5pt 5.4.13. Prove that for any $n \in \mathbb{N}$, D_{8n} is not isomorphic to $D_{4n} \times \mathbb{Z}_2$.

Solution. D_{8n} contains an element of order 4n whereas $D_{4n} \times \mathbb{Z}_2$ does not. Indeed, the order of any element of D_{4n} either is 2 or divides 2n, so for any $(a,b) \in D_{4n} \times \mathbb{Z}_2$, if |a| is even, then $|(a,b)| = |a| \le 2n$, and if |a| is odd, then $|a| \le n$, so $|(a,b)| \le 2n$.

5pt A1. Prove that every element of the group $\bigoplus_{n=1}^{\infty} \mathbb{Z}_n$ has finite order, and find an element of $\prod_{n=1}^{\infty} \mathbb{Z}_n$ of an infinite order.

Solution. For any element $a=(a_1,a_2,\ldots,a_k,0,0,0,\ldots)$ of $\bigoplus_{n=1}^{\infty} \mathbb{Z}_n$ we have k!a=0, so a has finite order. For the element $a=(1,1,1,\ldots)$, for any $k\in\mathbb{N}$, $ka=(k,k,k,\ldots)\neq 0$ since the (k+1)-st entry k is nonzero in \mathbb{Z}_{k+1} .

10pt **A2.** Let subgroups $H, K \leq G$ satisfy HK = G and hk = kh for all $h \in H$ and $k \in K$, and let $N = H \cap K$. Prove that $G \cong H *_N K$ under an isomorphism that "respects" H and $K: h \leftrightarrow (h, 1)$ and $k \leftrightarrow (1, k)$.

Solution. Since $N \leq K$, N centralizes H (elements of N commute with all elements of H). Since $N \leq H$, N centralizes K. Since HK = G, N centralizes G, that is, $N \leq Z(G)$, so $N \leq Z(H)$ and $N \leq Z(K)$.

The embedding homomorphisms from N to H and K define the central product $H*_N K=(H\times K)/D$ where $D=\{(a,a^{-1}):a\in N\}$. Define a homomorphism $\varphi\colon H\times K\longrightarrow G$ by $\varphi(h,k)=hk,\ h\in H,\ k\in K$. Since $G=HK,\ \varphi$ is surjective. We have $\varphi(h,k)=1$ iff hk=1 iff $h=k^{-1}\in H\cap K=N$, that is, $\ker(\varphi)=D$. By the 1-st isomorphism theorem, φ induces an isomorphism $G\cong (H\times K)/D$. And, under φ , $(h,1)\leftrightarrow h$ for any $h\in H$ and $(1,k)\leftrightarrow k$ for any $k\in K$.

10pt **A3.** Let $n, m \in \mathbb{N}$, and let $d = \gcd(n, m)$ and $l = \operatorname{lcm}(n, m)$. Prove that $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_l \times \mathbb{Z}_d$.

Solution. Let $n=p_1^{r_1}\cdots p_k^{r_k}$ and $m=p_1^{s_1}\cdots p_k^{s_k}$ where p_i are distinct primes and some of r_i , s_i may be equal to 0. Then $d=p_1^{\min\{r_1,s_1\}}\cdots p_k^{\min\{r_k,s_k\}}$ and $l=p_1^{\max\{r_1,s_1\}}\cdots p_k^{\max\{r_k,s_k\}}$. By the Chinese remainder theorem,

$$\begin{split} \mathbb{Z}_n \times \mathbb{Z}_m & \cong \left(\mathbb{Z}_{p_1^{r_1}} \times \dots \times \mathbb{Z}_{p_k^{r_k}} \right) \times \left(\mathbb{Z}_{p_1^{s_1}} \times \dots \times \mathbb{Z}_{p_k^{s_k}} \right) \cong \left(\mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_1^{s_1}} \right) \times \dots \times \left(\mathbb{Z}_{p_k^{r_k}} \times \mathbb{Z}_{p_k^{s_k}} \right) \\ & \cong \left(\mathbb{Z}_{p_1^{\max\{r_1, s_1\}}} \times \mathbb{Z}_{p_1^{\min\{r_1, s_1\}}} \right) \times \dots \times \left(\mathbb{Z}_{p_k^{\max\{r_k, s_k\}}} \times \mathbb{Z}_{p_k^{\min\{r_k, s_k\}}} \right) \\ & \cong \left(\mathbb{Z}_{p_1^{\max\{r_1, s_1\}}} \times \dots \times \mathbb{Z}_{p_k^{\max\{r_k, s_k\}}} \right) \times \left(\mathbb{Z}_{p_1^{\min\{r_1, s_1\}}} \times \dots \times \mathbb{Z}_{p_k^{\min\{r_k, s_k\}}} \right) \cong \mathbb{Z}_l \times \mathbb{Z}_d. \end{split}$$

(Which is, by the way, the "invariant factors" decomposition of this group.)

