

50%

Solutions to Final exam

Math 5590H

1. Let $D \neq 0, 1$ be a square-free integer, and let $R = \mathbb{Z}[\omega]$ where $\omega = \sqrt{D}$ or $\omega = \frac{1+\sqrt{D}}{2}$ if $D = 1 \pmod{4}$. Let $p \in \mathbb{N}$ be a prime.

(a) Prove that $R \cong \mathbb{Z}[x]/(f)$, where $f = x^2 - D$ if $\omega = \sqrt{D}$ and $f = x^2 - x + \frac{1-D}{4}$ if $\omega = \frac{1+\sqrt{D}}{2}$.

Solution. Let $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{C}$ be the evaluation homomorphism at ω , $\varphi(g) = g(\omega)$, $g \in \mathbb{Z}[x]$. The range of φ is $\mathbb{Z}[\omega] = R$, the kernel is the ideal $I = \{g \in \mathbb{Z}[x] : g(\omega) = 0\}$, so that $R \cong \mathbb{Z}[x]/I$. We have $f \in I$ (in the case $\omega = \frac{1+\sqrt{D}}{2}$, $\omega^2 = \frac{1+D}{4} + \frac{\sqrt{D}}{2} = \frac{-1+D}{4} + \frac{1+\sqrt{D}}{2} = \omega - \frac{1-D}{4}$), and we need to show that $I = (f)$. Assume not; $\mathbb{Z}[x]$ is a PID, so $I = (g)$ for some $g \in \mathbb{Z}[x]$, and then $g \mid f$. f is monic and of degree 2, so, if g is not an associate of f , we must have $\deg g = 1$ and (since the senior coefficient of g must be ± 1) we may assume that g is monic. However, $\omega \notin \mathbb{Z}$, so is not a root of a linear monic polynomial $g \in \mathbb{Z}[x]$.

(b) Prove that $R/(p) \cong \mathbb{F}_p[x]/(f)$ (where $\mathbb{F}_p = \mathbb{Z}_p$).

Solution.

$$R/(p) \cong (\mathbb{Z}[x]/(f))/(p) \cong \mathbb{Z}[x]/(f, p) \cong (\mathbb{Z}[x]/(p)[x])/f \cong \mathbb{F}_p[x]/(f).$$

(By (p) I denote the ideal generated by p in R ; the ideal generated by p in $R[x]$ is then $(p)[x]$.)

(c) Prove that, under the isomorphism in (b), the conjugation automorphism of R acts on $\mathbb{F}_p[x]/(f)$ by $x \mapsto -x$ if $\omega = \sqrt{D}$ and $x \mapsto 1 - x$ if $\omega = \frac{1+\sqrt{D}}{2}$.

Solution. The conjugation automorphism acts on R by $\sqrt{D} \mapsto -\sqrt{D}$; so, if $\omega = \sqrt{D}$, then $\omega \mapsto -\omega$, and if $\omega = \frac{1+\sqrt{D}}{2}$, then $\omega \mapsto \frac{1-\sqrt{D}}{2} = 1 - \omega$. Under isomorphism in (b), $\omega \leftrightarrow x$, so conjugation maps $x \mapsto -x$ if $\omega = \sqrt{D}$ and $x \mapsto 1 - x$ if $\omega = \frac{1+\sqrt{D}}{2}$.

(d) Prove that

- (i) if f has no roots in \mathbb{F}_p , p is inert (is prime) in R ;
- (ii) if f has two distinct roots in \mathbb{F}_p , then p splits in R into a product of two distinct maximal ideals: $(p) = P_1 P_2$;
- (iii) and if f has a double root (a root of multiplicity two) in \mathbb{F}_p , then p ramifies in R : $(p) = P^2$, where P is a maximal ideal in R .

Solution. The ring $\mathbb{F}_p[x]$ is a PID.

- (i) If the polynomial f is irreducible in this ring, then $R/(p) \cong \mathbb{F}_p[x]/(f)$ is a field, so p is prime, that is, p is inert.
- (ii) If f splits in $\mathbb{F}_p[x]$ into distinct factors, $f = (x - \alpha)(x - \beta)$ with $\alpha \neq \beta$, then $R/(p) \cong \mathbb{F}_p[x]/(f)$ has non-associate zero divisors $x - \alpha$ and $x - \beta$, that is, p splits. Let P_1 and P_2 be the preimages in $R \cong \mathbb{Z}[x]/(f)$ of the maximal ideals $(x - \alpha)$ and $(x - \beta)$ in $\mathbb{F}_p[x]/(f)$, then P_1 and P_2 are maximal ideals in R with $(p) = P_1 P_2 = P_1 \cap P_2$.
- (iii) If f is a square, $f = (x - \alpha)^2$, in $\mathbb{F}_p[x]$, then $R/(p) \cong \mathbb{F}_p[x]$ has a nontrivial nilradical, that is, p ramifies. We then have $(p) = P^2$ in R , where P is the preimage in $R \cong \mathbb{Z}[x]/(f)$ of the maximal ideal $(x - \alpha)$ in $\mathbb{F}_p[x]/(f)$.

