
Solutions to Homework 13 Math 5590H

8.2.4. Let R be an integral domain. Prove that the following two conditions (together) imply that R is a10pt

PID:
(i) Any two nonzero elements a, b ∈ R have a greatest common divisor of the form ra+sb for some r, s ∈ R.
(ii) R satisfies the ascending chain condition for principal ideals: if a1, a2, . . . are nonzero elements of R
such that ai+1

∣

∣ ai for all i, then there is n such that the elements an, an+1, . . . are all associate.

Solution. Condition (i) says that any ideal (a, b) generated by two elements is principal.
Let I be a nonzero ideal in R. Choose any nonzero a1 ∈ I. If I 6= (a1), choose any b2 ∈ I \ (a1). By

assumption, the ideal (a1, b2) is principal, = (a2) for some a2 ∈ R. If I 6= (a2), choose b3 ∈ I \ (a2), etc. The
sequence (a1) ⊂ (a2) ⊂ · · · is a strictly increasing sequence of principal ideals, by condition (ii) it cannot be
infinite, that is, I = (an) for some n.

8.1.7(a). Find the generator for the ideal (85, 1 + 13i) in Z[i].10pt

Solution. The problem is to find the gcd of 85 and 1 + 13i. We could try to guess it, using the field norm
N . But since Z[i] is a ED, we can use the Euclidean algorithm instead. We have 85/(1 + 13i) = 0.5− 6.5i;
as the nearest element of Z[i] take −6i, and get

85 = (−6i)(1 + 13i) + (7 + 6i).

Next, (1 + 13i)/(7 + 6i) = 1 + i, so 7 + 6i divides 1 + 13i,

1 + 13i = (1 + i)(7 + 6i),

which means that we are done, and (85, 1 + 13i) = (7 + 6i).

8.1.9. Prove that the ring Z[
√
2] is a ED with respect to the norm N(a+ b

√
2) = |a2 − 2b2|.10pt

Solution. N is the absolute value of the field norm, and is a multiplicative function. Now, given α, β ∈ O,
α 6= 0, write β/α = x+y

√
2 with x, y ∈ Q. Find c, d ∈ Z such that |x−c|, |y−d| ≤ 1/2, and put γ = c+d

√
2.

Then
N(β/α− γ) = N

(

(x+ y
√
2)− (c+ d

√
2)
)

=
∣

∣(x− c)2 − 2(y − d)2
∣

∣ ≤ 1/2,

so, for δ = β − γα, we have N(δ) = N(β/α − γ)N(α) ≤ 1

2
N(α) < N(α). Hence, we have β = γα + δ, with

γ, δ ∈ O, and N(δ) < N(α), which proves that O is Euclidean.

8.3.5. Let R = Z[ω] where ω =
√
−n and n is a squarefree integer ≥ 5.

(a) Prove that 2 is irreducible in R.5pt

Solution. For α = a+ bω ∈ R, a, b ∈ Z, we have N(α) = a2 + nb2, and if b 6= 0, then N(α) ≥ n. If α
∣

∣ 2 then

N(α)
∣

∣N(2) = 4, so b = 0, so α = a
∣

∣ 2, so a = ±1,±2. Hence, 2 is irreducible.

(b) Prove that 2 is not prime in R and deduce that R is not a UFD.5pt

Solution. If n is even, then 2
∣

∣n = −ω2, but 2 /
∣

∣ ω. (For any α = a+ bω ∈ R the element 2α = 2a+ 2bω has
even coefficients.)

If n is odd, then 2
∣

∣(1 + n) = (1− ω)(1 + ω), but 2 /
∣

∣ 1± ω.
So, in both cases, the irreducible element 2 is not prime, hence, R is not a UFD.

8.3.8. Let O = Z[
√
−5], the ring of quadratic integers associated with D = −5. Let α = 1 +

√
−5, then

α = 1−
√
−5.

(b) Let I2 = (2, α) and I3 = (3, α), then I3 = (3, α). Prove that I2 = I2, and that I2, I3, and I3 are maximal5pt

ideals in O.

Solution. Since α = 2− α, I2 is “self-conjugate”: I2 = (2, α) = (2, α) = I2.
In R/I2, 2 = 0 and

√
−5 = −1 = 1, so R/I2

∼= Z2, which is a field, so I2 is maximal.
In R/I3, 3 = 0 and

√
−5 = −2 = 1, so R/I3

∼= Z3, which is a field, so R/I3 is maximal.
I3 is conjugate to I3, so is also maximal.

(c) Prove that (2) = I22 , (3) = I3I3, (α) = I2I3, and (α) = I2I3.10pt
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Solution.
I22 = (22, 2α, α2) =

(

4, 2 + 2
√
−5,−4 + 2

√
−5

)

.

All the generators of I22 are divisible by 2, so I22 ⊆ (2). Also, 2 = −4+(2+2
√
−5)− (−4+2

√
−5), so 2 ∈ I22 ,

so (2) ⊆ I22 .

I3I3 =
(

32, 3α, 3α, αα
)

=
(

32, 3α, 3α, 6
)

,

so I3I3 ⊆ (3). Also, 3 = 9− 6, so (3) ⊆ I3I3.

I2I3 =
(

2 · 3, 2α, 3α, α2
)

.

Since 2 · 3 = 6 = αα, all the generators of I2I3 are divisible by α, so I2I3 ⊆ (α). Also, 3α − 2α = α, so
(α) ⊆ I2I3.

Since I2 = I2, I2I3 = I2I3, so I2I3 = (α).
Now, (6) = (2)(3) = I22I3I3, and (6) = (α)(α) = I2I3I2I3 = I22I3I3.

8.3.9. If a quadratic integer ring O is a PID, prove that the absolute value |N | of the field norm N on O is10pt

a Dedekind-Hasse norm.

Solution. Let α, β ∈ O. Since O is a PID, the ideal (α, β) = (γ) for some γ ∈ O. Then γ
∣

∣β, so N(γ)
∣

∣N(β),
so |N(γ)| ≤ |N(β)|. If |N(γ)| = |N(β)|, then N(β/γ) = ±1, so β/γ is a unit, so (β, α) = (γ) = (β), so
α ∈ (β). Otherwise |N(γ)| < |N(β)|, which just proves that |N | is a Dedekind-Hasse norm.
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