Solutions to Homework 9

Math 5590H

A1. Let $p \geq 3$ be a prime.

⁵pt (a) Prove that a nonabelian semidirect product $\mathbb{Z}_{p^2} \rtimes \mathbb{Z}_p$ exists and is unique up to isomorphism.

Solution. For $p \ge 3$, the group $\operatorname{Aut}(\mathbb{Z}_{p^2})$ is cyclic of order $p^2 - p = p(p-1)$. It contains a single subgroup L of order p; so, there is a nontrivial homomorphism $\mathbb{Z}_p \longrightarrow \operatorname{Aut}(\mathbb{Z}_{p^2})$, which defines a nonabelian semidirect product $\mathbb{Z}_{p^2} \rtimes \mathbb{Z}_p$. Any two such homomorphism have the same image L, so (as we proved) define isomorphic semidirect products.

⁵pt (b) Prove that a nonabelian semidirect product $\mathbb{Z}_p^2 \rtimes \mathbb{Z}_p$ exists and is unique up to isomorphism.

Solution. The group $\operatorname{Aut}(\mathbb{Z}_{p^2})$ is isomorphic to $\operatorname{GL}_2(\mathbb{F}_p)$ of order $(p^2 - 1)(p^2 - p) = p(p-1)^2(p+1)$. By Sylow theorem, $\operatorname{Aut}(\mathbb{Z}_{p^2})$ contains subgroups of order p, and all such subgroups, being Sylow p-subgroups, are conjugate. So, there is a nontrivial homomorphism $\mathbb{Z}_p \longrightarrow \operatorname{Aut}(\mathbb{Z}_p^2)$, which defines a nonabelian semidirect product $\mathbb{Z}_p^2 \rtimes \mathbb{Z}_p$. Since any two such homomorphism have conjugates images, they define isomorphic semidirect products.

5pt (c) Prove that nonabelian $\mathbb{Z}_2^2 \rtimes \mathbb{Z}_2$ and $\mathbb{Z}_4 \rtimes \mathbb{Z}_2$ exist and are both isomorphic to D_8 .

Solution. In the case p = 2, the groups described in (a) and (b) are $G_1 = \langle a, b, c \mid a^2 = b^2 = c^2 = 1$, ab = ba, cac = b, $cbc = a \rangle$ (the automorphism $a \leftrightarrow b$ of $\langle a, b \mid a^2 = b^2 = 1$, $ab = ba \rangle \cong \mathbb{Z}_2^2$ has order 2) and $G_2 = \langle a, b \mid a^4 = b^2 = 1$, $bab = a^3 \rangle$. Clearly, $G_2 \cong D_8$. An isomorphism between G_1 and D_8 can be established by putting r = ca and s = a: indeed, r and s generate G_1 , $r^2 = caca = ba = ab$, $r^3 = caab = cb$, $r^4 = (ab)^2 = 1$, so |r| = 4, |s| = |a| = 2, and $sr = aca = cba = r^3s$.

10pt **4.5.7.** Exhibit all Sylow 2-subgroups of S_4 and determine their isomorphism type.

Solution. Since $|S_4| = 24 = 2^3 \cdot 3$, every Sylow 2 subgroup of S_4 has 8 elements, and $n_2 = 1$ or 3. In S_4 , the elements of order 2^k for some k are the identity, six transpositions, three elements of the form (a, b)(c, d) (where a, b, c, d are assumed to be all distinct), and six 4-cycles. Since the total number of such elements is > 8, we have $n_2 = 3$.

Since all Sylow 2-subgroups are conjugate, for every conjugacy class C in S_4 these subgroups must have equal numbers of elements from C. The subgroup V_4 , consisting of elements of the form (a, b)(c, d) and the identity, is normal in S_4 , thus it is contained in every Sylow 2-subgroup. Hence, each of these subgroups must additionally contain two transpositions and two 4-cycles, which have to be a 4-cycle and its inverse. A Sylow 2-subgroup cannot contain two transpositions with a common element, since the product of such transpositions is a 3-cycle: (a, b)(a, c) = (a, c, b). So, any Sylow 2-subgroup must contain two transpositions (a, b) and (c, d), with distinct a, b, c, d, three elements from V_4 , -(a, b)(c, d), (a, c)(b, d), (a, d)(b, c), the product (a, b)(a, c)(b, d) = (a, c, b, d), and its inverse (d, b, c, a). (We can check that what we get is a group, but this is not necessary, since we have no other choices anyway.) So, here are the three Sylow 2-subgroups of S_4 :

$$\begin{split} P_1 &= \big\{1, (1,2), (3,4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,3,2,4), (4,2,3,1)\big\}, \\ P_2 &= \big\{1, (1,3), (2,4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,2,3,4), (4,3,2,1)\big\}, \\ P_3 &= \big\{1, (1,4), (2,3), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,2,4,3), (3,4,2,1)\big\}. \end{split}$$

