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1. Definitions and basic properties

Throughout this section, R is a ring.

1.1. Left and right modules, vector spaces, and algebras

1.1.1. A left R-module, or a left module over R, is an abelian group M, written additively, with an operation
of “left multiplication by elements of R”: a mapping R x M — M, (a,u) — au, satisfying the properties
a(u+v) = au+ av, (a+ b)u = au+ bu, and (ab)u = a(bu) for all a,b € R and u,v € M. If R is unital (that
is, contains the multiplicative identity 1), it is usually additionally required that 1u = u for all w € M. The
elements of R are often called scalars.

Notice that an R-module structure defines a left action of the multiplicative semigroup of R on the
group M by homomorphisms of M. (That is, for any a € G the mapping v — au is a homomorphism
M — M, and the homomorphism corresponding to the product ab of elements a,b € R is the composition
of the homomorphisms corresponding to these elements.)

1.1.2. A right R-module is defined similarly, with a right action of (the multiplicative semigroup of) R on M.
In the case R is a commutative ring, the notions of a left and a right R-modules coincide, and a left=right
R-module is simply called an R-module. Also, under an R-module we often understand a left (or a right)
R-module when it is either clear from the context or does not matter which, left or right, action of R on M
is meant.

1.1.3. An R-bimodule, or a two-sided R-module, is an abelian group M that has both structures, — of a left
R-module and of a right R-module, — with the property a(ub) = (au)b for all a,b € R and u € M.

1.1.4. If F' is a field, an F-module is called an F-vector space.

1.1.5. An R-algebra A is a ring whose additive group has a structure of an R-module satisfying the property
a(af) = (aa)B = a(aB) for all a € R and «, 8 € A.

1.2. Examples and constructions of modules
1.2.1. The zero R-module is the module M = {0}.
1.2.2. R itself is a left R-module (and a right R-module; and, actually, an R-bimodule).

1.2.3. Any left ideal in R is a left R-module (a right ideal is a right R-module, and a two-sided ideal is a
bimodule).

1.24. A beli G itt dditively) i Z-module, b tti = f > 0,
ny abelian group G (written additively) is a Z-module, by putting nu = u+---+u for n

n

nu = —(—n)u for n <0, and Ou =0, u € G.



1.2.5. For any n € N, the direct product R” = R X --- X R, with the multiplication by elements of R defined
—_——

by a(by,...,b,) = (aby,...,ab,), a € R, (b1,...,b,) € R™, is called a free R-module of rank n. R™ also has
a natural structure of a right R-module, and is, actually, an R-bimodule.
1.2.6. Let X be a set. The set of functions (mappings) X — R has a structure of a left R-module (and
of an R-bimodule), by putting (af)(z) = af(x), a € R, € X. This module is sometimes denoted by RX.
(The free R-module of rank n is a special case of this, corresponding to X = {1,...,n}.) In the case R is a
commutative ring, RX is an R-algebra.

More generally, if X is a set and M is an R-module, then the set MX of functions X — M is an
R-module.
1.2.7. The ring R[z] of polynomials with coefficients from R is an R-module, and is an R-algebra if R is
commutative. Same applies to the ring R[zq,...,z,] of polynomials in n variables over R.
1.2.8. Let G be a group and R be a commutative ring. The group algebra of G with coefficients from R is
the R-module RG = {a191 + -+ argr, a; € R, g; € G} of formal linear combinations of elements of G
with coefficients from R; the multiplication in RG is defined by (ag)(bh) = (ab)(gh).
1.2.9. The group Mat,, ,(R) of m x n matrices with entries from R is an R-module (which is, actually, a
free R-module of rank mn). If R is commutative, the ring Mat,, ,,(R) of square n x n matrices with entries
from R is an R-algebra.
1.2.10. Let F be a field, V be an n-dimensional F-vector space, and R be the ring of n x n matrices over
F. Then V is a left R-module, with the standard multiplication Au of matrices and vectors.
1.2.11. The following example will be especially important to us in this course. Let F' be a field, V be an
F-vector space, and T be a linear transformation of V. Consider the action of (the multiplicative semigroup
of) the polynomial ring F[z] on V defined by

(ana" + -+ a1z +ap)u = a,T"(u) + - - + a1 T'(u) + aou,

where anz™ + -+ - + a1z + ag € F[z] and v € V. This action converts V into an F[z]-module.

1.2.12. The preceding example is easily generalizable: Let G be a group, R be a commutative ring, and RG
be the group algebra of G with coefficients from R. Then any left (or right) action of G on an abelian group
M by homomorphisms defines on M a structure of a left (respectively, right) RG-module.

1.2.13. If A is a unital ring and R is a unital subring of A that lies in the center of A and with 1p = 14,
then A has a structure of an R-algebra. More generally, if ¢: R — A is a homomorphism of unital rings
with o(R) C Z(A) and ¢(1g) = 14, then A has a structure of an R-algebra defined by au = ¢(a)u, a € R,
u € A. (It is easy to see that any unital R-algebra A can be constructed this way, by defining p(a) = ala,
a€R.)

1.2.14. Every ring is a Z-algebra.

1.2.15. If M is an R-module and S is a subring of R, then M has a structure of an S-module as well. The
operation of converting an R-module into an S-module is called reduction of scalars.

1.3. Elementary properties of modules
The following properties of modules are easily verifiable:

Proposition. let R be a ring and M be a left R-module. Then
(i) for any uw € M, Ou = 0;

(ii) for any a € R, a0 = 0;

(iii) for anya € R and u € M, (—a)u = a(—u) = —au.

1.4. Submodules

1.4.1. Let M be a left R-module. A submodule of M is a subgroup N of M which is a left R-module under
the multiplication by scalars (elements of R) defined in M. For a subset N of M to be a submodule of M it
is necessary and sufficient that IV is a subgroup of M and is closed with respect to multiplication by scalars:
N—-NCNand RN CN.

1.4.2. Examples. (i) M itself and the zero submodule 0 = {0} are submodules of M.
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(ii) For R viewed as a left R-module, left submodules of R are the left ideals of R.
(iii) Let I be a left ideal in R; then the set IM = {Zle a;ui, k€N, a; €1, u; € M} is a submodule of
M.

(iv) Let V be a vector space over a field F' and let T be a linear transformation of V. Then V is a F[x]-module,
with zu = T'(u), u € V. A subset W of V is a submodule of this module iff W is a subgroup of V, is invariant
under multiplication by scalars from F: aW C W for all a € F', and is invariant under multiplication by x:
aW =T(W) C W; that is, iff W is a vector subspace of V' invariant under T: T(W) C W.

1.4.3. Proposition. The intersection of any collection of submodules of a module M is also a submodule

of M.

1.4.4. The sum of two submodules Ny and Ny of a module M is the set N1+ Ny = {u1 +ug :up € Ni, ug €
Ng}. More generally, the sum of a collection {N, }aea of submodules of a module M is the set of elements
of M representable as a sum of elements of the members of this collection:

SN, {iuai:keN, o €A, u; € Ny, z':l,...,k}

aEN i=1

1.4.5. Proposition. The sum of any collection of submodules of a module M is also a submodule of M.

1.5. Generating sets of modules
1.5.1. Let M be a left module and S be a subset of M. The minimal submodule of M containing S (namely,
the intersection of all submodules of M containing S) is called the submodule generated by S. If R be unital,
the submodule generated by S is the set of all finite sums of the form Zle a;s; with a1,...,ar € R and
S1,...,8k € S; this set is denoted by RS. (If R is not unital, it is RS + ZS.)

Let’s introduce the notation Zi’é A Wo for Y7 oy we in which w, = 0 for all but finitely many as. Then

(in the case 1 € R) we can write RS = {Z?gs ass:as € R, s€ S}
1.5.2. If M = RS for some S C M, we say that M is generated by S, or that S generates M, or that S is a
generating set of M. (In the case R is a field and so, M is an R-vector space, we say that S spans M.) If S
is finite, we say that M is finitely generated.

1.5.3. The submodule of M generated by a collection {N,}qca of submodules of M is, clearly, the sum
> aca Na of these submodules.

1.5.4. A (left) R-module M is said to be cyclic if it is generated by a single element, M = Ru for some
ue M.

1.6. Quotient modules

1.6.1. Let M be a left R-module and let N be a submodule of M. The factor-group M/N is the group
{@, u € M}, where for u € M, @ = u+ N, the class of elements equivalent to © modulo N. M/N has a
structure of a left R-module defined by a@ = aw; this module is denoted by M /N and is called the quotient,
or the factor module of M by N.

1.6.2. Example. Let R be a non-commutative ring and I be a left ideal in R. If I is not a two-sided ideal,
then R/I is not a ring, but is a left R-module.

1.7. Torsion elements of a module and the torsion submodule

1.7.1. An element u of a (left) R-module M is said to be a torsion element if au = 0 for some nonzero
a € R. If all elements of M are torsion, then M is called a torsion module; if no elements of M, except 0,
are torsion, then M is said to be torsion-free.

1.7.2. If R is an integral domain and M is an R-module, then the torsion elements of M form a submodule
of M; this submodule is called the torsion submodule of M and is denoted by Tor(M).

Proposition. If R is an integral domain and M is an R-module, the quotient module M/ Tor(M) is torsion-
free.




1.8. Annihilators

1.8.1. Let M be a left R-module and let P be a subset of M. The annihilator of P is the set Ann(P) =
{a € R: aP = 0}; this is a left ideal in R. If N is a submodule of M, then Ann(N) is a two-sided ideal in
R, and N has a structure of an (R/ Ann(N))-module, defined by (@ + Ann(N))u = au, a € R, u € N.

1.8.2. Proposition. Let M be a module and N1, No be submodules of M. Then Ann(Ny+No) = Ann(N;)N
Ann(Nz), and Ann(Ny N N2) D Ann(N7) + Ann(Na).

1.8.3. Let M be a left R-module and S be a subset of R; the annihilator of S in M is the set Ann(S) =
{u e M : Su=0}. If I is the left ideal of R generated by S, I = (S) = RS, then Ann(I) = Ann(S). If I is
a right ideal in R, then Ann([]) is a submodule of M.

1.8.4. Proposition. Let M be an R-module and let I, Iy be right ideals in R. Then Ann(l; + Iy) =
Ann(l;) N Ann(ly), and Ann(ly NI3) D Ann(1) + Ann(/lz).

1.9. Homomorphisms of modules

1.9.1. Let M and N be left R-modules. A mapping ¢: M — N is called an R-module homomorphism, or
just a homomorphism, if it satisfies p(u+v) = p(u)+p(v) for all u,v € M (that is, is a group homomorphism
from M to N) and ¢(au) = ap(u) for all a € R and u € M.

1.9.2. Examples. (0) The zero mapping ¢(u) = 0 for all u € M is the zero homomorphism from module M
(to any other module).

