

10pt **8.2.4.** Let R be an integral domain. Prove that the following two conditions (together) imply that R is a PID:

- (i) Any two nonzero elements $a, b \in R$ have a greatest common divisor of the form $ra + sb$ for some $r, s \in R$.
- (ii) R satisfies the ascending chain condition for principal ideals: if a_1, a_2, \dots are nonzero elements of R such that $a_{i+1} \mid a_i$ for all i , then there is n such that the elements a_n, a_{n+1}, \dots are all associate.

Solution. Condition (i) says that any ideal (a, b) generated by two elements is principal.

Let I be a nonzero ideal in R . Choose any nonzero $a_1 \in I$. If $I \neq (a_1)$, choose any $b_2 \in I \setminus (a_1)$. By assumption, the ideal (a_1, b_2) is principal, $= (a_2)$ for some $a_2 \in R$. If $I \neq (a_2)$, choose $b_3 \in I \setminus (a_2)$, etc. The sequence $(a_1) \subset (a_2) \subset \dots$ is a strictly increasing sequence of principal ideals, by condition (ii) it cannot be infinite, that is, $I = (a_n)$ for some n .

10pt **8.1.7(a).** Find the generator for the ideal $(85, 1 + 13i)$ in $\mathbb{Z}[i]$.

Solution. The problem is to find the gcd of 85 and $1 + 13i$. We could try to guess it, using the field norm N . But since $\mathbb{Z}[i]$ is a ED, we can use the Euclidean algorithm instead. We have $85/(1 + 13i) = 0.5 - 6.5i$; as the nearest element of $\mathbb{Z}[i]$ take $-6i$, and get

$$85 = (-6i)(1 + 13i) + (7 + 6i).$$

Next, $(1 + 13i)/(7 + 6i) = 1 + i$, so $7 + 6i$ divides $1 + 13i$,

$$1 + 13i = (1 + i)(7 + 6i),$$

which means that we are done, and $(85, 1 + 13i) = (7 + 6i)$.

10pt **8.1.9.** Prove that the ring $\mathbb{Z}[\sqrt{2}]$ is a ED with respect to the norm $N(a + b\sqrt{2}) = |a^2 - 2b^2|$.

Solution. N is the absolute value of the field norm, and is a multiplicative function. Now, given $\alpha, \beta \in \mathcal{O}$, $\alpha \neq 0$, write $\beta/\alpha = x + y\sqrt{2}$ with $x, y \in \mathbb{Q}$. Find $c, d \in \mathbb{Z}$ such that $|x - c|, |y - d| \leq 1/2$, and put $\gamma = c + d\sqrt{2}$. Then

$$N(\beta/\alpha - \gamma) = N((x + y\sqrt{2}) - (c + d\sqrt{2})) = |(x - c)^2 - 2(y - d)^2| \leq 1/2,$$

so, for $\delta = \beta - \gamma\alpha$, we have $N(\delta) = N(\beta/\alpha - \gamma)N(\alpha) \leq \frac{1}{2}N(\alpha) < N(\alpha)$. Hence, we have $\beta = \gamma\alpha + \delta$, with $\gamma, \delta \in \mathcal{O}$, and $N(\delta) < N(\alpha)$, which proves that \mathcal{O} is Euclidean.

8.3.5. Let $R = \mathbb{Z}[\omega]$ where $\omega = \sqrt{-n}$ and n is a squarefree integer ≥ 5 .

5pt (a) Prove that 2 is irreducible in R .

Solution. For $\alpha = a + b\omega \in R$, $a, b \in \mathbb{Z}$, we have $N(\alpha) = a^2 + nb^2$, and if $b \neq 0$, then $N(\alpha) \geq n$. If $\alpha \mid 2$ then $N(\alpha) \mid N(2) = 4$, so $b = 0$, so $\alpha = a \mid 2$, so $a = \pm 1, \pm 2$. Hence, 2 is irreducible.

5pt (b) Prove that 2 is not prime in R and deduce that R is not a UFD.

Solution. If n is even, then $2 \mid n = -\omega^2$, but $2 \nmid \omega$. (For any $\alpha = a + b\omega \in R$ the element $2\alpha = 2a + 2b\omega$ has even coefficients.)