(e) If p splits in R , $(p) = P_1 P_2$, prove that P_1 and P_2 are conjugate, $P_2 = \bar{P}_1$; if p ramifies, $(p) = P^2$, then P is self-conjugate, $\bar{P} = P$.

Solution. If p splits, $(p) = P_1 P_2$, then the conjugation in R preserves the ideal (p) and so either preserves both P_1 and P_2 or switches them. P_1 and P_2 are the preimages in $R \cong \mathbb{Z}[x]/(f)$ of the ideals $(x - \alpha)$ and $(x - \beta)$ in $\mathbb{F}_p[x]/(f)$. If $\omega = \sqrt{D}$, $\beta = -\alpha$; if $\omega = \frac{1+\sqrt{D}}{2}$, $f = x^2 - x + \frac{1-D}{4}$, so $\alpha + \beta = 1$, so $\beta = 1 - \alpha$. The conjugation sends $x \mapsto -x$ or $1 - x$, so sends $(x - \alpha) \mapsto (-x - \alpha) = (x + \alpha) = (x - \beta)$ or $(x - 1 + \alpha) = (x - \beta)$; hence, it sends P_1 to P_2 (and P_2 to P_1).

If p ramifies, $(p) = P^2$, the ideal P is the radical of (p) , so is preserved by conjugation.

(f) In the case $\omega = \sqrt{D}$, prove that p ramifies if and only if $p = 2$ or $p \mid D$.

Solution. If $f = x^2 - D$ and p ramifies, then $x^2 - D = (x - \alpha)^2 = x^2 - 2\alpha + \alpha^2$, so $2\alpha = 0$ and $\alpha^2 = D$ in \mathbb{F}_p . This is so iff $2 = 0$, or $\alpha = 0$ and then $D = \alpha^2 = 0$ in \mathbb{F}_p . In the first case $p = 2$, in the second $p \mid D$.

Conversely, if $p = 2$ then $x^2 - D = x^2 + 1 = (x + 1)^2$ or $x^2 - D = x^2$ in $\mathbb{F}_2[x]$; if $p \mid D$ then $x^2 - D = x^2$ in $\mathbb{F}_p[x]$.

(g) Prove that 7 is irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$, and that 11 is prime in $\mathbb{Z}[\sqrt{-5}]$.

Solution. Let $D = -5$, $R = \mathbb{Z}[\sqrt{-5}]$, $f = x^2 + 5$.

7 is irreducible in R and if $\alpha = a + b\sqrt{-5} \in R$ with $a, b \in \mathbb{Z}$ divides 7, then $N(\alpha) = a^2 + 5b^2$ divides $N(7) = 49$; but if $N(\alpha) = 1$ then α is a unit, if $N(\alpha) = 49$ then $7/\alpha$ is a unit, and $N(\alpha) = a^2 + 5b^2 = 7$ is impossible.

f is reducible in $\mathbb{Z}_7[x]$, $f = (x - 3)(x - 4)$, so 7 splits (is not prime) in R . (And indeed, $7 \mid 14 = (3 + \sqrt{-5})(3 - \sqrt{-5})$ whereas $7 \nmid 3 \pm \sqrt{-5}$. The prime factorization in R of the ideal (7) is $(7) = (7, 3 + \sqrt{-5})(7, 3 - \sqrt{-5})$.)

In \mathbb{Z}_{11} f has no roots ($1^2 = 10^2 = 1$, $2^2 = 9^2 = 4$, $3^3 = 8^2 = 9$, $4^2 = 7^2 = 5$, $5^2 = 6^2 = 4$, all $\neq -5 = 6$), so f is irreducible in $\mathbb{Z}_{11}[x]$, and 11 is inert (is prime) in R .

10% 2. Prove that the quotient ring $\mathbb{Z}[x]/(2x-1)$ is isomorphic to the ring of fractions $D^{-1}\mathbb{Z}$ where $D = \{2^n, n \in \mathbb{N}\}$.

Solution. Consider the (evaluation) homomorphism $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Q}$ defined by $\varphi(g) = g(1/2)$. The range of φ is $\mathbb{Z}[1/2] = D^{-1}\mathbb{Z}$. The kernel of φ is the ideal $(2x - 1)$: indeed, $\varphi(2x - 1) = 0$, and if $g(1/2) = 0$ for $g \in \mathbb{Z}[x]$, then g is divisible by $x - 1/2$ in $\mathbb{Q}[x]$, so is divisible by $2x - 1$ in $\mathbb{Z}[x]$ by Gauss's lemma since $2x - 1$ is primitive. Hence, $\mathbb{Z}[x]/(2x - 1) \cong D^{-1}\mathbb{Z}$.

3. Let R be a PID.

(a) Prove that every prime ideal in $R[x]$ can be generated by at most two generators.

(Notice that the assertion doesn't hold true for non-prime ideals: in $\mathbb{Z}[x]$ the ideal $(4, 2x, x^2)$ cannot be generated by two elements.)

Solution. Let P be a nonzero prime ideal in $R[x]$.