(i) Z-module homomorphisms of abelian groups, viewed as Z-modules, is the same as group homomorphisms,
since for any group homomorphism we automatically have ¢(na) = ny(a) for any element a and n € Z.

(ii) If M is a module and N is a submodule of M, then we have the embedding homomorphism m: N — M
defined by v — u, u € N.

(iii) If M is a module and N is a submodule of M, then we have the factorization, or the projection
homomorphism m: M — M/N defined by u — @, u € M.

(iv) If R is a commutative ring and M is an R-module, then for any @ € R multiplication by a (the mapping
u +— au) is a homomorphism M — M. (This is not so, generally speaking, if R is not commutative.)

(v) If R is a unital ring, then for any R-module M and any element v € M there exists a unique homomor-
phism ¢: R — M that maps 1 to u, namely, ¢ is defined by ¢(a) = au for all a € R.

(vi) Let R be aring, M be an R-module, X be a set, and MX be the set of functions X — M. Let zg € X;
then the mapping MX — M defined by f + f(zo) is a module homomorphism, called the evaluation
homomorphism.

(vii) Homomorphisms of vector spaces are called linear mappings, or linear transformations.

(viii) Let V and W be two vector spaces over a field F, let T be a linear transformation of V' and S be a
linear transformation of W. Then V and W have a structure of F[x]-modules, by putting zu = T'(u) for
u € V and zv = S(v) for v € W. An F[z]-module homomorphism between these two F[z]-modules is an
F-linear mapping ¢: V. — W satisfying poT = Sop.

1.9.3. Any ring R is simultaneously an R-module, but module homomorphisms R — R are not the same as
ring homomorphisms. For example the mapping Z — Z defined by n +— 2n is a Z-module homomorphism
but not a ring homomorphism; the mapping Z[x] — Z[z] defined by p(z) — p(x?) is a ring homomorphism
but not a Z[z]-module homomorphism.

1.9.4. An algebra homomorphism from an R-algebra A to an R-algebra B is a mapping ¢: A — B which
is an R-module homomorphism and a ring homomorphism: ¢(u+v) = @(u) + ¢(v), p(uv) = e(u)p(v), and
p(au) = ap(u) for any u,v € A and a € R.

1.9.5. Proposition. If S is a generating set of a module M , then any homomorphism @ from M is uniquely
defined by its restriction ©lg on S.

1.9.6. Proposition. The composition Yop: M — K of two homomorphisms o: M — N and ¥: N — K
of modules is a homomorphism. If a homomorphism @: M — N of modules is an invertible mapping, then
its inverse ¢~ 1: N — M is also a homomorphism.



1.9.7. Proposition. Let ¢: M — N be a homomorphism of R-modules. Then for any submodule L of M,
its image p(L) is a submodule of N, and for any submodule K of N, its preimage =1 (K) is a submodule of
M. In particular, the image (M) of ¢ is a submodule of N, and the preimage ¢~ (0) of 0 is a submodule
of M.

1.9.8. The kernel ker(¢) of a homomorphism : M — N of R-modules is the submodule ¢ ~1(0) of M. The
cokernel coker(p) of ¢ is the factor module N/@(M) of N.

1.9.9. A surjective homomorphism of modules is called an epimorphism, an injective homomorphism of
modules is called a monomorphism, a bijective (i.e., invertible) homomorphism of modules is called an
isomorphism. A self-homomorphism of a module (that is, a homomorphism of a module to itself) is called
an endomorphism, and a self-isomorphism of a module is called an automorphism.

1.9.10. Proposition. A homomorphism ¢: M — N of modules is a monomorphism iff ker(yp) = 0, is an
epimorphism iff coker(p) = 0, and is an isomorphism iff both ker(yp) = 0 and coker(p) = 0.

1.9.11. Two R-modules M and N are said to be isomorphic if there is an isomorphism M — N; this is
denoted by M 2 N. (Isomorphic modules are often identified, and considered as “the same” module. For
example, the modules R[z] and R[y] can both be called “the module of polynomials in one variable”, whereas
these are, of course, two distinct submodules of the module R|x,y].)

1.10. Isomorphism theorems for modules

The isomorphism theorems for modules are the same as for the (abelian) groups (since modules are
abelian groups!). To prove them, it suffices to check that the group isomorphisms appearing in these theorems
are, actually, module homomorphisms as well. In fact, it is enough to check this for the first isomorphism
theorem only, since the other isomorphism theorems are its corollaries.

1.10.1. The 1st Isomorphism Theorem. Let o:: M — N be a homomorphism of R-modules. Then
range(¢) = (M) = M/ ker(¢). In more details, the mapping M/ker(p) — N defined by u+ N — p(u),
u € M, is an isomorphism between M/ ker(p) and o(M).

1.10.2. The 2nd Isomorphism Theorem. Let M be an R-module and N, K be submodules of M. Then
(N+K)/K = N/(NNK); namely, the mapping u+(NNK) — u+K is an isomorphism between N/(NNK)
and (N+ K)/K.

1.10.3. The 3rd Isomorphism Theorem. Let M be an R-module, N be a submodule of M, and K be
a submodule of N. Then M/N = (M/K)/(N/K); namely, the mapping u+ N — (v + K) + N/K is an
isomorphism between M /N and (M/K)/(N/K).

1.11. Finitely generated modules as factors of R"
Let R be a unital ring.

1.11.1. Let M be a cyclic module, M = Ru for some u € M. The mapping ¢p: R — M defined by
p(a) = au is then an epimorphisms of R-modules, so M is isomorphic to the quotient module R/I where
I = ker(p) = Ann(u) is a left ideal of R.

1.11.2. If R is unital and a R-module M is generated by a finite set {u1,...,u,}, then the homomorphism
¢©: R" — M defined by ¢(a1,...,an) = > i, a;u; is an epimorphisms, so M is isomorphic to a quotient
module of R"™.

1.12. The module Hom(M, N) and the algebra End(M)

Let R be a commutative ring (this is important here!).
1.12.1. For two R-modules M and N, the set of homomorphisms M — N is denoted by Hompg(M, N),
or just Hom(M, N). For ¢,1 € Hom(M, N) and a € R, the homomorphisms ¢ + 1, ap € Hom(M, N) are
defined by (¢ + ¥)(u) = p(u) + P (u), (ap)(u) = ap(u), u € M; these two operations induce on Hom (M, N)
a structure of an R-module.
1.12.2. If R is a unital ring, then for any R-module M, Hom(R, M) = M, were the isomorphism is defined
by @ = o(1).



1.12.3. For an R-module M, the set Hom(M, M) of endomorphism of M is denoted by Endg (M), or just
End(M). With the operation of composition playing the role of multiplication, ¢ = o, End(M) is a ring
and an R-algebra (usually, noncommutative). The set Aut(M) of automorphisms of M is the set of units
(invertible elements) of the ring End(M), and is a group under multiplication. M has a structure of a left
End(M)-module, by defining pu = ¢(u), u € M, ¢ € End(M).

1.13. Schur’s lemma

1.13.1. A module with no nontrivial (that is, not counting itself and 0) submodules is said to be simple or
irreducible. A module is simple iff it is generated by every its nonzero element. A left module is simple iff
it is isomorphic to R/I, where I is a maximal proper left ideal in R. (In the case R is commutative, this
means that the only simple modules are fields.)

1.13.2. Shur’s lemma. If M and N are simple modules, then any homomorphism M — N is either zero
or an isomorphism.

Proof. Let p: M — N be a homomorphism. Since M is simple, ker(p) = 0 or ker(¢) = M. Since N is
simple, (M) = N or p(M) = 0. If ker(p) = M or (M) = 0, then ¢ = 0; if ker(¢) = 0 and (M) = N,
then ¢ is an isomorphism. g

It follows that for a simple module M, End(M) is a division ring.

1.14. Commutative diagrams and exact sequences of modules

The following terminology turns out to be pretty handy.
1.14.1. A diagram of module homomorphisms (and actually, of any mappings) is said to be commutative
if for any two modules in this diagram, the composition of the homomorphisms along any path connecting
these two modules is independent of the path.

Example. The diagram of module homomorphisms

A2 B Y O

ol el Al
AL o
is commutative iff ¢'oar = Bog, 1'03 = ~vo1p, and, as a corollary, yotho = 1 o’ 0.

1.14.2. A sequence ... — A 25 B Yy 0 — ... of module homomorphisms is said to be exact at term

B if ker(¢)) = p(A), and just ezact if it is exact at all its terms. In particular, the sequence 0 — A “s B

is exact iff ¢ is a monomorphism, the sequence A s B — 0 is exact iff 1 is an epimorphism, and the

sequence 0 — A - B — 0 is exact iff  is an isomorphism.

1.14.3. An exact sequence of the form 0 — A — B — C — 0 is called a short exact sequence. This

sequence expresses the idea that A is (isomorphic to) a submodule of B, and B/A = C.

1.14.4. For any module homomorphism ¢: A — B, the sequence 0 — ker(p) — A “ B —

coker(¢) — 0 (where ker(¢) — A is the natural embedding and B — coker(y) is the natural pro-

jection) is exact.

1.14.5. Any exact sequence can be “decomposed” into a sequence of short exact sequences: a sequence
—>Ai—1§0[;§Ai &Ai.}rl —

of module homomorphisms is exact iff there are exact short sequences 0 — B; — A; RN Biy1 — 0, for
some submodules B; of A; (in which case B; = ker(p;) = p;—1(A;—1) for all 7).
1.14.6. As an example of an application of commutative diagrams and exact sequences, here is the so-called

The short five lemma. Suppose that the diagram of module homomorphisms

0— A4 -2 BY 0 —o0
al //Bl 11)/71
0— A 2B 0 —0

1s commutative with exact rows. Then



(i) if « and v are monomorphisms, then (B is also a monomorphism;
(ii) if @ and v are epimorphisms, then B is also an epimorphism;
(iii) if @ and v are isomorphisms, then 8 is also an isomorphism.

Proof. This sort of proving is called “diagram wandering”:

(i) Let « and ~v be injective. Let b € B be such that 8(b) = 0; we need to show that b = 0. We have
v(¢ (b)) = ¢'(B(b)) = 0. Since ~ is injective, ¥(b) = 0. Since the first raw is exact, b = ¢(a) for some a € A.
Now, ¢'(a(a)) = B(¢(a)) = B(b) = 0; since ¢’ and « are injective, a = 0, so b = p(a) = 0.

(ii) Let o and ~ be surjective. Let b’ € B’; we need to show that v’ = B(b) for some b € B. Let ¢/ = ¢/(V').
Since 7 is surjective, ¢’ = y(c) for some ¢ € C. Since v is surjective, there is d € B such that ¢(d) = ¢. Now
Y(B(d)) =v((d)) = =" (V), so ' (b — B(d)) = 0. Since the second row is exact, there is a’ € A’ such
that ¢'(a’) = b — B(d). Since « is surjective, a’ = a(a) for some a € A. Let b = ¢(a) + d. Then

B(b) = Blp(a)) + B(d) = ¢'(ala)) + B(d) = ¢'(d)) + B(d) = V' = B(d) + B(d) = V.

