
Solutions to Homework 9 Math 5590H

A1. Let p ≥ 3 be a prime.

(a) Prove that a nonabelian semidirect product Zp2 ×Zp exists and is unique up to isomorphism.5pt

Solution. For p ≥ 3, the group Aut(Zp2) is cyclic of order p2 − p = p(p− 1). It contains a single subgroup L
of order p; so, there is a nontrivial homomorphism Zp −→ Aut(Zp2), which defines a nonabelian semidirect
product Zp2 ×Zp. Any two such homomorphism have the same image L, so (as we proved) define isomorphic
semidirect products.

(b) Prove that a nonabelian semidirect product Z2

p ×Zp exists and is unique up to isomorphism.5pt

Solution. The group Aut(Zp2) is isomorphic to GL2(Fp) of order (p2 − 1)(p2 − p) = p(p − 1)2(p + 1). By
Sylow theorem, Aut(Zp2) contains subgroups of order p, and all such subgroups, being Sylow p-subgroups, are
conjugate. So, there is a nontrivial homomorphism Zp −→ Aut(Z2

p), which defines a nonabelian semidirect
product Z

2

p × Zp. Since any two such homomorphism have conjugates images, they define isomorphic
semidirect products.

(c) Prove that nonabelian Z
2

2
×Z2 and Z4 ×Z2 exist and are both isomorphic to D8.5pt

Solution. In the case p = 2, the groups described in (a) and (b) are G1 =
〈

a, b, c
∣

∣ a2 = b2 = c2 = 1, ab =

ba, cac = b, cbc = a
〉

(the automorphism a ↔ b of
〈

a, b
∣

∣ a2 = b2 = 1, ab = ba
〉 ∼= Z

2

2
has order 2) and

G2 =
〈

a, b
∣

∣ a4 = b2 = 1, bab = a3
〉

. Clearly, G2
∼= D8. An isomorphism between G1 and D8 can be

established by putting r = ca and s = a: indeed, r and s generate G1, r
2 = caca = ba = ab, r3 = caab = cb,

r4 = (ab)2 = 1, so |r| = 4, |s| = |a| = 2, and sr = aca = cba = r3s.

4.5.7. Exhibit all Sylow 2-subgroups of S4 and determine their isomorphism type.10pt

Solution. Since |S4| = 24 = 23 · 3, every Sylow 2 subgroup of S4 has 8 elements, and n2 = 1 or 3. In S4,
the elements of order 2k for some k are the identity, six transpositions, three elements of the form (a, b)(c, d)
(where a, b, c, d are assumed to be all distinct), and six 4-cycles. Since the total number of such elements is
> 8, we have n2 = 3.

Since all Sylow 2-subgroups are conjugate, for every conjugacy class C in S4 these subgroups must have
equal numbers of elements from C. The subgroup V4, consisting of elements of the form (a, b)(c, d) and the
identity, is normal in S4, thus it is contained in every Sylow 2-subgroup. Hence, each of these subgroups
must additionaly contain two transpositions and two 4-cycles, which have to be a 4-cycle and its inverse.
A Sylow 2-subgroup cannot contain two transpositions with a common element, since the product of such
transpositions is a 3-cycle: (a, b)(a, c) = (a, c, b). So, any Sylow 2-subgroup must contain two transpositions
(a, b) and (c, d), with distinct a, b, c, d, three elements from V4, – (a, b)(c, d), (a, c)(b, d), (a, d)(b, c), the
product (a, b)(a, c)(b, d) = (a, c, b, d), and its inverse (d, b, c, a). (We can check that what we get is a group,
but this is not neccessary, since we have no other choices anyway.) So, here are the three Sylow 2-subgroups
of S4:

P1 =
{

1, (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 3, 2, 4), (4, 2, 3, 1)
}

,

P2 =
{

1, (1, 3), (2, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3, 4), (4, 3, 2, 1)
}

,

P3 =
{

1, (1, 4), (2, 3), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 4, 3), (3, 4, 2, 1)
}

.

The elements that conjugate P1 to P2 and P3 are, for instance, ρ2 = (2, 3) and ρ3 = (2, 4) respectively.
In the group P1, if we put a = (1, 3, 2, 4) and b = (1, 2), we have 〈a〉 ∩ 〈b〉 = 1, |〈a〉| · |〈b〉| = 8 = |P1|,
bab−1 = (2, 3, 1, 4) = a−1, so P1

∼= D8, and so P2, P3
∼= D8.

4.5.13. Prove that every group of order 56 has a normal Sylow p-subgroup for some p.5pt

Solution. We have 56 = 23 · 7. If n7 6= 1, then n7 = 8, and then G contains 8 · 6 = 48 elements of order 7.
The remaining 56 − 48 = 8 elements may form only one subgroup of order 8 (the Sylow 2-subgroup of G),
so n2 = 1.

4.5.17, 6.2.15. (a) Prove that if |G| = 105 then G has a normal Sylow 5 subgroup and a normal Sylow10pt

7-subgroup.
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Solution. We have 105 = 3 · 5 · 7, so G is a group of order “pqr”. n5 divides 21 and equals 1 modulo 5, so it
is either 1 or 21; if n5 = 21, then G has 21 · 4 = 84 elements of order 5. n7 divides 15 and equals 1 modulo
7, so it is either 1 or 15; if n7 = 15, then G has 15 · 6 = 90 elements of order 7. Hence, it is impossible that
both n5 = 21 and n7 = 15, thus we have n5 = 1 or n7 = 1 (or both).

Let P ∈ Syl
3
(G), Q ∈ Syl

5
(G), and R ∈ Syl

7
(G), so that P ∼= Z3, Q

∼= Z5, and R ∼= Z7. Since at least
one of Q, R is normal, H = QR is a subgroup of order 35. Since 7 6= 1mod 5, H = R×Q. Since |G : H| = 3,
the minimal prime divisor of 105, we have that H is normal in G. Since R and Q are characteristic subgroups
of H, they are normal in G.

(b) Find all (up to isomorphism) groups of order 105.10pt

Solution. The only abelian group of this order is Z105. Assume that G is nonabelian. We have Aut(H) ∼=
Z
∗

5
×Z

∗

7

∼= Z4×Z6, which contains a single subgroup isomorphic to Z3, so there is a unique (up to isomorphism)
nontrivial semidirect product Z35 ×Z3. An element of order 3 in Z

∗

35
is one that equals 2 (or 4) modulo 7

and 1 modulo 5, namely, 16. Hence, G has the presentation
〈

a, b
∣

∣ a35 = b3 = 1, bab−1 = a16
〉

.

A2. Prove that all groups of order p2q2, where p and q are prime, are solvable.10pt

Solution. Let |G| = p2q2 where p, q are primes. If p = q, then G is a p group and is solvable; so, assume
that p < q. If nq 6= 1, then since nq = 1mod q we have nq > q > p, and nq

∣

∣ p2, so nq = p2; this implies that

p2 = 1mod q, so q
∣

∣(p− 1)(p+1), which only holds for p = 2, q = 3; but any group of order 36 is solvable. If
nq = 1, then G has a normal subgroup Q of order q2, then |G/Q| = p2, so that both Q and G/Q are abelian,
and G is solvable.
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