10pt **A4.** Let $n, m \in \mathbb{N}$, $d = \gcd(n, m)$, $l = \operatorname{lcm}(n, m)$. Then \mathbb{Z}_d is a common factor of \mathbb{Z}_n and \mathbb{Z}_m . Prove that $\mathbb{Z}_n \times_{\mathbb{Z}_d} \mathbb{Z}_m \cong \mathbb{Z}_l$.

Solution. The subgroup $H = \mathbb{Z}_n \times_{\mathbb{Z}_d} \mathbb{Z}_m$ of $\mathbb{Z}_n \times \mathbb{Z}_m$ has order nm/d = l. (Indeed, given any $a \in \mathbb{Z}_n$, there are m/d elements $b \in \mathbb{Z}_m$ such that $b \mod d = a \mod d$.) On the other hand, the element (1,1) of H has order l. Hence, (1,1) generates H, and $H \cong \mathbb{Z}_l$.

5.2.2,3(a,b,c). Give the list of elementary divisors and the invariant factors of all abelian groups of the order:

 $_{5pt}$ (a) $270 = 2 \cdot 3^3 \cdot 5$

Solution. The possible collections of elementary divisors of groups of this order are $(2, 3^3, 5)$, $(2, 3^2, 3, 5)$, and (2, 3, 3, 3, 5); the corresponding collections of invariant factors are (270), (90, 3), and (30, 3, 3).

 $_{5pt}$ (b) $9801 = 3^4 \cdot 11^2$

Solution. The possible collections of elementary divisors are

$$\begin{array}{l} (3^4,11^2),\ (3^3,3,11^2),\ (3^2,3^2,11^2),\ (3^2,3,3,11^2),\ (3,3,3,3,11^2),\\ (3^4,11,11),\ (3^3,3,11,11),\ (3^2,3^2,11,11),\ (3^2,3,3,11,11),\ (3,3,3,3,11,11); \end{array}$$

the corresponding collections of invariant factors are

$$(3^4 \cdot 11^2), (3^3 \cdot 11^2, 3), (3^2 \cdot 11^2, 3^2), (3^2 \cdot 11^2, 3, 3), (3 \cdot 11^2, 3, 3, 3), (3^4 \cdot 11, 11), (3^3 \cdot 11, 3 \cdot 11), (3^2 \cdot 11, 3^2 \cdot 11), (3^2 \cdot 11, 3 \cdot 11, 3), (3 \cdot 11, 3 \cdot 11, 3, 3).$$

$$_{5pt}$$
 (c) $320 = 2^6 \cdot 5$

Solution. The possible collections of elementary divisors are

the corresponding collections of invariant factors are

$$\begin{array}{l}(2^6\cdot 5),\ (2^5\cdot 5,2),\ (2^4\cdot 5,2^2),\ (2^4\cdot 5,2,2),\ (2^3\cdot 5,2^3),\ (2^3\cdot 5,2^2,2),\ (2^3\cdot 5,2,2,2),\\ (2^2\cdot 5,2^2,2^2),\ (2^2\cdot 5,2^2,2,2),\ (2^2\cdot 5,2,2,2,2,2),\ (2\cdot 5,2,2,2,2,2).\end{array}$$

5.2.4(b). Determine which pairs of abelian groups listed are isomorphic (where the expression $[n_1, \ldots, n_k]$ denotes the group $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$): $[2^2, 2 \cdot 3^2], [2^2 \cdot 3, 2 \cdot 3], [2^3 \cdot 3^2], [2^2 \cdot 3^2, 2].$

Solution. In the "elementary divisors" form these groups are, respectively, $[2^2, 2, 3^2]$, $[2^2, 3, 2, 3]$, $[2^3, 3^2]$, and $[2^2, 3^2, 2]$. Thus, only the 1st and the 4th of these groups are isomorphic.