1.14.7. The following lemma (from which The short five lemma 1.14.6 follows) is important in homological
algebra:
The snake lemma. Suppose that the diagram of module homomorphisms
0— 4% BY%C—0
of 8 ol
0— A 25 B 0" — 0

is commutative with exact rows. Then there is a homomorphism §: ker(y) — coker(«) such that the sequence

0 — ker(a) 25 ker(B) N ker(~y) N coker (o) LR coker(p) N coker(y) — 0

(where @ and 4’ are the natural quotients of the homomorphisms ¢’ and 1) to the quotient modules coker(a)
and coker(B) respectively) is exact, and the diagram

0 0 0
| | b
Ay ker a ker 8 ker y
! !
0— A % B LT —0
o] P g
’ w/

0 — /ll £ Jf' — c;’ — 0
cokfr a coker 3 coker y E2
v ¥

0 0 0

(with exact rows, exact columns, and the exact “snake”) is commutative.

Sketch of the proof. § is defined in the following way: Let ¢ € ker(vy). Let b € B be such that ¢(b) = c. Let
b = B(b). Then ¢’ (b') = v(¥(b)) = v(c) =0, s0 b’ = a’ for some @’ € A’. Put §(¢) = o’ mod a(A) € coker(a).
It is now to show that ¢ is well defined (doesn’t depend on the choise of b), that § is a homomorphism, that
“the snake” is exact, and that the obtained diagram is commutative; it’s a lot of work.

2. The direct product and the direct sum of modules as universal objects

2.1. The direct sum and product of two modules

2.1.1. The direct sum, or the direct product of two R-modules M; and M is the R-module M; & My =
M x My = {(ul, ug) s up € My, ug € Mg} with the componentwise addition and multiplication by scalars:
(u1,uz) + (v1,v2) = (ug + v1,us + v9) and a(uy, uz) = (auy, aus), for uy, vy € My, us,vs € N, and a € R.
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2.1.2. Clearly, for any two modules M; and My, My & My = My & My, under the isomorphism (uq,ug) —
(u2,uy). Also, for any three modules My, My and Ms, (M; & My) @ Ms = My @ (My & Ms).

2.1.3. The submodule M; x {0} of the module M; & M> is isomorphic to Mj, and is usually identified with
M, so that M; can be assumed to be a submodule of M; & Ms. Similarly, M> can be assumed to be a
submodule of M; @ My after identifying it with the submodule {0} x Ms. Let ny: My — M; & Ms and
na: My — My @ M5 be the corresponding embeddings. Notice also that M; & M, is generated by M; and
My (so that My @ My = M + Ms), and My N My = 0.

2.1.4. Also, there are natural projections m: My & My — My and mo: M7 & My — My defined by
m1(ug,u2) = uy and me(uy,us) = ug. For these projections one has ker(m) = Ms and ker(me) = M,
so that the sequences

O—>M1£>M1@M2£>M2—>O and 0—)M2£>M1@M21>M1—>0

are exact, and we have the isomorphisms (M7 & Ms)/M; = My and (M; @& Ms)/Ms = M.

2.2. The universal properties of the direct sum and product

2.2.1. In the notation of the preceding section, the direct sum M; § M has the following “universal prop-
erties”:

Theorem. (i) Given a module N and homomorphisms ¢1: M1 — N and @o: Mo — N, there exists a
unique homomorphism ¢: My & My — N that makes the diagram
M,
my/ &
My ® M, —£.N

le\ %@21
My

commutative (that is, such that 1 = pomy and w3 = pons). ¢ is defined by ©(u1,u2) = ¢1(ur) + @a(us),
U € Ml, Ug € MQ.
(ii) Given a module N and homomorphisms p1: N — My and wa: N — Ms, there exists a unique homo-
morphism @: N — My & My that makes the diagram
M,
¥1 \7\'1
N=> M, & M,
P2 /7"2
2

commutative (that is, such that o1 = Tiop and Y3 = Taop). @ is defined by v(v) = (p1(v),Y2(v)), v € N.

2.2.2. It follows that for any module N the set Hom(M; @ My, N) is in a one-to-one correspondence with
the product Hom(M;, N) x Hom(Mas, N) (each homomorphism M; & My — N corresponds to a pair of
homomorphisms M; — N and My — N), and the set Hom (N, M; & My) is in a one-to-one correspondence
with the product Hom(N, M7) x Hom(N, Ms).

Proposition. If R is a commutative ring, then for any R-modules My, My and N the bijections defined
above are module isomorphisms Hom(M; @ My, N) = Hom (M, N) X Hom(Ms, N) and Hom(N, M; & M) =
Hom(N, M7) x Hom(N, M>).

2.3. Categories and universal objects
The notion of “universality” comes from the category theory.

2.3.1. A category consists of objects and morphisms ¢: A — B between objects. (Usually, objects are sets,
and morphisms are mappings between these sets, but this is not required.) A category can be seen as a
directed graph whose vertices are called “objects” and (directed) edges are called “morphisms”. For any two
morphisms ¢: A — B and ¢: B — C' their composition morphism top: A — C must be defined, and
the operation of composition must be associative: To(1op) = (To1))op. Also, for every object A the identity
morphism Id4: A — A must exist so that poId4 = ¢ for any morphism ¢: A — B and Id 4 o = ¢ for any
morphism ¢: B — A.



2.3.2. Here are some examples of categories:
(i) In the category of sets the objects are sets and the morphisms are mappings between these sets.
(ii) In the category of groups the objects are groups and the morphisms are group homomorphisms.

(iil) In the category of topological spaces the objects are topological spaces and the morphisms are continuous
mappings.

(iv) Let R be a ring; then the category of (left) R-modules consists of (left) R-modules as objects and their
homomorphisms as morphisms.

(v) In the category of sets with a marked element the objects are pairs (A, a) where A is a set and a € A
and the morphisms between two objects (A,a) and (B,b) are mappings ¢: A — B with ¢(a) = b.

2.3.3. A morphism ¢: A — B is said to be an isomorphism if there is an inverse morphism : B — A
such that pot) = Idp and 9op = Id 4; in this case, the objects A and B are said to be isomorphic.

2.3.4. An object A of a category is said to be universal repelling, or initial, if for any object B of this category
there is a unique morphism ¢: A — B. An object A of a category is said to be universal attracting, or
terminal, if for any object B of this category there is a unique morphism ¢: B — A.

If a universal repelling, or attracting, object exists, then it is unique up to an isomorphism (that is,
any two such objects are isomorphic). Indeed, assume that A; and Ay are two repelling objects in some
category. Then there is a unique morphism ¢1: Ay — A5 and a unique morphism ¢o: Ay — A;. Then the
composition pjops is the unique morphism A; — A;, which must be Id4,, and likewise, @01 = Ida,;
hence, ¢; is an isomorphism.

2.3.5. Example. Let S be a set, consider the category of groups G with mappings S — G: The objects
in this category are pairs (G, 7n) where G is a group and 7 is a mapping S — G, and morphisms (G,n) —
(H,7) are homomorphisms ¢: G — H for which the diagram

S
VAN
G—H

is commutative. In this category the uiversal repelling object is the free group generated by S.

2.3.6. The direct sum M; & M5 of two R-modules M;, Ms is the universal repelling object in the category
whose objects are the triplets (N, 1, @2) where N is an R-module and ¢1: M1 — N, po: My — N are
homomorphisms, with morphisms between (IV, ¢1,¢2) and (K, 11,12) being homomorphisms n: N — K
that make the diagram
My

74 \11)1

N \—>‘7 /K

@

2 M, P2

commutative.

2.3.7. Likewise, M7 & M, is the universal attracting object in the category of triplets (N, 1, ¢2) where N
is an R-module and ¢1: N — My, @po: N — My are homomorphisms, with morphisms between (N, 1, ¢2)
and (K, 1, 12) being homomorphisms 7: N — K that make commutative the diagram
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2.4. The direct product and the direct sum of families of modules

The direct product and the direct sum of a finite collection of modules are the same, but when infinitely
many modules are involved, the notions of a direct product and a direct sum differ!
2.4.1. Let {M4}aen be a collection of R-modules. The direct product HQGA M, is the module

IT Mo = {(ua)aeA S ug € M, for all a € A},
aEA

with the addition and the multiplication by scalars defined by

(ua)aeA + (Ua)aeA = (ua + Uoz)ozeAv a(ua)ael\ = (aua)aEA-

For each o € A, M, is still naturally identified with a submodule and with a quotient module of [, Ma
(and so, is a direct summand of this product); however, [], ., Mq is no longer generated by the submodules
M. The direct product [ ., Mq is the universal attracting object in the category whose objects are the
pairs (N, (goa)aeA), where N is an R-module and ¢,: N — M, a € A, are homomorphisms, and morphisms
between (N, (¢a)aca) and (K, (¥4 )aeca) are homomorphisms 7: N — K satisfying ¢, = ¥40n for all a € A.
(In this category, the only morphism 7: (N, (¢a)aca) — [[acn Ma is that defined by n(v) = (0a(v))aca,
v€EN.)

2.4.2. The direct sum @, M, is the submodule )\ M, of the direct product ]
of elements (uq)aeca With u, = 0 for all but finitely many « € A:

wen Mo that consists

ED M, = {(ua)ae,\ P Uq € M, for all a € A, u, = 0 for all but finitely many a}.

a€cA
Every element of @, ., M, is uniquely representable as a sum Zle Uq, With distinct aq, ..., € A and
Ug; € My, i =1,...,k; or in the form ZSZA Uuq (that is, a sum ) us where u, = 0 for all but finitely

many as) with u, € M, for all @ € A. The direct sum €, M, is the universal attracting object in the
category whose objects are the pairs (N, (gpa)ae/\), where N is an R-module and ¢,: M, — N, a € A, are
homomorphisms, and morphisms between (N, (¢a)aca) and (K, (¥a)aca) are homomorphisms o: N — K
satisfying 1, = oo, for all @ € A. (In this category, the only morphism o: My — (N, (pa)aca) 18
that defined by o (3 cp ta) = Y nen Pallia); notice that this sum is finite. )

2.4.3. Let {M,}aea be a family of R-modules, and let N be an R-module. Any family of homomorphisms
Ya: N — M, a € A, defines the homomorphism ¢: N — [[,cx Mo by 0(v) = (0a(v))ven, and vice versa,
any such homomorphism ¢ defines a family of homomorphisms {¢s}aca. We therefore have a one-to-one
correspondence between [], ., Hom(N, M,) and Hom (N, [T, c, Ma),

acA

a€A

Hom(N, 11 Ma) ¢ [] Hom(N, M,).
aceA acA

In the case R is commutative, this bijection is an R-module isomorphism.

