
Solutions to Homework 5 Math 5590H

3.3.3. If H is a normal subgroup of a group G of prime index p, prove that for any K ≤ G either K ≤ H,10pt

or HK = G and |K : (K ∩H)| = p.

Solution. Since |G/H| = p, we have G/H ∼= Zp. Let K ≤ G. Then HK is a subgroup of G and HK/H ≤
G/H, so |HK/H|

∣

∣ |G/H| = p, so either |HK/H| = 1, in which case HK = H and so K ≤ H; or |HK/H| =
p, in which case HK = G and |K : K ∩H| = |HK : H| = p.

3.2.19. Prove that if N is a normal subgroup of a finite group G and gcd(|N |, |G : N |) = 1 then N is the10pt

unique subgroup of G of order |N |.

Solution. Let K ⊆ G with |K| = |N |. Let π:G −→ G/N be the projection homomorphism. Then
π(K) ≤ G/N so |π(K)|

∣

∣ |G/N | = |G : N |. On the other hand, π(K) ∼= K/(K ∩N) is a factor group of K,

so |π(K)|
∣

∣ |K| = |N |. So |π(K)| = 1, so K ≤ H, so K = H.

3.3.7. Let M and N be normal subgroups of G such that G = MN . Prove that G/(M ∩N) ∼= (G/M) ×10pt

(G/N).

Solution. Consider the homomorphism ϕ:G −→ (G/M) × (G/N), ϕ(a) = (amodM,amodN). (I should
check that ϕ is a homomorphism, but this is straightforward.) To show that ϕ is surjective, let B ∈ G/M
and C ∈ G/N . Since G = MN , B = bM for some b ∈ N , and C = cN for some c ∈ M . Then for a = bc
we have amodM = bmodM and amodN = cmodN , so ϕ(a) = (B,C). Since Kerϕ = M ∩N , M ∩N is
normal and by the 1st isomorphism theorem, G/(M ∩N) ∼= (G/M)× (G/N).

A1. Let F be a finite field of order q (that is, F = Fq), let n ∈ N, let N be the group {c ∈ F : cn = 1}10pt

of n-th roots of unity in F , let |N | = d. The special linear group SLn(F ) is the group of n × n matrices
with determinant 1, the group PSLn(F ) is defined as SLn(F )/Z

(

SLn(F )
)

. Find the order of SLn(F ) and of
PSLn(F ).

Solution. SLn(F ) is the kernel of the homomorphism det:GLn(F ) −→ F ∗. Since the homomorphism det is
surjective, by the 1st isomorphism theorem, GLn(F )/SLn(F ) ∼= F ∗, which has q − 1 elements. It follows
that | SLn(F )| = |GLn(F )|/(q − 1) = (qn − 1)(qn − q) · · · (qn − qn−1)/(q − 1).

The center of SLn(F ) consists of scalar matrices cI with cn = 1, that is, c ∈ N . Hence, |PSLn(F )| =
| SLn(F )|/d.

A2. Find a composition series for the groups

(a) Q8.5pt

Solution. 1 ≤ 〈−1〉 ≤ 〈i〉 ≤ Q8, the factors are Z2, Z2, Z2.

(b) D8.5pt

Solution. 1 ≤ 〈r2〉 ≤ 〈r〉 ≤ D8, the factors are Z2, Z2, Z2.

(c) D12.5pt

Solution. 1 ≤ 〈r3〉 ≤ 〈r〉 ≤ D12, the factors are Z2, Z3, Z2.

Cf. 3.4.8. Prove that a finite group is solvable iff it is polycyclic. Find (an infinite) solvable non-polycyclic10pt

group.

Solution. Informally: every finite abelian group “is made” of cyclic groups, so if G is made of finite abelian
groups then it is made of cyclic groups too. More formally: let G be solvable, let 1 = H1 ≤ H2 ≤ · · · ≤
Hn = G be a subnormal series with Hi+1/Hi being abelian for all i. Since for any i, Hi+1/Hi is a finite
abelian group, in its composition series 1 = Li,0 ≤ Li,1 ≤ · · · ≤ Li,mi

= Li+1/Li the factors are simple
abelian, so, cyclic. By the isomorphism theorems, we have a series Hi = Ki,0 ≤ Ki,1 ≤ · · · ≤ Ki,mi

= Hi+1

with the same factors. Combining these series for all i, we get a subnormal series of G with cyclic factors.

Q is abelian, so solvable, but not polycyclic: indeed, any polycyclic group is finitely generated, but Q is
not.
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4.1.9. Assume that a group G acts transitively on the finite set X and let H be a normal subgroup of G.
Let O1, . . . ,Or be the distinct orbits of H in X.

(a) Prove that G permutes the orbits Oi: for every a ∈ G and each i, aOi = Oj for some j. Prove that G5pt

acts transitively on the set {O1, . . . ,Or}. Deduce that all the orbits Oi have the same cardinality.

Solution. Let O and O′ be two orbits under the action of H, O = Hx and O′ = Hx′ for some x, x′ ∈ X.
Find a ∈ G such that x′ = ax. (Such an a exists since G actis transitively on X.) Then, since H is normal,
O′ = Hax = aHx = aO. It follows that all orbits in X under the action of H have the same cardinality.

(b) Let x ∈ X and O = Hx. Prove that |O| =
∣

∣H : (H ∩Gx)
∣

∣ (where Gx is the stabilizer of x in G) and that5pt

r = |G : HGx|.

Solution. Since Hx = Gx ∩ H, we have |O| = |H : Hx| =
∣

∣H : (H ∩ Gx)
∣

∣. Next, by a counting principle,
∣

∣H : (H ∩Gx)
∣

∣ = |HGx : Gx|. Hence, by another counting principle, r = |X|/|O| = |G : Gx|/|HGx : Gx| =
|G : HGx|.

Or, alternatively: an element a ∈ G fixes O = Hx iff ax ∈ O, that is, ax = hx for some h ∈ H. But
this means that a−1h ∈ Gx, that is, a ∈ GxH = HGx.
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