Case 1: $P \cap R \neq 0$. Then $P \cap R$ is a prime ideal in R , so $P \cap R = (p)$ for some prime $p \in R$. Then $K = R/(p)$ is a field, and we have a surjective homomorphism $\varphi: R[x] \rightarrow K[x]$. $\varphi(P)$ is an ideal in the PID $K[x]$, so $\varphi(P) = (\varphi(f))$ for some $f \in R[x]$. I claim that $P = (p, f)$. Indeed, for any $g \in P$, $\varphi(g) = \varphi(h)\varphi(f) = \varphi(hf)$ for some $h \in R[x]$, so $g - hf \in \ker \varphi$, so $g - hf \in (p)[x]$, so $g - hf = pr$, $g = hf + pr$ for some $r \in R[x]$.

Case 2: $P \cap R = 0$. Let F be the field of fractions of R , $F = D^{-1}R$ where $D = R \setminus \{0\}$; I will see R as a subring of F . Since $P \cap D = \emptyset$, the set $\tilde{P} = D^{-1}P$ is a proper ideal (namely, (P)) in $F[x]$. $F[x]$ is a PID, so there is a nonconstant $f \in F[x]$ such that $\tilde{P} = (f)$; after multiplying f by an element of F we may assume that $f \in R[x]$ and is primitive. I claim that $P = (f)$. Indeed, for every $g \in P$ we have $g \in \tilde{P}$, so $g = cf$ where $c \in F$ is the content of g and so, $c \in R$. So, $P \subseteq (f)$. On the other hand, let $g = cf$ with nonzero $c \in R$ being any element of P ; since P is prime, we have $c \in P$ or $f \in P$; since $P \cap R = 0$, $c \neq 0$, so $f \in P$, so $(f) \subseteq P$.

5% (b) If S is a ring containing R and generated by a single element over R , $S = R[\alpha]$, prove that every prime ideal in S can be generated by at most two elements.

Solution. S is the image of $R[x]$ under the evaluation homomorphism $g \mapsto g(\alpha)$, and every prime ideal in S is the image of a prime ideal in $R[x]$, so can be generated by at most two elements.

10% 4. Prove that the polynomial $6x^5 - 55x^3 + 50x^2 + 15$ is irreducible over the field $\mathbb{Q}[i]$ (that is, in the ring $\mathbb{Q}[i][x]$).

Solution. $\mathbb{Q}[i]$ is the field of fractions of the UFD $\mathbb{Z}[i]$, so any polynomial from $\mathbb{Z}[i][x]$ is irreducible in this ring iff it is irreducible in $\mathbb{Q}[i][x]$. And the polynomial under question is irreducible in $\mathbb{Z}[i][x]$ by the Eisenstein criterion with respect to the prime element $\alpha = 2 + i$ of $\mathbb{Z}[i]$; $\alpha \nmid 6$ (the prime factorization of 6 in $\mathbb{Z}[i]$ is $6 = (1+i)(1-i)3$); $\alpha \mid 5$ and 5 divides all other coefficients of the polynomial; and $\alpha^2 \nmid 15$ (since the prime factorization of 15 is $15 = 3(2+i)(2-i)$).

10% 5. A group N is said to be complete if the center of N is trivial and every automorphism of N is inner. Show that if G is a group, $N \trianglelefteq G$, and N is complete, then $G = N \times C_G(N)$.

Solution. We have $N \cap C_G(N) = Z(N)$, the center of N , so $N \cap C_G(N) = 1$ by assumption. For every $c \in N$ and $d \in C_G(N)$, c and d commute by the definition of $C_G(N)$. It remains to show that $G = NC_G(N)$. Let $a \in G$. Let φ be the inner automorphism of G defined by conjugation by a , $\varphi(b) = aba^{-1}$, $b \in G$. Since $N \trianglelefteq G$, $\varphi(N) = N$, so $\varphi|_N$ is an automorphism of N . By assumption, there is $c \in N$ such that $\varphi(b) = cbc^{-1}$ for all $b \in N$, that is, $aba^{-1} = cbc^{-1}$ for all $b \in N$. Put $d = c^{-1}a$; then $dbd^{-1} = c^{-1}aba^{-1}c = c^{-1}cbc^{-1}c = b$ for all $b \in N$. Hence, $d \in C_G(N)$, so $a = cd$ for $c \in N$ and $d \in C_G(N)$.

15% **6. Prove that no group of order $2004 = 2^2 \cdot 3 \cdot 167$ is simple. Give an example of a group of order 2004 in which a Sylow 3-subgroup is not normal.**

(This problem was given to you by mistake, it was too easy, sorry.)

Solution. Let G be a group of order 2004. The Sylow number n_{167} of G is equal to 1 modulo 167 and divides $2^2 \cdot 3 = 12$, so $n_{167} = 1$, so the Sylow 167-subgroup of G is unique and normal, so G is not simple.

As an example of such G with non-normal Sylow 3-subgroups we can take $G = A_4 \times \mathbb{Z}_{167}$: the group A_4 has order 12 and contains four Sylow 3-subgroups, hence G also has four Sylow 3-subgroups.