Homework 8

Math 5591H
Due by Tuesday, March 26
Homework submitted three days after the deadline will have a 5 point penalty for each additional day of delay.
13.2.13. Suppose $F=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for all i. Prove that $\sqrt[3]{2} \notin F$.
13.2.14. Prove that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$.
13.2.16. Let K / F be an algebraic extension and let R be a ring with $F \subseteq R \subseteq K$. Prove that R is a field.
13.2.17. Let $f \in F[x]$ be irreducible with $\operatorname{deg} f=n$, and let $g \in F[x]$. Prove that every irreducible factor of $f(g(x))$ has degree divisible by n.

Let K / F be a finite extension, $\alpha \in K$, and T be the linear transformation of K as an F-vector space defined by $T(\beta)=\alpha \beta, \beta \in K$; then the minimal polynomial of α is the same as the minimal polynomial of T.
13.2.20. Find the minimal polynomial of $1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.
13.2.22. Let K_{1} / F and K_{2} / F be finite subextensions of an extension K / F. Prove that $K_{1} \otimes_{F} K_{2}$ is a field iff $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$. (Hint: Consider the natural homomorphism $K_{1} \otimes_{F} K_{2} \longrightarrow K_{1} K_{2}$.)
13.1.1. Show that $p=x^{3}+9 x+6$ is irreducible over \mathbb{Q}. Let θ be a root of p (in some extension of $\mathbb{Q})$; represent $(1+\theta)^{-1}$ in the form $a+b \theta+c \theta^{2}$ with $a, b, c \in \mathbb{Q}$.
13.1.3. Show that $p=x^{3}+x+1$ is irreducible over \mathbb{F}_{2}. Let θ be a root of p (in some extension of \mathbb{F}_{2}); compute the powers of θ in $\mathbb{F}_{2}(\theta)$ (in the form $a+b \theta+c \theta^{2}$).
13.4.2. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{4}+2$. (Hint: The degree is 8 .)
13.4.4. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{6}-4$. (Hint: The degree is 6 .)
13.4.3. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{4}+x^{2}+1$. (Hint: The degree is 2.)

