
Solutions to Homework 3 Math 5590H

1.3.14. Let p be a prime. Show that a permutation σ ∈ Sn has order p iff σ is a product of disjoint p-cycles.5pt

Show by example that this doesn’t need to be so if p is not prime.

Solution. Every permutation is uniquely representable as a product of disjoint cycles, and the order of the
permutation is the lcm of the lengths of these cycles. So, the order p = |σ| of σ ∈ Sn is prime iff cycles in
the cyclic decomposition of σ have length p (excluding, as usual, 1-cycles).

For the permutation σ = (1, 2)(3, 4, 5) we have |σ| = 6.

3.5.4,5. (a) For any n ∈ N, prove that Sn is generated by any n-cycle ρ = (i1, i2, . . . , in) and the10pt

transposition τ = (i1, i2).

Solution. W.l.o.g., let ρ = (1, 2, . . . , n) and τ = (1, 2). For any i < n, we have (i, i + 1) = ρi−1τρ−(i−1).
(We know how a conjugation changes a permutation. If not, notice that ρi−1τρ−(i−1): i 7→ 1 7→ 2 7→ i + 1,
i + 1 7→ 2 7→ 1 7→ i, and for every j 6= i, i + 1, τ(ρ−(i−1)(j)) = ρ−(i−1)(j), so ρi−1τρ−(i−1)(j) = j.) Since
transpositions of the form (i, i+ 1) generate Sn, we see that τ and ρ generate Sn too.

(b) If p is prime, show that Sp = 〈τ, ρ〉 where ρ is any p-cycle and τ is any transposition.10pt

Solution. Let ρ = (i1, i2, . . . , ip). Then for any k < p, ρk = (i1, i1+k, i1+2k, . . . , i1+(p−1)k), where the products
ik are computed modulo p. This is still a p-cycle, since for any l < p, lk 6= 0mod p. W.l.o.g., let τ = (i1, ik),
then ρk−1 = (i1, ik, i1+2(k−1), . . .). By (a), τ and ρk−1 generate Sp, so τ and ρ also do.

2.4.7. Prove that the subgroup of S4 generated by τ = (1, 2) and ρ = (1, 3)(2, 4) is isomorphic to D8.5pt

Solution. Let’s draw a square S with vertices 1, 3, 2, 4:

2 3
| |
4 1

Then the permutations τ and ρ act as two distinct reflections of S, their product τρ = (1, 2)(1, 3)(2, 4) =
(1, 3, 2, 4) is the π/2-angle rotation of S, so these permutations generate a group isomorphic to D8.

Another solution. Let H be the subgroup. The permutation λ = τρ = (1, 3, 2, 4) is a 4-cycle; thus, H has
at least 8 elements: 1, λ, λ2, λ3, τ, ρ, τλ, ρλ. We have τ2 = ρ2 = 1 and (τρ)4 = λ4 = 1. These are just the
relations defining (by exercise 1.2.7) the group D8, which has 8 elements. Hence, H has at most 8 elements,
so has exactly 8 elements, and is isomorphic to D8. (We will have a rigorous justification of this approach
later.)

2.2.7. For all n ≥ 3, prove that Z(D2n) = {1, rn/2} if n is even and Z(D2n) = 1 if n is odd.10pt

Solution. We have rks = sr−k for all k, so rk and s don’t commute unless k = −kmodn, that is, n is
even and k = n/2. For any k, (srk)r = r−1(srk), so srk and r don’t commute for all k. Hence, the only
non-identity element of D2n that commutes with all other elements is rn/2, in the case n is even.

A1. Prove that for any n ∈ N and field F , Z(GLn(F )) is the set of scalar matrices cI, c ∈ F ∗.10pt

Solution. Scalar matrices do commute with all other matrices, (cI)A = cA = A(cI) for all c ∈ F .

If A = (ai,j) ∈ GLn(F ) is not diagonal, let k 6= l be such that its (k, l)-th entry ak,l 6= 0. Define matrix
B = (bi,j) ∈ GLn(F ) by bi,i = 1 for all i and bi,j = 0 for all i 6= j unless bl,k = 1. Then the (k, k)-th entry
of AB is ak,k + ak,l and the (k, k)-th entry of BA is ak,k, so AB 6= BA, so A 6∈ Z(GLn(F )).

If A is diagonal but not scalar, let k 6= l be such that ak,k 6= al,l then for B as above, the (k, l)-th entry
of AB is ak,k and of BA is al,l, so, again, AB 6= BA.

3.2.8. Prove that if H and K are finite subgroups of G whose orders are relatively prime, then H ∩K = 1.5pt

Solution. H ∩K is a subgroup of both H and K, so its order |H ∩K| divides both |H| and |K|. Since |H|
and |K| are relatively prime, we must have |H ∩K| = 1, so H ∩K = 1.
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3.2.22. Determine the last two digits of 33
100

.5pt

Solution. Interested in the last two digits of an integer, we may deal with the residues modulo 100, that
is, with the elements of Z100 instead of integers. The order of Z∗

100 is ϕ(100) = 40. (We will learn that if

n =
∏k

i=1 p
ri
i where pi are distinct primes, then ϕ(n) =

∏k
i=1 p

ri−1
i (pi − 1).) So, a40 = 1 for all a ∈ Z

∗

100.

Now, modulo 40, 3 has order 4, since 34 = 81 = 1mod 40. Hence, 3100 = 1mod 40. So, a3
100

= a1 = a for all
a ∈ Z

∗

100, and in particular, 33
100

= 3mod 100.
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