Solutions to Homework 5

Math 5590H

10pt **3.3.3.** If H is a normal subgroup of a group G of prime index p, prove that for any $K \leq G$ either $K \leq H$, or HK = G and $|K : (K \cap H)| = p$.

Solution. Since |G/H| = p, we have $G/H \cong \mathbb{Z}_p$. Let $K \leq G$. Then HK is a subgroup of G and $HK/H \leq G/H$, so |HK/H| | |G/H| = p, so either |HK/H| = 1, in which case HK = H and so $K \leq H$; or |HK/H| = p, in which case HK = G and $|K : K \cap H| = |HK : H| = p$.

10pt **3.2.19.** Prove that if N is a normal subgroup of a finite group G and gcd(|N|, |G:N|) = 1 then N is the unique subgroup of G of order |N|.

Solution. Let $K \subseteq G$ with |K| = |N|. Let $\pi: G \longrightarrow G/N$ be the projection homomorphism. Then $\pi(K) \leq G/N$ so $|\pi(K)| | |G/N| = |G:N|$. On the other hand, $\pi(K) \cong K/(K \cap N)$ is a factor group of K, so $|\pi(K)| | |K| = |N|$. So $|\pi(K)| = 1$, so $K \leq H$, so K = H.

10pt **3.3.7.** Let M and N be normal subgroups of G such that G = MN. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$.

Solution. Consider the homomorphism $\varphi: G \longrightarrow (G/M) \times (G/N)$, $\varphi(a) = (a \mod M, a \mod N)$. (I should check that φ is a homomorphism, but this is straightforward.) To show that φ is surjective, let $B \in G/M$ and $C \in G/N$. Since G = MN, B = bM for some $b \in N$, and C = cN for some $c \in M$. Then for a = bc we have $a \mod M = b \mod M$ and $a \mod N = c \mod N$, so $\varphi(a) = (B, C)$. Since $\text{Ker } \varphi = M \cap N$, $M \cap N$ is normal and by the 1st isomorphism theorem, $G/(M \cap N) \cong (G/M) \times (G/N)$.

10pt A1. Let F be a finite field of order q (that is, $F = \mathbb{F}_q$), let $n \in \mathbb{N}$, let N be the group $\{c \in F : c^n = 1\}$ of n-th roots of unity in F, let |N| = d. The special linear group $\mathrm{SL}_n(F)$ is the group of $n \times n$ matrices with determinant 1, the group $\mathrm{PSL}_n(F)$ is defined as $\mathrm{SL}_n(F)/Z(\mathrm{SL}_n(F))$. Find the order of $\mathrm{SL}_n(F)$ and of $\mathrm{PSL}_n(F)$.

Solution. $\operatorname{SL}_n(F)$ is the kernel of the homomorphism det: $\operatorname{GL}_n(F) \longrightarrow F^*$. Since the homomorphism det is surjective, by the 1st isomorphism theorem, $\operatorname{GL}_n(F)/\operatorname{SL}_n(F) \cong F^*$, which has q-1 elements. It follows that $|\operatorname{SL}_n(F)| = |\operatorname{GL}_n(F)|/(q-1) = (q^n - 1)(q^n - q) \cdots (q^n - q^{n-1})/(q-1)$.

The center of $\mathrm{SL}_n(F)$ consists of scalar matrices cI with $c^n = 1$, that is, $c \in N$. Hence, $|\mathrm{PSL}_n(F)| = |\mathrm{SL}_n(F)|/d$.

A2. Find a composition series for the groups

 $_{5pt}$ (a) Q_8 .

Solution. $1 \leq \langle -1 \rangle \leq \langle i \rangle \leq Q_8$, the factors are $\mathbb{Z}_2, \mathbb{Z}_2, \mathbb{Z}_2$.

 $_{5pt}$ (b) D_8 .

Solution. $1 \leq \langle r^2 \rangle \leq \langle r \rangle \leq D_8$, the factors are $\mathbb{Z}_2, \mathbb{Z}_2, \mathbb{Z}_2$.

 $_{5pt}$ (c) D_{12} .

Solution. $1 \leq \langle r^3 \rangle \leq \langle r \rangle \leq D_{12}$, the factors are $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_2$.

10pt Cf. 3.4.8. Prove that a finite group is solvable iff it is polycyclic. Find (an infinite) solvable non-polycyclic group.

Solution. Informally: every finite abelian group "is made" of cyclic groups, so if G is made of finite abelian groups then it is made of cyclic groups too. More formally: let G be solvable, let $1 = H_1 \leq H_2 \leq \cdots \leq H_n = G$ be a subnormal series with H_{i+1}/H_i being abelian for all *i*. Since for any *i*, H_{i+1}/H_i is a finite abelian group, in its composition series $1 = L_{i,0} \leq L_{i,1} \leq \cdots \leq L_{i,m_i} = L_{i+1}/L_i$ the factors are simple abelian, so, cyclic. By the isomorphism theorems, we have a series $H_i = K_{i,0} \leq K_{i,1} \leq \cdots \leq K_{i,m_i} = H_{i+1}$ with the same factors. Combining these series for all *i*, we get a subnormal series of G with cyclic factors.

 $\mathbb Q$ is abelian, so solvable, but not polycyclic: indeed, any polycyclic group is finitely generated, but $\mathbb Q$ is not.

4.1.9. Assume that a group G acts transitively on the finite set X and let H be a normal subgroup of G. Let $\mathcal{O}_1, \ldots, \mathcal{O}_r$ be the distinct orbits of H in X.

- (a) Prove that G permutes the orbits \mathcal{O}_i : for every $a \in G$ and each i, $a\mathcal{O}_i = \mathcal{O}_j$ for some j. Prove that G acts transitively on the set $\{\mathcal{O}_1, \ldots, \mathcal{O}_r\}$. Deduce that all the orbits \mathcal{O}_i have the same cardinality. Solution. Let \mathcal{O} and \mathcal{O}' be two orbits under the action of H, $\mathcal{O} = Hx$ and $\mathcal{O}' = Hx'$ for some $x, x' \in X$. Find $a \in G$ such that x' = ax. (Such an a exists since G actis transitively on X.) Then, since H is normal, $\mathcal{O}' = Hax = aHx = a\mathcal{O}$. It follows that all orbits in X under the action of H have the same cardinality.
- 5pt (b) Let $x \in X$ and $\mathcal{O} = Hx$. Prove that $|\mathcal{O}| = |H : (H \cap G_x)|$ (where G_x is the stabilizer of x in G) and that $r = |G : HG_x|$.

Solution. Since $H_x = G_x \cap H$, we have $|\mathcal{O}| = |H : H_x| = |H : (H \cap G_x)|$. Next, by a counting principle, $|H : (H \cap G_x)| = |HG_x : G_x|$. Hence, by another counting principle, $r = |X|/|\mathcal{O}| = |G : G_x|/|HG_x : G_x| = |G : HG_x|$.

Or, alternatively: an element $a \in G$ fixes $\mathcal{O} = Hx$ iff $ax \in \mathcal{O}$, that is, ax = hx for some $h \in H$. But this means that $a^{-1}h \in G_x$, that is, $a \in G_xH = HG_x$.