2.4.4. Likewise, any family of homomorghisms Ya: M, — N, a € A, defines the homomorphism
o:[Tpen Mo — N by @(ZZZA Ua) = Y per Paltia), Ua C My, o € A, and vice versa, any such homo-
morphism ¢ defines a family of homomorphisms {p, }aca. We therefore have a one-to-one correspondence

between [], ., Hom(M,, N) and Hom (6,5 Mo, N):

acA aEN

Hom(@ Ma,N) ¢ [] Hom(M., N).

aEA a€A

In the case R is commutative, this bijection is an R-module isomorphism.
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2.5. The internal direct sum of two submodules and splitting short exact sequences

The direct sum of two modules defined in 2.1 is the so-called external direct sum; we will now deal with
the internal one, appearing when a module already exists and only has to be recognized as a direct sum of
its submodules.
2.5.1. Let M be a module and let M7, M5 be two submodules of M. We say that M is a direct sum of M,
and My and write M = M; @ M, if the triplet (M, &1, &), where &; are the embeddings M; — M, is the
universal repelling object in the category of triplets described in 2.3.6.

If M = M; & Ms, we say that My and Ms are direct summands of M.
2.5.2. There are several criteria for a module to be a direct sum of two its submodules:

Theorem. Let M be a module and My, My be its submodules. Then the following are equivalent:

(1) M = M1 @MQ,’

(ii) M = My + Ms and M, N My = 0;

(iii) every element u of M is uniquely representable in the form u = uy + us with uy € My and us € Mo;

(iv) for the projection homomorphism m: M — M /M, the restriction T|pg, 05 N isomorphism between My
and M/M;.

Proof. If M = My & Ms, then M is isomorphic to “the abstract”, external direct sum M; ® Ms, under an
isomorphism that is identical on M; and Ms; since statements (ii)-(iv) hold for the outer direct sum, they
hold for M. So, (i) implies (ii)-(iv).

(ii) and (iii) are clearly equivalent: M = M; + M, means that every u € M is representable as u; + ug
with u; € My and ug € My. If M7 N My = 0, such a representaqgtion is unique: if uy 4+ ug = vy + vo with
u1,v1 € My and us,v2 € My, then uy — vy = vo —us € My N My =0, so u; = v, and ug = vo. Conversely, if
every u € M has a unique representation in the form u; + us with u; € M;, then since for u € M; N My we
have u =u+0=04 v with u € My, 0 € M and 0 € My, u € M5, we get that u = 0.

Next, (iii) implies (i): Given (iii), consider the homomorphism ¢: M; @ My — M, @(uy,u2) = ug + us.
Then ¢ is identical on M; and Ma: p(u1) = uy and p(ug) = ug for any u; € M; and uy € Ms. And since
every u € M can be uniquely written as u; + us with uy € M7 and us € Ms, ¢ is bijective.

Suppose (iv). Then M; N My = ker(w|,, ) = 0 since 7,  is injective. Let u € M. Since |5y, 18
surjective, there is ug € My such that w(u) = 7(uz). Then w(u — uz) = 0, so u3 = u — uy € My, and
u = uq + uz. Hence, (iv) implies (ii). g

2.5.3. If N is a submodule of a module M, we may ask whether N is a direct summand of M, that is,
whether M = N @ K for some submodule K of M. Similarly, if K is a quotient module of a module M, we
may ask whether M is a direct product of (a copy of) K and some other submodule. Theorem 2.5.6 below
helps recognize these situations.
2.5.4. For an epimorphism ¢: M — N, if a homomorphism o: N — M is such that oo = Idy, we say
that o is a section of :

M5 N —o0.

o

If in a short exact sequence 0 —» N —2» M Yy K — 0 the epimorphism 1 has a section, we say that this
sequence splits from the right:

P
0—>N—>M<:>K—>O.

[eg
2.5.5. For a monomorphism ¢: N — M, if a homomorphism 7: M — N is such that 1o = Idy, we say
that 7 is a projection for ¢:
%]
0—N — M.

T

If in a short exact sequence 0 —» N —>» M Yy K — 0 the monomorphism ¢ has a projection, we say
that the sequence splits from the left:

©
0—>N<:>M—>K—>O.

T
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2.5.6. Theorem. (i) If a short exact sequence 0 —» N M5B K o0 splits from the right, with
o: K — M being a section of ¢, then M = N' & K’ where N' = p(N) is isomorphic to N (under ¢) and
K' = 0(K) is isomorphic to K (under o).

(ii) If a short exact sequence 0 —» N oMLK 0 splits from the left, with : M — N being a
projection for ¢, then M = N’ @& K' where N' = p(N) is isomorphic to N (under ¢) and K' = ker(r) is
isomorphic to K (under |, ).

Proof. (i) Consider the diagram

0—N-"5N & KZ5K—0

2
! o !

0—N-5 M HK—0
(where 7; are the embeddings and 7; are the projections). By the universal property of the direct sum, the
homomorphisms ¢: N — M and o: K — M define a homomorphism p: N @ K — M such that pom = ¢
and pony = o. This makes the diagram commutative. (The right square of the diagram is commutative
since ¢ is a section of ¢: for any w € N and v € K we have p(u,0) = ¢(u) and p(0,v) = o(v), so
plu,v) = p(u) + o(v), so Y(p(u,v)) = P(p(u)) +P(c(v)) = v = m2(u,v).) By the short five lemma, p is an
isomorphism, so M = ¢(N) ®o(K). m

As a corollary we get that a short exact sequence splits from the left iff it splits from the right; so, we
can simply say that it splits.

2.6. The internal direct sum of a family of submodules
2.6.1. For finitely many modules Mj,..., My, the direct sum and the direct product of R-modules
My, ..., My is

k
P M = HM_{WW, tug € My, i=1,...,k}
=1

with the componentwise addition and multiplication by scalars:

(U1, uk) + (V1. oK) = (g + o1, ug +Fog),  alug, ... ug) = (aul,...,auk)7
ul7vz€M Z 1 k,aER.

For each i, M; is identified with a submodule and with a quotient module of @?:1 M;. Under the first of
these identifications we have M = M; + ...+ M} and M; N Zlﬁzl M; =0 for every j =1,... k.
i#]

2.6.2. @le M; is the universal repelling object in the category whose objects are the k + 1-tuples
(N,¢1,...,9k), where N is an R-module and ¢;: M; — N, i = 1,... k, are homomorphisms, and mor-
phisms between (N ©1,--,90k) and (K, 11, ...,1) are homomorphisms o: N — K satisfying 1; = ooy,
foralli=1,...k:
M;

e/ \¢i

N—"—K.
(In this category, the only morphism az@le M; — (N,p1,...,9k) is that defined by o(u,...,ug) =
p1(u1) + -+ + or(ug).)
2.6.3. Hle M; = @le M; is also the universal attracting object in the category whose objects are the
k + 1-tuples (N, ¢1,...,¢k), where N is an R-module and ¢;: N — M;, i = 1,... k, are homomorphisms,
and morphisms between (N, p1,...,¢k) and (K,4¢1,...,1%,) are homomorphisms 7: N — K satisfying
p; =Pon foralli =1,... k:

sa/ \wl

N—1-K.
(In this category, the only morphism n: (N, p1,...,p) — @le M; is that defined by n(v) = (¢1(v),. ..,
<Pk(U))7 veEN.)
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2.6.4. Let M be a module and M,, a € A, be a (finite or infinite) family of submodules of M. We say

that M is an (internal) direct sum of this family and write M = @, ., M, if M, with the embeddings

M, — M, a € A, is a universal repelling object in the category described in 2.4.2.

2.6.5. Theorem. Let M be a module and M, a € A, be a family of submodules of M. Then the following

are equivalent:

(l) M = @DAGA M.

(i) M =3 cn My (that is, M is generated by the modules M) and for every oo € A, Mo N} gen Mg =0
Ba

(which is equivalent to saying that for any distinct o, oy, ..., o, My N Zle M,, =0).

(iii) Every monzero uw € M s uniquely representable in the form u = ZZZA Uq With uy € M, for every a.
(Equivalently, every nonzero element u of M is uniquely representable in the form uw = uy + ... + ug with
nonzero w; € My,, i =1,...,k, and distinct oy, ..., € A.)

2.7. The Chinese remainder theorem and p-primary components of modules

Here are two situations where direct sums naturally appear.
2.7.1. If M is a left R-module and I is a left ideal of R, then the set

k
IM:{Zaiui:keN, ai €I, u € M, i:l,...,k}

=1

is a submodule of M.
2.7.2. The Chinese remainder theorem. Let R be a commutative unital ring, let M be an R-module,
and let I,...,I, be ideals in R which are pairwise comazimal (that is, I; + I; = R for all i # j). Then
LMn--NLiM = (I I,)M and M/(Iy---1,)M = @ ,(M/I;M), under the homomorphism that
maps u+ (I -+ I,)M to (qu ILiM,...;u+ InM), w € M. In particular, if (Iy---I,)M = 0, then M =
D, (M/1;M).
Proof. We know that I; and I5--- I, are comaximal, so it suffices to prove the theorem for the case n = 2
and then use induction.

Let I and J be comaximal, let @ € I and b € J be such that a+b = 1. We clearly have IJM C IMNJM,
let now uw € IM N JM; then v = au+ bu € aJM +bIM C IJM,so IMNJM CIJM.

Consider the natural homomorphism ¢: M — (M/IM) & (M/JM). We have ker(¢) = IM N JM, so
it remains to show that ¢ is surjective. Given v, w € M, put u = av + bw; then v = v —bv +bw = vmod JM
and v = av +w — aw = wmod IM, so p(u) = (wmod IM,wmod JM). g

2.7.3. Let R be a PID and let M be a torsion R-module. For a prime p € R, the p-primary component of M
is the submodule M, = {u € M : pFu = 0 for some k € N}. Then M is a direct sum of its nonzero primary
components: M =B,y .o Mp-

In the case M has a anonzero annihilator a = p* - - - p;*, where p; are distinct primes in R and r; > 1
for all ¢, we have M,,, = Ann(p;") for all ¢, and M = @le M,,.

3. Free modules

In this section R is assumed to be a unital ring.

3.1. Free modules of finite rank

3.1.1. Let n € N. The free R-module of rank n is the direct product R™ (which is the same as the direct
sum Y., R) of n copies of R; more generally, an R-module M is said to be free of rank n if M = R".
3.1.2. Let B be a subset of a module M. A linear combination of elements of B is a (finite) sum of the form
2223 a,v with a, € R, v € B. A subset B of a module M is called a basis of M if M = @,z Ro, that is,
if every element v € M is uniquely representable as a linear combination of element of B, u = ) 5 a,v;
the scalars a,, v € B, are called the coordinates of u in the basis B.
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3.1.3. The elements e; = (1,0,0,...,0), e = (0,1,0,...,0), ..., e, = (0,...,0,1) form the standard basis
of R™: any u = (ay,...,a,) € R™ is uniquely representable in the form u = >, a;e;.