If n is odd, then $2 \mid (1 + n) = (1 - \omega)(1 + \omega)$, but $2 \nmid 1 \pm \omega$.

So, in both cases, the irreducible element 2 is not prime, hence, R is not a UFD.

8.3.8. Let $\mathcal{O} = \mathbb{Z}[\sqrt{-5}]$, the ring of quadratic integers associated with $D = -5$. Let $\alpha = 1 + \sqrt{-5}$, then $\bar{\alpha} = 1 - \sqrt{-5}$.

5pt (b) Let $I_2 = (2, \alpha)$ and $I_3 = (3, \alpha)$, then $\bar{I}_3 = (3, \bar{\alpha})$. Prove that $\bar{I}_2 = I_2$, and that I_2, I_3 , and \bar{I}_3 are maximal ideals in \mathcal{O} .

Solution. Since $\bar{\alpha} = 2 - \alpha$, I_2 is “self-conjugate”: $I_2 = (2, \alpha) = (2, \bar{\alpha}) = \bar{I}_2$.

In R/I_2 , $2 = 0$ and $\sqrt{-5} = -1 = 1$, so $R/I_2 \cong \mathbb{Z}_2$, which is a field, so I_2 is maximal.

In R/I_3 , $3 = 0$ and $\sqrt{-5} = -2 = 1$, so $R/I_3 \cong \mathbb{Z}_3$, which is a field, so R/I_3 is maximal.

\bar{I}_3 is conjugate to I_3 , so is also maximal.

10pt (c) Prove that $(2) = I_2^2$, $(3) = I_3 \bar{I}_3$, $(\alpha) = I_2 I_3$, and $(\bar{\alpha}) = I_2 \bar{I}_3$.

Solution.

$$I_2^2 = (2^2, 2\alpha, \alpha^2) = (4, 2 + 2\sqrt{-5}, -4 + 2\sqrt{-5}).$$

All the generators of I_2^2 are divisible by 2, so $I_2^2 \subseteq (2)$. Also, $2 = -4 + (2 + 2\sqrt{-5}) - (-4 + 2\sqrt{-5})$, so $2 \in I_2^2$, so $(2) \subseteq I_2^2$.

$$I_3\bar{I}_3 = (3^2, 3\bar{\alpha}, 3\alpha, \alpha\bar{\alpha}) = (3^2, 3\bar{\alpha}, 3\alpha, 6),$$

so $I_3\bar{I}_3 \subseteq (3)$. Also, $3 = 9 - 6$, so $(3) \subseteq I_3\bar{I}_3$.

$$I_2I_3 = (2 \cdot 3, 2\alpha, 3\alpha, \alpha^2).$$

Since $2 \cdot 3 = 6 = \alpha\bar{\alpha}$, all the generators of I_2I_3 are divisible by α , so $I_2I_3 \subseteq (\alpha)$. Also, $3\alpha - 2\alpha = \alpha$, so $(\alpha) \subseteq I_2I_3$.

Since $I_2 = \bar{I}_2$, $I_2\bar{I}_3 = \bar{I}_2\bar{I}_3$, so $I_2\bar{I}_3 = (\bar{\alpha})$.

Now, $(6) = (2)(3) = I_2^2I_3\bar{I}_3$, and $(6) = (\alpha)(\bar{\alpha}) = I_2\bar{I}_3I_2I_3 = I_2^2I_3\bar{I}_3$.

10pt **8.3.9.** If a quadratic integer ring \mathcal{O} is a PID, prove that the absolute value $|N|$ of the field norm N on \mathcal{O} is a Dedekind-Hasse norm.

Solution. Let $\alpha, \beta \in \mathcal{O}$. Since \mathcal{O} is a PID, the ideal $(\alpha, \beta) = (\gamma)$ for some $\gamma \in \mathcal{O}$. Then $\gamma \mid \beta$, so $N(\gamma) \mid N(\beta)$, so $|N(\gamma)| \leq |N(\beta)|$. If $|N(\gamma)| = |N(\beta)|$, then $N(\beta/\gamma) = \pm 1$, so β/γ is a unit, so $(\beta, \alpha) = (\gamma) = (\beta)$, so $\alpha \in (\beta)$. Otherwise $|N(\gamma)| < |N(\beta)|$, which just proves that $|N|$ is a Dedekind-Hasse norm.