Math 5591H

Final exam
You may use any fact proven in class, in the textbook, or in homework.

1. Let θ be such that $\cos \theta=5 / 7$; prove that the angle $\theta / 5$ is not constructible with ruler and compass. (You may use the identity $\cos (5 x)=16 \cos ^{5} x-20 \cos ^{3} x+5 \cos x$.)
2. Let F be a finite field and let $f \in F[x]$ be a product of k irreducible polynomials of degrees n_{1}, \ldots, n_{k}. Find $\operatorname{Gal}(f / F)$. (Hint: What is the Galois group of a finite field?)
3. Let F be a field with char $F \neq 2$, let $f \in F[x]$ be a separable polynomial, let $G=$ $\operatorname{Gal}(f / F)$. Let $\widetilde{G}=\operatorname{Gal}\left(f\left(x^{2}\right) / F\right)$; prove that there is an exact sequence $1 \longrightarrow \mathbb{Z}_{2}^{d} \longrightarrow$ $\widetilde{G} \longrightarrow G \longrightarrow 1$ (in other words, \widetilde{G} has a normal subgroup N isomorphic to \mathbb{Z}_{2}^{d} such that $\widetilde{G} / N \cong G)$ for some $d \geq 0$.
4. An irreducible quartic $f \in \mathbb{Q}[x]$ has two real and two non-real complex roots and its cubic resolvent has a single root in \mathbb{Q}. Prove that $\operatorname{Gal}(f / \mathbb{Q}) \cong D_{8}$.
5. Let $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})} \in \mathbb{R}$ and let $K=\mathbb{Q}(\alpha)$. Take it for granted that $\alpha \notin$ $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Prove that $\operatorname{deg}_{\mathbb{Q}}\left(\alpha^{2}\right)=4$ and deduce that $\sqrt{2}, \sqrt{3} \in K$.
(b) Find the degree and all the conjugates of α over \mathbb{Q}.
(c) Show that the extension K / \mathbb{Q} is normal. (Hint: For $\beta=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}$ we have $\alpha \beta=\sqrt{2}(3+\sqrt{3}) \in K$.
(d) Let $G=\operatorname{Gal}(K / \mathbb{Q})$. Prove that there exists $\varphi \in G$ such that $\varphi(\sqrt{2})=-\sqrt{2}$ and $\varphi(\sqrt{3})=\sqrt{3}$. Prove that $|\varphi|=4$. (Hint: Show that $\varphi(\alpha)=\beta$ or $-\beta$.)
(e) Find two more automorphisms of K of order 4 and deduce that $G \cong Q_{8}$ (the quaternion group $\left.Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}\right)$.
(f) Draw the lattice (the diagram) of all the subfields of K.

Good luck! and have a nice vacation