3.1.4. If M is free of rank n and ¢: R® — M is an isomorphism, let u; = p(e;), ¢ = 1,...,n; then
{u1,...,u,} is a basis of M. Conversely, if M has a basis {uy,...,u,} of cardinality n, we can construct an
isomorphism M — R"™ by mapping v =Y., a;u; € M to the n-tuple (a1,...,a,) € R™ of its coordinates
in the basis {u1,...,u,}. Hence, M is free of rank n iff M has a basis of cardinality n.

3.2. Free modules generated by sets
Let S be a set, finite or infinite.
3.2.1. The free R-module generated by S is the direct sum @, g R; let us denote it by Fr(S). It consists
of functions S — R, s — as, such that ay; = 0 for all but finitely many s € S. For each s € S let e be
the function that is equal to 1 at s and to 0 at all other elements of S; then {e;}ses is a basis of Fg(95):
every element of this module is uniquely representable as a linear combination Z?g g Gs€s. Identifying each
s € S with the corresponding e,, we may assume that S C Fg(S) and is a basis of this module, so that the
elements of Fr(S) take the form }__¢ass.
3.2.2. We call an R-module M free if it is isomorphic to a free module. This is so iff M has a basis B, in
which case M is (isomorphic to) the module Fr(B).
3.2.3. The rank of a free module M is defined as the cardinality of any its basis. (Generally speaking, the
rank is not defined uniquly: there is a ring R for which R? = R as R-modules. However if the ring R is
commutative and unital, the rank is well defined.)
3.2.4. Let M be an R-module and let 77: S — M be a mapping. Then 7 is uniquely extendible to a
homomorphism Fg(S) — M, by putting 77(21:25 ass) = Zgés asn(s). This means that Fr(S), with the
natural embedding S — Fgr(S), is the universal repelling object in the category of the pairs (M, n), where
7 is a mapping S — M, with morphisms between two objects (M,n) and (N, 6) being homomorphisms
p: M — N satisfying 6 = @on:
YN
M—>N.
3.2.5. In particular, if S is a subset of M, we have a unique homomorphism ¢: Fr(S) — M that is identical
on S: ¢(s) =s for all s € S. If S is a generating set of M, then ¢ is an epimorphism, and M is isomorphic
to a quotient module of Fr(S). We therefore have the following theorem:

Theorem. Every module is isomorphic to a quotient module of a free module; if a module M is generated
by a set S, then M is isomorphic to a quotient module of Fr(S).

3.3. Maximal free submodules and the rank of a module

3.3.1. A subset B of a module M is said to be linearly independent if a linear combination
elements of B is equal to 0 only if a,, = 0 for all u € B.

3.3.2. Lemma. A subset B of a module M is a basis of M iff B is linearly independent and generates M.

fi

. f
ueB Gult 0

3.3.3. If B is a linearly independent subset of M and N is the submodule of M generated by B, then B is
a basis in IV and so, N is free.
3.3.4. A standard application of Zorn’s lemma gives:

Theorem. Fvery module M has a mazximal linearly independent subset. Moreover, every linearly indepen-
dent subset of M is contained in a maximal one.

3.3.5. I will call the module generated by a maximal linearly independent subset of M a mazimal free
submodule of M. (Though such a module may not be, in fact, a maximal element in the set of free submodules
of M! Consider, for instance, Q as a Z-module.)

3.3.6. Proposition. Let N be a free submodule of a module M. Then N is a maximal free submodule of
M iff M/N s a torsion module.

Proof. Let B be a basis of N. For u € M, the set B U {u} is linearly dependent iff au + 2225 a,v =0

for some a # 0, iff au = 0mod N for some a # 0, iff 4 = umod N is a torsion element in M/N. So, B is a
maximal linearly independent subset of M iff M/N is a torsion module. g
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3.3.7. If R is an integral domain, then the rank of an R-module M, rankr M or rank M, is defined as the
rank of its maximal free submodule, that is, the cardinality of a maximal linearly independent subset. We
will see later (in 6.4.3) that rank M is well defined.

3.4. Vector spaces and dimension

3.4.1. Theorem. Any vector space is a free module; any mazimal linearly independent subset of a vector
space is a basis of this space.

Proof. Let F be a field and V be a vector space. Let N be a maximal free F-submodule of V. Then
V/N is a torsion module; but since F' has no nontrivial ideals, there are no nontrivial torsion F-modules, so
V/N =0. Hence, V=N and V is free. g

3.4.2. Theorem. Any subspace W of a vector space V is a free summand of V : there exists a subspace W'
of V such that V=W @& W',

3.4.3. Theorem. Any two bases in a vector space have the same cardinality.

The proof of this theorem is based on the replacement lemma (or theorem), and, in the case of infnite
dimensional spaces, requires Zorn’s lemma.

The cardinality of any basis of an F-vector space V (that is, the rank of V' as a free F-module) is called
the dimension of V and is denoted by dim V; the theorem says that dimV is well defined. Two vector
F-spaces are isomorphic iff they have the same dimension.

3.4.4. As a corollary, we get:

Corollary. If R is a commutative unital ring, then the rank of a free R-module is well defined. (That is,
any two mazimal linearly independent subsets in M have the same cardinality.)

Proof. Let I be a maximal ideal in R, let F' be the field R/I. If M is an R-module, then M/IM has a
structure of an R/I-module, that is, is an F-vector space. And if M is free, then rankg M = dimp(M/IM),
and so is well defined. (If M = R", then M/IM = R"/(IR™) = R™/I™ = (R/I)™ = F™. In the case M has
infinite rank, given a basis B of M, Bmod IM is a basis in M/IM. Indeed, Bmod IM generates (spans)
M/IM over R and so over F' = R/I; and the fact that any finite subset of B is linearly indpendent modulo
IM follows from the finite rank case.) g

3.4.5. If V is a finite dimensional vector space and W is a subspace of V, then dim V' = dim W + dim(V /W),
and if dimW =dimV, then W = V.

3.4.6. Proposition. If o:V — W is a homomorphism of finite dimensional vector spaces, then dim (V') =
dim V' — dim ker(y).

3.4.7. As a corollary, we obtain:

Proposition. If o:V — W s a homomorphism of vector spaces with dimV = dim W < oo, then ¢ is an
isomorphism iff ¢ is a monomorphism iff ¢ is an epimorphism.

4. Tensor product of modules

To avoid unpleasant complications, I'll only consider tensor products of modules over commutative rings;
for tensor products of modules over non-commutative rings see the book.
In this section, R will be a commutative unital ring.

4.1. Bilinear mappings of modules
4.1.1. Let My, My, N be R-modules. A mapping 5: M; x My — N is said to be bilinear if

B(ur +vi,uz) = Blur,ug) + Bvi,uz);  Blaur,uz) = af(ur, uz);
Bur, ug + v2) = B(ur, uz) + B(ur,v2);  Blui, aug) = af(ur, usz)

for all uy,v; € My, ug, vy € Ma, and a € R; in other words, if for any us € My the mapping uy — S(uq, uz)
is a homomorphism M; — N, and for any uy € M; the mapping us — B(u1,us) is a homomorphism
M2 — N.
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Example. If A is an R-algebra, then the multiplication in A is a bilinear mapping A x A — A.

4.1.2. The composition of a bilinear mapping and a homomorphism is a bilinear mapping.

4.2. The tensor product of two modules
4.2.1. Let M7 and Ms be two R-modules. The tensor product M @ Ms, or just M7 ® Ms, is the R-module
that is the universal repelling object in the category of bilinear mappings from M; x Ms; in other words,
M7 ® My is the R-module with a bilinear mapping 5: My x My — M7 ® M5 such that for any R-module N
with a bilinear mapping : M; X Ms — N there exists a unique homomorphism ¢: M; ® My — N with
the property that v = pof:
Ml X M2
N\ (4.1)
M; ® My —2— N.

4.2.2. As a universal object, the tensor product is unique up to isomorphism; but its existence is not evident.
Here is a direct construction of M; ® g M. Consider the free module Fr(M; x Ms), that is, the module
of formal linear combinations of the pairs (u1,us) € My X Ms. Let K be the submodule of Fr(M; x Ms)
generated by the set of elements of the form

(w1 +v1,u2) — (ur,u2) — (vi,u2), (aur,u2) — a(u, ug),
(u1,uz +v2) — (u1,u2) — (u1,v2), (u1,auz) — a(ur,uz)

for uy,v1 € My, us,v9 € My, and a € R. Put M = Fr(M; x M>)/K, and define 8: M; x My — M by
B(u1,uz) = (ug,uz) = (ug,u2)+ XK. Then § is bilinear: modulo IC, we have (u1 + v1, ua) = (u1, us)+ (v1, ua),
etc. Now, given any bilinear mapping v: M7 x Ms — N, by the universal property of free modules, there is
a unique homomorphism @: Fr(M; x M) — N such that @(uq,us) = y(u1,us) for all uy € My, us € Ms.
Because of bilinearity of 7, the elements of K are mapped by @ to 0, that is, K C ker(¢); this implies that
@ factorizes to a unique homomorphism ¢: M7 ® My — N for which the diagram (4.1) is commutative:
90((“1,“2)) = y(u1,uz).

4.2.3. Elements of the module M; ® My are called tensors. The image B(M; x Ms) of My x My generates
M; ® Ms. For an element (uq,us) € M; x M, its image in My ® Mj is denoted by u; ® us; tensors of
this sort are called simple. Therefore, M; ® M, is generated by the set of simple tensors: every tensor is a
linear combination of simple tensors. Thus, any homomorphism from M; ® M, is defined by its values on
the simple tensors.

Moreover, if M; is generated by a set S; and My by a set S, then M; ® M is generated by simple
tensors of the form wu; ® us with uy € S; and uy € S;. Indeed, for every simple tensor w = vy ® vy €
M, ® My we have v; = Zle a;uy; with uq1,...,u1, € S1 and vy = 22:1 bjug ; with ug1,...,us2; € Sa,
sow =3}, ;abjui; ®us,;, which is a linear combination of tensors of the needed form. Since every tensor
is a linear combination of simple tensors, this holds true for every tensor either.

4.3. Elementary properties of tensor multiplication and examples of tensor products

In what follows, M, My, My, M3 are R-modules.
4.3.1. Remark. How can we construct a homomorphism M; ® My —> M7 We first construct a bilinear
mapping v: My x My — M, and then the universal property of tensor product will guarantee that there is
a homomorphism ¢: M7 ® My — M such that ¢o(u; ® us) = y(ug,us) for all uy € My and ug € My. How
can we prove that this homomorphism is an isomorphism? We either construct its inverse, or prove that it
is both an epi- and monomorphism.