The elements that conjugate P_1 to P_2 and P_3 are, for instance, $\rho_2 = (2,3)$ and $\rho_3 = (2,4)$ respectively. In the group P_1 , if we put a = (1,3,2,4) and b = (1,2), we have $\langle a \rangle \cap \langle b \rangle = 1$, $|\langle a \rangle| \cdot |\langle b \rangle| = 8 = |P_1|$, $bab^{-1} = (2,3,1,4) = a^{-1}$, so $P_1 \cong D_8$, and so $P_2, P_3 \cong D_8$.

5pt **4.5.13.** Prove that every group of order 56 has a normal Sylow p-subgroup for some p.

Solution. We have $56 = 2^3 \cdot 7$. If $n_7 \neq 1$, then $n_7 = 8$, and then G contains $8 \cdot 6 = 48$ elements of order 7. The remaining 56 - 48 = 8 elements may form only one subgroup of order 8 (the Sylow 2-subgroup of G), so $n_2 = 1$.

10pt **4.5.17, 6.2.15.** (a) Prove that if |G| = 105 then G has a normal Sylow 5 subgroup and a normal Sylow 7-subgroup.

Solution. We have $105 = 3 \cdot 5 \cdot 7$, so G is a group of order "pqr". n_5 divides 21 and equals 1 modulo 5, so it is either 1 or 21; if $n_5 = 21$, then G has $21 \cdot 4 = 84$ elements of order 5. n_7 divides 15 and equals 1 modulo 7, so it is either 1 or 15; if $n_7 = 15$, then G has $15 \cdot 6 = 90$ elements of order 7. Hence, it is impossible that both $n_5 = 21$ and $n_7 = 15$, thus we have $n_5 = 1$ or $n_7 = 1$ (or both).

Let $P \in \text{Syl}_3(G)$, $Q \in \text{Syl}_5(G)$, and $R \in \text{Syl}_7(G)$, so that $P \cong \mathbb{Z}_3$, $Q \cong \mathbb{Z}_5$, and $R \cong \mathbb{Z}_7$. Since at least one of Q, R is normal, H = QR is a subgroup of order 35. Since $7 \neq 1 \mod 5$, $H = R \times Q$. Since |G : H| = 3, the minimal prime divisor of 105, we have that H is normal in G. Since R and Q are characteristic subgroups of H, they are normal in G.

10pt (b) Find all (up to isomorphism) groups of order 105.

Solution. The only abelian group of this order is \mathbb{Z}_{105} . Assume that G is nonabelian. We have $\operatorname{Aut}(H) \cong \mathbb{Z}_5^* \times \mathbb{Z}_7^* \cong \mathbb{Z}_4 \times \mathbb{Z}_6$, which contains a single subgroup isomorphic to \mathbb{Z}_3 , so there is a unique (up to isomorphism) nontrivial semidirect product $\mathbb{Z}_{35} \rtimes \mathbb{Z}_3$. An element of order 3 in \mathbb{Z}_{35}^* is one that equals 2 (or 4) modulo 7 and 1 modulo 5, namely, 16. Hence, G has the presentation $\langle a, b \mid a^{35} = b^3 = 1, bab^{-1} = a^{16} \rangle$.

10pt **A2.** Prove that all groups of order p^2q^2 , where p and q are prime, are solvable.

Solution. Let $|G| = p^2 q^2$ where p, q are primes. If p = q, then G is a p group and is solvable; so, assume that p < q. If $n_q \neq 1$, then since $n_q = 1 \mod q$ we have $n_q > q > p$, and $n_q \mid p^2$, so $n_q = p^2$; this implies that $p^2 = 1 \mod q$, so $q \mid (p-1)(p+1)$, which only holds for p = 2, q = 3; but any group of order 36 is solvable. If $n_q = 1$, then G has a normal subgroup Q of order q^2 , then $|G/Q| = p^2$, so that both Q and G/Q are abelian, and G is solvable.