Cf. 14.2.28. Let $f \in F[x]$ be an irreducible polynomial of degree n over a field F, let α be a root of f, and let K / F be a normal extension. Show that f splits over K into a product of irreducible polynomials of the same degree $d=[K(\alpha): K]$. (You may assume that f is separable and K / F is finite and separable.) (Hint: If f is separable, let L be a splitting field of f over K, let L / F be the splitting field of f over K If $\alpha, \beta \in L$ are two roots of f, prove that there is $\varphi \in \operatorname{Aut}(L / F)$ with $\varphi(\alpha)=\beta$, and show that $\varphi\left(m_{\alpha, K}\right)=m_{\beta, K}$.)
Cf. 14.6.20. Let K be the splittig field of $f(x)=\left(x^{3}-2\right)\left(x^{3}-3\right) \in \mathbb{Q}[x]$, let $G=$ $\operatorname{Gal}(K / \mathbb{Q})$. Let $\alpha=\sqrt[3]{2}, \beta=\sqrt[3]{3}, \omega=e^{2 \pi i / 3}$.
(a) Consider K as the composite $\mathbb{Q}(\alpha, \omega) \mathbb{Q}(\beta)$ and represent G as a semidirect product of S_{3} and \mathbb{Z}_{3}. (Don't specify the homomorphism that defines the semidirect product, if you don't want to.)
(b) Consider K as the composite $\mathbb{Q}(\alpha, \omega) \mathbb{Q}(\beta, \omega)$ and represent G as a "relative direct product" $S_{3} \times_{\mathbb{Z}_{2}} S_{3}$.
(c) Find all the subfields of K that contain $N=\mathbb{Q}(\omega)$.

A1. Let $\alpha=\sqrt{2}+\sqrt{3}+\sqrt{5}$.
(a) Find all the conjugates of α over $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find the minimal polynomial $m_{\alpha, L}$.
(b) Find all the conjugates of α over $N=\mathbb{Q}(\sqrt{2})$ and find the minimal polynomial $m_{\alpha, N}$.
(c) Find the minimal polynomial $m_{\alpha, \mathbb{Q}}$.
(d) Prove that α is a primitive element of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) / \mathbb{Q}$.

A2. Let K be a cubic extension $\mathbb{Q}(\sqrt[3]{D})$ of \mathbb{Q}. Obtain the formula for the norm $N_{K / \mathbb{Q}}(\alpha)$ of the element $\alpha=a+b \sqrt[3]{D}+c \sqrt[3]{D^{2}}, a, b, c \in \mathbb{Q}$, of K.
A3. Prove the following:
(a) If K / F is a p-extension and L / F is a subextension of K / F, then both K / L and L / F are p-extension.
(b) If L_{1} / F and L_{2} / F are p-subextensions of an extension K / F, then their composite $L_{1} L_{2} / F$ is a p-extension.
(c) If K / L and L / F are p-extensions, then K / F is also a p-extension.
14.7.12. Let K be a Galois closure of a finite extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ and let $G=\operatorname{Gal}(K / \mathbb{Q})$. For every prime p dividing $|G|$, prove that there exists a subfield L of K such that $[K$: $L]=p$ and $K=L(\alpha)$.

