Homework 9

A1. Let L / F be an extension and let $f \in F[x]$.
(a) If K is a spitting field of f over F and $K \supseteq L$, prove that K is a splitting field of f over L.
(b) Give an example where K is a splitting field of f over L, but is not a splitting field of f over F.

A2. Let F be a field of characteristic p and let $f \in F[x]$ be irreducible.
(a) Prove that $f(x)=g\left(x^{p^{k}}\right)$ for some separable irreducible $g \in F[x]$ and some integer $k \geq 0$.
(b) Prove that in its splitting field, $f(x)=c\left(x-\alpha_{1}\right)^{p^{k}} \cdots\left(x-\alpha_{d}\right)^{p^{k}}$ for some distinct $\alpha_{1}, \ldots, \alpha_{d}$.
13.5.5. Let p be a prime integer, let $a \in \mathbb{F}_{p}, a \neq 0$, and let $f=x^{p}-x+a \in \mathbb{F}_{p}[x]$. Prove that the splitting field K of f is obtained by adjoining a single root of f. Prove that f is separable and irreducible over \mathbb{F}_{p}. (Hint: Show that if α is a root of f, then $\alpha+b$ is a root of f for every $b \in \mathbb{F}_{p}$. Deduce that f has p roots. To prove that f is irreducible, show that for every root α^{\prime} of f there is an automorphism of K / \mathbb{F}_{p} that maps α to α^{\prime} and so, $m_{\alpha^{\prime}}=m_{\alpha}$.)
A3. (a) Let $n=p^{r} m$ where p is prime and $p \nmid m$. Prove that $\Phi_{n}(x)=\Phi_{p m}\left(x^{p^{r-1}}\right)$. (Hint: You may use induction and the formula that expresses Φ_{n} in terms of Φ_{d} with $d \mid n$, or you may just compare the roots of the polynomials $\Phi_{n}(x)$ and $\Phi_{p m}\left(x^{p^{r-1}}\right)$.)
(b) Deduce that if $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ is the prime factorization of n, then $\Phi_{n}(x)=\Phi_{d}\left(x^{q}\right)$, where $d=p_{1} \cdots p_{k}$ and $q=p_{1}^{r_{1}-1} \cdots p_{k}^{r_{k}-1}$.
13.6.10. Let ϕ denote the Frobenius automorphism of $\mathbb{F}_{p^{n}}, \phi(\alpha)=\alpha^{p}$. Prove that the order of ϕ (as an element of the group of automorphisms of $\mathbb{F}_{p^{n}}$) is n.
14.3.4. Construct the field \mathbb{F}_{16} and find a generator of its multiplicative group.

A4. (a) Find all irreducible polynomials of degree 4 in $\mathbb{F}_{2}[x]$.
(b) Determine the number of irreducible polynomials of degree 4 in $\mathbb{F}_{3}[x]$.

