continuous functions $f:[0,1] \to \mathbb{R}$, and for each $c \in [0,1]$ let $M_c = \{f \in \mathbb{R} \mid f(c) = 0\}.$

10pt (a) Prove that if M is a maximal ideal in R then $M = M_c$ for some $c \in [0, 1]$.

Solution. Assume that for every $c \in [0,1]$ there is $f_c \in M$ such that $f_c(c) \neq 0$. Since f_c are continuous, for every $c \in C$, there is an open interval U_c containing c such that $f_c(x) \neq 0$ for all $x \in U_c$. The intervals U_c form an open cover of [0,1], so there are points $c_1, \ldots, c_n \in [0,1]$ such that $\bigcup_{i=1}^n U_i = [0,1]$. Then the function $f = f_1^2 + \ldots + f_n^2 \in M$ is positive on [0,1], and so, is a unit in R, so that M = (1).

Hence, there is $c \in [0, 1]$ such that f(c) = 0 for all $c \in [0, 1]$. Then $M \subseteq M_c$; but since M is maximal, $M = M_c$.

10pt (d) Prove that, for $c \in [0, 1]$, M_c is not finitely generated.

Solution. Let $f_1, \ldots, f_n \in M_c$; we need to show that $M_c \neq (f_1, \ldots, f_n)$. Put $f = |f_1| + \cdots + |f_n|$, then f(c) = 0 and f(x) > 0 for all $x \neq c$, so $\sqrt{f} \in M_c$ with $\sqrt{f(x)} > 0$ for all $x \neq c$. Let $h_1, \ldots, h_n \in R$, and let $C = \max\{\sup |h_1|, \ldots, \sup |h_n|\}$; then for $g = h_1 f_1 + \cdots + h_n f_n$ we have $|g| \leq C|f|$, so $|g|/\sqrt{f} \leq C\sqrt{f}$, and $(g/\sqrt{f})(x) \longrightarrow 0$ as $x \longrightarrow c$. Hence, $\sqrt{f} \neq g$, and so, $\sqrt{f} \notin (f_1, \ldots, f_n)$.