4.3.2. By definition, in the tensor product M; ® My,

(u1 +v1) @u2 = U1 Qua +v1 Qua, U ® (ug+v2) = Uy Qua+u; Que, (aur)us = u1 @ (auz) = a(u; Rus)
for any uy,v1 € My, ug,vo € Ms, a € R.

4.3.3. For any u; € M7 and any us € Ms we have u1 ® 0 = 0 ® ug = 0; indeed, u; ® 0 = u3 ® (0+0) =
u1 ® 0+ u; ® 0. It follows that for any module M, M ® 0 =0® M = 0.
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4.3.4. R® M = M, where the isomorphism is given by a ® v — au.

Proof. Define 8: Rx M — M by (a,u) = au. [ is bilinear, thus induces a homomorphism ¢: R M — M
with ¢(a ® u) = au, a € R, w € M. The homomorphism ¢: M — R ® M defined by ¥ (u) = 1 ® u is the
inverse of ¢ on simple tensors and thus is the inverse of . So, ¢ is an isomorphism. g

4.3.5. M7 ® My = My ® My, where the isomorphism is defined by u; ® us — us ® uy.

Proof. Define 8: My x My — Ms ® My by B(u1,us) = ugs ® uy. Then f§ is a bilinear mapping, thus it
induces a homomorphism ¢: M7 @ My — My ® My with ¢(u1 ® ug) = us @ ug for all uy € My, us € Ms.
Similarly, there is a homomorphism t: My ® M} — My ® My with p(us ® u1) = w3 ® ug for all uy; € My,
uz € Ms. Since 9 is the inverse of ¢ on the generators (the simple tensors), 1 is the inverse of ¢ and ¢ is
an isomorphism. g

4.3.6. (M1®@Ms)®Ms = M;®(M2®Ms), where the isomorphism is defined by (u; @ua)®usz — u1 ®(uz)Qug).

Proof. For each z € M3, define 8,: M1 x My — M; ® (M ® M3) by B.(ui,u2) = u; ® (us ® z), ug € My,
us € Ms. [, is bilinear, and thus induces a homomorphism ¢,: My @ My — M; ® (My ® M3) with
02 (U1 ®@ug) = u1 @ (U2 ®2), uy € My, ug € My. Now define a mapping 8: (M7 @ My) x M3 — M; @ (Ma® Ms3)
by B(w, z) = p,(w), z € M3, w € My ® My; in particular, S((u1 ® uz),2) = u1 @ (uz ® 2z) for all u; € M,
ug € My, z € Ms. It is easy to check that f is bilinear, and thus induces a homomorphism ¢: (M; ® M) ®
M3 — M ® (M2 ® M3) with o((u1 @ u2) ® 2) = u1 ® (ug ® 2) for all uy € My, us € Ma, z € M. Similarly,
there is a homomorphism ¢: My @ (My ® M3) — (M1 ® Ms) @ M5 with ¢(u; ® (us ® 2)) = (u; @ uz) ® z for
all uy € My, us € My, z € M3. So, ¢ and 1 are inverses of each other on the generators of (M; @ Ms) ® M3
and My ® (M2 ® Mj3), and so, are inverses of each other; hence, ¢ is an isomorphism. g

4.3.7. (M & M) ® M3 = (M ® M3) @& (Ms ® Ms), where the isomorphism is defined by (u1,us) ® ug —
(u1 ® uz, U2 @ U3).

Proof. Define 3: (My®Ms) x M3z — (M ®M3)®(M2®@Ms) by B((u1,u2), uz) = (u1 ®us, uz@ug). It is easy
to check that £ is bilinear, hence it induces a homomorphism ¢: (M7 ® Ms) ® M3 — (M7 ® M3) ® (M2 ® Ms)
with o((u1, u2) ®us) = (u1 ®us, uz ®ugz). In particular, ¢((u1,0) ®us) = (u1 ®us,0) and (0, u2) @ uz) =
(O,UQ ® U3) for all u; € M;,i=1,2,3.

On the other hand, we have homomorphisms ¢1: M7 ® M3 — (M; @ M) @ M3 and 1)2: My @ M3 —
(Ml D Mg) ® M3 with wl(U1 X U3) = (u1, 0) ® uz and 1/)2(U2 X U3) = (O,UQ) ® ug, for all u; € M;,i=1,2,3.
Hence (by the universal property of the direct sum) there is a homomorphism ¢: (M ® M3)® (Ma® M3) —
(M;®Ms3)®Mj; such that ¥ (u; ®us, 0) = (u1,0)@us and (0, ua®@ug) = (0, uz)®ug for all u; € M;,i=1,2,3.
Thus, ¢ and ¢ are inverses of each other on the generators of (M & Ms) ® M3 and (M7 @ M3) @ (Ms ® Mj),
and so, ¢ is an isomorphism. g

4.3.8. For any n € N, M ® R® = M™. (This follows by induction from 4.3.7 and 4.3.4: M ® R" =
M@R®-- - ®R)ZMOR) @ ®MRR =ZM&---&M=M")

For any ni,ne € N, M{" @ M3? = (M; ® My)™™2. (This follows by induction from 4.3.7.)
4.3.9. For an infinite collection of modules, tensor product also commutes with the direct sum (but not with
the direct product!): Let {My}aca be a collection of modules and N be a module; then (P, Ma) ® N =
Poca Mo @ N.

Proof. We cannot use induction (at least, not the ordinary one), but the proof in 4.3.7 can just be copied.
Define 3: (B,ep Ma) X N — @Dpen Ma @ N by B((ta)acs; v) = (ta ®v)aca. It is easy to check that j is
bilinear, hence it induces a homomorphism ¢: (B, cp Ma) @ N — @, cn Ma @ N with ¢((ua)acr @ v) =
(o ® V)aeA-

On the other hand, for every o € A we have the homomorphism t,: M, @ N — (@ae/\ Ma) ® N
defined by 9, (u®v) = (ugs)scp ®v with us = u if § = a and 0 otherwise. Hence (by the universal property of
the direct sum!) there is a homomorphism ¥: @,y (Mo @ N) — (@aEA Ma) ® N satisfying, in particular,
w((ua ® v)aEA) = Ziré/\ Ya(tia ® V) = (Ua)aear ® v. Thus, ¢ and ¢ are inverses of each other on the
generators, so are inverses of each other, and so, ¢ is an isomorphism. g
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4.3.10. If I is an ideal of R, then (R/I)® M = M /(IM), where the isomorphism is given by (amod I) @ u —
(aumod IM). M/(IM) can be considered as an (R/I)-module.

Proof. The mapping 8: (R/I) x M — M/(IM), f(amodl,u) = aumodIM, is well defined, since if
a = bmod I then au = bumod IM. [ is bilinear, so defines a homomorphism ¢: (R/I) @ M — M /IM with
o((amodI) ® u) = aumod IM for all a € R, u € M.

Let us define a homomorphism ¢: M —s (R/I) @ M by 1(u) = (1modI) ® u. For any a € I, u € M
we have th(au) = (1mod I) ® (au) = (amod I) @ u = 0, so »(IM) = 0, and ¢ factorizes to a homomorphism
v:M/IM — (R/I)® M. We can check that 9 is the inverse of ¢ on simple tensors: ¢¥(¢((amod ) ®u)) =
Y(aumod IM) = (1modI) ® au = (amod I) ® u, and p(¢¥(umod IM)) = p((1mod ) ® u) = umod I'M for
all a € R, v € M. Hence, v is the inverse of ¢, and ¢ is an isomorphism. g

4.3.11. For any n,n € N, Z,, ®z Zy, = Zq where d = gcd(n, m).

Proof. The bilinear mapping Z,, X Z,, — Zg, (a,b) — ab, is well defined, thus it induces a homommorphism
0: Ly @ Ly =2 ZLg with p(a ® b) = abmod Z,4. Clearly, ¢ is surjective. To construct the inverse mapping, we
define ¥(c) = ¢® 1, ¢ € Z, and check that it factorizes to a homomorphism from Z,: for this end, we write
d = kn + Im and see that ¢(d) = (kn+Im)®@1=k(n®1)+I1(1®@m)=0.

It is however easier to use 4.3.10: Z,, ® Zy, = (Z/(n)) Q@ Ly, = L/ (N)L1,) = L/ (dLy) = Zq. n

4.3.12. If I and J are ideals in M, then (R/I)®(R/J) = R/(I+J). (This can be proved directly or deduced
from 4.3.10.)

4.3.13. Let R be an integral domain, let F' be the field of fractions of R, and let M be an R-module. Then
the kernel of the natural homomorphism M — FRr M, u+— 1®u, u € M, is the torsion submodule of M.

Proof. Let o: M — F @ M, p(u) =1 @ u. It is easy to see that Tor(M) C ker(y). Indeed, if u € Tor(M),
let a # 0 be such that au = 0, then p(u) =1®@u = (at) ®u=1® (au) = 0.

Now, assume that u € ker(p), that is, 1 ® w = 0 in F' ® M. This means that (1,u) is contained in the
“relations submodule” K of Fr(F x M), the kernel of the projection Fr(F x M) — F®M, that is, is a linear
combination of elements of Fr(F x M) of the form (g1 + g2,v) — (¢1,v) — (g2, v), etc., with ¢; € F, v € M.
Let d be a common multiple of the denominators of all elements of F' involved in this linear combination;
then all elements of this linear combination are contained in F; R(Ré x M). This means that 1 ® u = 0 in
the product Ré ® M. We have Ré = R, under the isomorphism a — da; so Ré ®M=R®M = M under
the isomorphism defined by a ® v — da ® v — dav, a € R, v € M. Hence, since 1 ® u = 0 in Ré ® M, we
have that du =0 in M. So, u € Tor(M). g

4.3.14. For any three R-modules M;, M,, and N there is a natural isomorphism Hom(M; ® My, N) =
Hom(Ml,Hom(Mg,N)).

Indeed, given a homomorphism ¢: M; ® My — N, for every u € M; we have a homomorphism
©u: My — N defined by ¢, (v) = ¢(u®w). This gives a mapping : M; — Hom(Msy, N), u — ¢, and it is
easy to see that v is a homomorphism: for any uy, us € M1, @u,+u, (V) = @((u1+u2)@v) = @(u; QU+tus®v) =
©uy (V) + o, (v) for all v € Mo, so Y(ur + u2) = P(u1) + ¢¥(u2), and similarly ¥ (au) = ap(u). So, we have
a mapping Hom(M; ® Ms, N) — Hom(Ml,Hom(Mg,N)), and we can see that this mapping is also a
homomorphism: for ¢1, s € Hom(M; @ Ms, N), p1 + s is mapped to ¢ € Hom(Ml,Hom(Mg,N)) such
that, for all w € My and v € Mz, ¥(u)(v) = (g1 + 2)(u®v) = P1(u®V) + P2 (U@ V) = V1 (u)(v) + 2 (u)(v),
so Y(u) = P1(u) + ¥a(u), so ¥ = 1 + 9, where 1); is the image of ;, i« = 1,2; similarly, for ¢ €
Hom(M; ® Ma, N) and a € R, the image of ap is ay) where 1) is the image of ¢ in Hom(Ml, Hom(Ma, N))

