Math 5591H

Final exam

You may use any fact proven in class, in the textbook, or in homework.

- 1. Let θ be such that $\cos \theta = 5/7$; prove that the angle $\theta/5$ is not constructible with ruler and compass. (You may use the identity $\cos(5x) = 16\cos^5 x 20\cos^3 x + 5\cos x$.)
- **2.** Let F be a finite field and let $f \in F[x]$ be a product of k irreducible polynomials of degrees n_1, \ldots, n_k . Find $\operatorname{Gal}(f/F)$. (*Hint:* What is the Galois group of a finite field?)
- **3.** Let F be a field with char $F \neq 2$, let $f \in F[x]$ be a separable polynomial, let G = Gal(f/F). Let $\tilde{G} = \text{Gal}(f(x^2)/F)$; prove that there is an exact sequence $1 \longrightarrow \mathbb{Z}_2^d \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ (in other words, \tilde{G} has a normal subgroup N isomorphic to \mathbb{Z}_2^d such that $\tilde{G}/N \cong G$) for some $d \ge 0$.
- **4.** An irreducible quartic $f \in \mathbb{Q}[x]$ has two real and two non-real complex roots and its cubic resolvent has a single root in \mathbb{Q} . Prove that $\operatorname{Gal}(f/\mathbb{Q}) \cong D_8$.
- 40% **5.** Let $\alpha = \sqrt{(2+\sqrt{2})(3+\sqrt{3})} \in \mathbb{R}$ and let $K = \mathbb{Q}(\alpha)$. Take it for granted that $\alpha \notin \mathbb{Q}(\sqrt{2},\sqrt{3})$.
 - (a) Prove that $\deg_{\mathbb{Q}}(\alpha^2) = 4$ and deduce that $\sqrt{2}, \sqrt{3} \in K$.
 - (b) Find the degree and all the conjugates of α over \mathbb{Q} .
 - (c) Show that the extension K/\mathbb{Q} is normal. (*Hint:* For $\beta = \sqrt{(2-\sqrt{2})(3+\sqrt{3})}$ we have $\alpha\beta = \sqrt{2}(3+\sqrt{3}) \in K$.)
 - (d) Let $G = \operatorname{Gal}(K/\mathbb{Q})$. Prove that there exists $\varphi \in G$ such that $\varphi(\sqrt{2}) = -\sqrt{2}$ and $\varphi(\sqrt{3}) = \sqrt{3}$. Prove that $|\varphi| = 4$. (*Hint:* Show that $\varphi(\alpha) = \beta$ or $-\beta$.)
 - (e) Find two more automorphisms of K of order 4 and deduce that $G \cong Q_8$ (the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$).
 - (f) Draw the lattice (the diagram) of all the subfields of K.

Good luck! and have a nice vacation