The inverse mapping Hom (M, Hom(Ms, N)) — Hom(M; ® Ma, N) is defined in the following way:
Given a homomorphism t: M; — Hom(Ma, N), define a mapping 5: My x My — N by B(u,v) = ¥ (u)(v).
B is bilinear: for any u,ui,us € My, v,v1,v2 € Ms and a € R, B(u1 + u2,v) = ¥(uy + u2)(v) = (Y(u1) +
() (0) = () () + B(212) () = Blur, 0) + Aluuz, v) and Blare,v) = (aw) (v) = (ath(w))(v) = arp(u) (v) =
aB(u)(v) since B is a homomorphism, and 3(u,v1 + v2) = Y (u)(v1 + ve) = Y(u)(v1) + Y (v)(v2) = B(u,v1) +
B(u,vz) and B(u,av) = Y(u)(av) = ayp(u)(v) = af(u,v) since B(u) is a homomorphism for every u € M;.
Thus 8 induces a homomorphism ¢: My ® My — N with p(u ® v) = ¥(u)(v) for all u € My and v € M.
And clearly, the constructed mapping @ + ¢ is the inverse of the homomorphism ¢ — 1) above: for all
u € My and v € My we have ¢(u)(v) = ¢(u ® v) and p(u ® v) = P (u)(v).
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4.4. Extension of scalars

4.4.1. Let M be an R-module and A be an R-algebra. Then the tensor product A @ g M has a structure
of an A-module, defined by a(8 ® u) = (af) ® u. This operation of passing from an R-module M to the
A-module A ®r M is called an extension of scalars.

4.4.2. Examples. (i) If V is an R-vector space, the C-vector space C @g V' is called the complexification of
V. C®prV is spanned by tensors of the form 1 ® v and i ® u, u € V, and, after identification V with 1® V,
can be written as V @ V.

(ii) If M is a free R-module and A is an R-algebra, then A ®zp M is a free A-module, of the same rank.

(iii) If R is an integral domain and F is its field of fractions, then for any R-module M, F ®p M is an
F'-vector space.

(iv) 4.3.10 above also gives an example of an extension of scalars: R/I is an R-algebra and (R/I) ® M is an
(R/I)-module.

4.4.3. If A is a unital R-algebra, the A-module A ® g M with the homomorphism M — A ®r M of
R-modules is also a universal repelling object, namely, in the category of A-modules N together with an
R-module homomorphism ¢: M — N. (Given such a module and a homomorphism, the corresponding
homomorphism A ® g M — N is defined by o ® u — ap(u), a € A, u € M.)

4.5. The tensor product of two algebras

4.5.1. If A; and A, are two R-algebras, then A; ® g Ay has a structure of an R-algebra as well, where the
multiplication is defined by (u; ® ug)(v1 ® v2) = (u1v1) ® (ugvs).

4.5.2. Examples. (i) If A is an R-algebra, then A ® R[x] = Alz], the algebra of polynomials over A.

(ii) The product R[z] ® R[y] is isomorphic to the algebra R[z,y] of polynomials in two variables.

4.6. The tensor product of two homomorphisms

4.6.1. Let p1: M7 — N and @9: My — N3 be two homomorphisms of R-modules. Then a homomorphism
@: My ®r My — N1 ®p Na is defined by p(u; ® us) = p1(u1) ® pa(ua). ¢ is called the tensor product of
1 and 9 and is denoted by 1 ® @s.

4.6.2. We therefore have a mapping Hom (M7, N1) x Hom(Ms, No) — Hom(M; ® My, N1 ® N3) defined
by (¢1,p2) — @1 ® @o; this mapping is bilinear, and, hence, defines a homomorphism Hom(M7, N7) ®
Hom(Ms, N3) — Hom(M; ® M, Ny ® N3) (which may be neither injective nor surjective).

4.7. The tensor product of several modules

4.7.1. Let My,..., My, N be R-modules. A mapping u: My X --- X My — N is said to be multilinear, or
polylinear, if for every i € {1,...,k}, every (uy,...,ux) € My X -+ x My, every v; € M;, and every a € R,

M(Ul,"‘ y Ui—1, Ug +/Ui7ui+17"' 7uk3) = M(Ul,"',UZ‘717U2‘,U2‘+1,... ,Uk;) +,u’(u17"'7ui717vi7ui+17-"7uk)

and
P(UL, UGy QUG Wiy - - oy Uk) = A(UL, * Uy Uy Ui 1y - -+ U )-
4.7.2. Given k R-modules M, ..., My, the tensor product M; ® g M ®p - - - ®g My, is defined the same way

as in the case k = 2, namely, as the universal repelling object in the category of R-modules N together with
multilinear mappings M; X --- X My — N.

4.7.3. It is easy to see that, actually,
Mi@M® - @ Mp_1 ® My, = (...((Ml®M2)®M3)--~®Mk,1) ® My,

and, in light of 4.3.6, is also isomorphic to the sequential tensor product of these modules performed in any
other order.
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4.8. The tensor algebra of a module

Tensor multiplication allows to construct an algebra from any module. (And moreover, the best possible,
the universal one!)

4.8.1. Let M be an R-module. Put 7°(M) = R, T*(M) = M, T>(M) = M @ M, and for each k € N,
TFM) =M% = M ®---® M. The elements of T*(M) are called k-tensors.
—_——

k
4.8.2. Define

T(M)=ReMae Mo M*a... = PTHM).
k=0

As an R-module, T (M) is generated by 1 and the simple tensors u; ® - @ ug, k € N, uy,...,ur € M. The
multiplication in 7 (M) is just the tensor multiplication ®:

(U1®"'®Uk)®(vl®"'®vl):U1®"'®Uk®vl®"'®vl~

Under this multiplication, 7 (M) becomes an R-algebra, called the tensor algebra of M.

4.8.3. Examples. (i) The tensor algebra 7 (R) is isomorphic to the algebra R[z], under the isomorphism
that maps a1 @ -+ - ® ay, to aq - - - apz”.

(ii) Let M = Fr({x1,...,24}), the free R-module generated by the set {z1,...,24}. Then T(M) is the
algebra of polynomials over R of noncommuting variables x1,...,z4.

4.8.4. An algebra A which is a direct sum A = @, ; A of its submodules with the property that for every
k and I, Ay Ay, C Agq is called graded. T (M), with the decomposition 7 (M) = @y, T*(M), is a graded
algebra.

4.8.5. For a given R-module M, the tensor algebra 7 (M) is the universal repelling object in the category
of unital R-algebras A with an R-module homomorphism 7: M — A, where morphisms (A,7): (B, T) are
R-algebra homomorphisms ¢: A — B satistying @on = 7 and ¢(1) = 1. (If 5: M — A is a homomorphism,
then the unique homomorphism ¢: 7 (M) — A extending 7 is defined by ¢(u; ®- - - ®@ug) = n(u1) - - - n(ug).)

4.8.6. The tensor algebra 7 has a functorial property: any homomorphism ¢: M — N extends to an
R-algebra homomorphism 7 (M) — T(N), by u1 @ --- @ up — @(u1) ® - ® o(ug).

4.9. The symmetric and the exterior algebras of a module

The tensor algebra T (M) of a module M is, generally speaking, noncommutative; it can be made
commutative by proper factorization.

4.9.1. An ideal I in a graded algebra A = @, , Ay is said to be graded if I = @;_,(INAg). If 'is a
two-sided graded ideal in A, then A/I is a graded algebra, with A/I = @y, (Ax/Ix).

4.9.2. Consider the two-sided ideal C(M) in T (M) generated by the tensors of the form u ® v — v ® w,
u,v € M. The quotient ring 7(M)/C(M) is called the symmetric algebra of M and is denoted by S(M). It
is easy to see that C(M) is a graded ideal, so S(M) is a graded algebra, S(M) = Pre, S*(M), with S¥(M) =
TH(M)/(T*(M)NC(M)). For each k, S¥(M) is the universal repelling object in the category of modules
N with a symmetric k-linear mapping pu: M — N, that is, satisfying p(us(1), ..., Uer)) = p(u1, ..., ur),
o € Sg.

As aring, S(M) is generated by SY(M) = R and S'(M) = M; as an R-module, S(M) is generated by 1
and simple tensors u; ® - - - @ uk, u; € M, for all k (more exactly, by the equivalence classes of these tensors).
Since in S(M), u ® v = v ® u, it is commutative; and it is easy to see that S(M) is the universal repelling
object in the category of commutative unital R-algebras A with R-module homomorphisms M — A.

4.9.3. Example. For M = Fr({z1,...,z4a}), S(M) = Rlx1,...,24).
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4.9.4. Let A(M) be the ideal of T (M) generated by the tensors of the form u®w, u € M. The quotient ring
T(M)/A(M) is called the exterior algebra of M and is denoted by A(M). Tt is easy to see that A(M) is a
graded ideal, so A(M) is a graded algebra, A(M) = @, A*(M), with A*(M) = T*(M)/(T*(M)NA(M)).
The multiplication on A, induced by the multiplication ® in T (M), is denoted by A: the wedge product
of w; € AF¥(M) and wy € AY(M) is w1 A wy € AM(M). For each k, A¥(M) is the universal repelling
object in the category of modules N with an alternating k-linear mapping pu: M — N, that is, satisfying
(U (1), - -+ > Ug(ry) = sign(o)pw(u, ..., ux), o € Sy.

As an R-module, A(M) is generated by 1 and the simple tensors u3 A -+ Aug, u; € M, for all k. The
operation A is “anticommutative”: it has the property that us A uy = —uy A ug for any uy,us € M, and
for any k,l € N, w; € A¥(M) and wy € AY(M), wy Aw; = (=1)Fw; A wy. Graded algebras with such a
multiplication are called alternating; A(M) is, therefore, an alternating algebra, and is, in fact, the universal
repelling object in the category of alternating R-algebras A with R-module homomorphisms M — A.

4.9.5. Example. A valuable example of an exterior algebra is the algebra of differential forms on, say, an
open domain U C R?: this is the exterior algebra of the module of (continuous or differentiable) covector
fields on U over the ring of (continuous or differentiable) functions on U.

4.9.6. The symmetric and the exterior algebras S and A have a functorial property: any homomorphism
@: M — N extends to R-algebra homomorphisms S(M) — S(N) and A(M) — A(N).

4.10. Symmetric and alternating tensors

An alternative way of constructing symmetric and alternating tensors is by passing to subalgebras of
T (M) instead of quotient algebras.

4.10.1. For each k € N, the symmetric group Sy acts on 7%(M) by permuting the entries of tensors:
oiup ® - @ Up > Ug(1) @ - Ug(k)- The tensors in T"#(M) invariant under this action, w € 7%(M) such
that o(w) = w for all ¢ € S, are said to be symmetric; they form a submodule of 7%(M), which I will
denote by ST"(M). (The difference between, say, S?(M) and ST?(M) is that, in the first case, we deal
with “symmetric” tensors of the form u; ® us where ® is assumed to be commutative, so that in this algebra
U1 ® uz = u2 @ u1; in the second case we deal with “usual” tensors of the the form uq ® ug + us ® uz.)

4.10.2. The symmetrization Sym,, of a k-tensor is the operation defined by

Symy,(u1 ® -+ @ ug) = Z Ug(1) @« @ Ug(k);

c€Sk

this is a homomorphism from 7%(M) to ST*(M). Sym, may not be surjective; however, for sure, its image
contains the submodule k:!STk(M) of STk(M), and so, in the case k! is a unit in R, Sym,, is surjective.
The kernel of Sym,, can be shown to be C¥(M), so, Sym,, induces an isomorphism between “the module of
symmetric k-tensors” S¥(M) and the submodule Sym,, (7%(M)) of ST*(M).

4.10.3. The submodule ATk(M ) of alternating k-tensors is defined similarly: we say that a tensor w €
T*#(M) is alternating if o(w) = sign(o)w for every o € Sy.

4.10.4. The alternation, or the skew-symmetrization Alty of an k-tensor is defined by

Altk(ul Q- ® Uk) = Z sign(cr)ug(l) &+ ® Ug(k);
oc€Sk

this is a homomorphism from 7%(M) to AT*(M). Alt, may not be surjective; however, for sure, its image
contains the submodule kAT*(M) of AT*(M), and so, in the case k! is a unit in R, Alty is surjective.
The kernel of Altj can be shown to be A¥(M), so, Alty, induces an isomorphism between A¥(M) and the
submodule Alty,(7*(M)) of AT®(M).
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4.11. A word about tensor multiplication of modules over a noncommutative ring

4.11.1. If R is noncommutative, the tensor multiplication of R-modules becomes more complicated. If we
multiply two left or two right R-modules, we loose noncommutativity of R: (abu) ® v = (bu) ® (av) =
u ® (bav) = (bau) @ v. If M is a right and N is a left R-module, using, instead of bilinear mappings, the
so-called balanced mappings, with the property that S(ua,v) = S(u,av), so that (ua) ® v = u ® (av), we
obtain the product M ® g N which is not an R-module but only an abelian group. But if M is a bimodule
and N is a left R-module (or if M is a right R-module and N is a bimodule), then M @ N gets a structure
of a left (respectively, right) R-module, by a(u ® v) = (au) @ v (respectively, (v ® v)a = u ® (va)).

4.11.2. We may also ignore the R-module structures and multiply R-modules over Z, M ®z N. Multiplying
this way two left R-modules we produce a group with two different R-module structures: a(u ® v) can be
defined as (au®w), or as u® (av). By multiplying over Z a left and a right R-modules, we get an R-bimodule,
with a(u ® v)b = (au) ® (vb).

5. Elements of homological algebra: flat, projective, and injective modules

In this section all modules are over a commutative ring R.

This may look strange, but it happens that, given a submodule N of a module M and some other
module K, N ® K is no longer a submodule, and is not even isomorphic to a submodule, of the module
M ® K. (For example, Z is a submodule of Q, but Q ®z Zs = 0 whereas Z Q7 Zs = Zs # 0.) In the language
of exact sequences, this means that the exactness of a sequence 0 — N —— M does not imply the exactness
of the sequence 0 — N ® K PEME ® K. However, the surjectivity of a homomorphism is preserved by

C . . d
tensor multiplication: if a sequence M —» N —» 0 is exact, then the sequence M ® K PEIK Ny QK —0
is also exact. There is a categorial language to express such behavior.

5.1. Co- and contravariant functors, left and right exact

5.1.1. A covariant functor ® from category A to category B assigns an object ®(A) in B to every object A
of A (we could say that ® is a mapping from A4 to B, but, unfortunately, categories are not necessarily sets!)
and a morphism ®(p): (A) — ®(B) to each morphism ¢: A — B in A, preserving the compositions of
morphisms: ®(1op) = ®(1)o®(¢), and sending identity morphisms to identity morphisms: ®(Ids) = Idga).
5.1.2. A contravariant functor ® from category A to category B assigns an object ®(A) in B to every object
A of A and a morphism ®(p): ®(B) — ®(A) to each morphism p: A — B in A, reversing the composition:
O (rhop) = P(p)o® (1)), and sending identity morphisms to identity morphisms: ®(Ids) = Idg(a).

5.1.3. Here are some example of functors:

(i) The forgetting (covariant) functor from the category of groups (or the category of topological spaces; or
any other category of sets with a structure) the is functor that assigns to a group G the set G.

(ii) The fundamental group 71(X) is a covariant functor from the category of path-connected topological
spaces with a marked point to the category of groups.

(iii) 7 is a covariant functor from the category of R modules (where R is a commutative unital ring) to the
category of graded unital R-algebras.

(iv) To give an example of a contravariant functor, fix a set Z, and to each set X assign the set ®(X) of
functions X — Z. For a mapping ¢: X — Y, ®(¢): (YY) — ®(X) is defined by ®(¢)(f) = fop.

5.1.4. A covariant functor ® from a category of modules to a category of modules (actually, from one abelian
category — a category where kernels and cokernels make sense, — to another abelian category) is said to be
® ®

" o(8) ™ o(0)
is also exact; and is said to be right exact if for every exact sequence A — B Y 0~ 0 the sequence

D(A) @) ?(B) 2 ®(C) — 0 is exact; and is said to be ezxact if it is both left and right exact, that is,

transforms short exact sequences to short exact sequences.

left exact if for every exact sequence 0 —» A — B s C the sequence 0 — ®(A)
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5.1.5. A contravariant functor ® from a category of modules to a category of modules is said to be left exact

if for every exact sequence A — B Y5 ¢ —5 0 the sequence 0 — ®(C) 2w ®(B) 2 ®(A) is exact, is

said to be right exact if for every exact sequence 0 — A -+ B 5 C the sequence ®(C') W) ®(B) 2@
®(A) — 0 is exact, and is said to be ezact if it is both left and right exact, that is, transforms short exact
sequences to short exact sequences.

5.1.6. It follows from 1.14.5 that if a functor is exact, then it converts all exact sequences into exact sequences.

5.2. The functor ® K and flat modules

5.2.1. Let K be an R-module; the covariant functor ® K from the category of R-modules to itself maps a
module M to the module M ® K and a homomorphism ¢: M — N to the homomorphism (¢ ® Idg): M ®
K — N®K.

5.2.2. Proposition. For any module K the functor @K is right ezact: for every exact sequence A —2»

B-Y%o-—o of modules the sequence A ®@ K v2ldx g QK veldr o ® K — 0 is exact as well.

It is easy to see that ¢ ® Idk is surjective and that (¢ ® Idg)o(p ® Idg) = 0. It is not however clear why
ker(¢ ® Idk) coincides with the image of ¢ ® Idk; we will prove this in 5.4.8.
5.2.3. The functor ® K may not be left exact: for instance, the sequence 0 — Z — Q is exact, but

0 —Z®7Zs — Q® Zs is not. If the functor ® K is exact, the module K is said to be flat: that is, K is

flat iff for every monomorphism N —25 M the homomorphism N ® K iy

5.2.4. There exists the following flatness criterion:

M ® K is also injective.

Proposition. An R-module K is flat iff for every ideal I of R the natural homomorphism I @ K — K,
a®u > au, is injective (and so, defines an isomorphism I @ K =2 IK ), and iff this is true for every finitely
generated ideal of R.

(I won’t prove this criterion.)

5.2.5. Here are some simple facts about flat modules:

(i) R is a flat R module.

(ii) Every free module is flat. (This follows from (i) and (iii).)

(iii) Any direct sum of flat modules is flat. Indeed, if K = @, Ko where each K, is flat and p: A — Bisa
monomorphism, then AQK = P\ (ARK,), BRK = @, (BRK,), and p®Idk acts “componentwisely”:
for w = Ziré/\ we € A® K with w, € A® K, for all o we have (¢ @ Idg)(w) = ZgréA(go(X) Idk,_ )(ws) with
(p®Idk, ) (wa) € B® K, for all a. Thus ¢ @ Idg(w) =0 iff (¢ ® Idk, )(we) = 0 for all a, iff w, = 0 for all
a, iff w =0.

(iv) Any direct summand of a flat module is flat; in particular, any direct summand of any free module
is flat. Indeed, assume that K = K; @ K> is flat, and let ¢: A — B be a monomorphism. Then A ®
K2 (A®K)d(A® Ky) and B K 2 (B® K1) ® (B ® K»), with ¢ ® Idgx acting componentwise:
pIdg = (¢ ®Idk,) ® (¢ ® Idk,). Since ¢ ® Idk is injective, ¢ @ Idg, and ¢ ® Idk, are also injective.
(v) If R is an integral domain and F is its field of fractions, then F'is a flat R-module. Indeed, let p: A — B
be a monomorphism, and let w € A® F be such that (¢ ® Idp)(w) = 0. w can be written in the form u® %
for some u € A and nonzero d € R. Then (¢ ® Idp)(w) = ¢(u) ® 5. Then dp(u) ® 5 = ¢(u) ® 1. By 4.3.13,
o(u) ® 1 =0 iff p(u) € Tor(B), that is, p(au) = ap(u) = 0 for some nonzero a € R. But ¢ is injective, so
auzO,sowzu@%zau@ézO.

5.2.6. If R is an integral domain, then flat R-modules are torsion-free. Indeed, assume that v # 0 is a
torsion element of an R-module K, let au = 0 for a # 0. Consider the monomorphism ¢: R — R defined
by ¢(b) =ab, b € R. Then (p @ ldg)(1®@u) =a®@u=1® (au) = 0, whereas 1 ® u # 0 since it corresponds
to u under the isomorphism R® K = K.

5.2.7. Moreover, if R is a PID, we have:

Proposition. If R is a PID, then an R-module is flat iff it is torsion-free.

Proof. (This isn’t a fair proof, it is based on the unproved Proposition 5.2.4.) Let K be a torsion free
module and let T = (a) be an ideal in R. Every tensor w = I ® K can be written as w = a ® u for some
u € M. The image of w in R is then au and is # 0 unlessa=0oru=0. g
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If R is ID but not a PID, a torsion-free module may not be flat: such is the ideal (z,y) in the ring
Flz,y].

5.3. The functor Hom(K,-) and projective modules

Given an R-module K, there are two more natural functors from the category of R-modules to itself:
the covariant functor Hom(X, -), and the contravariant functor Hom(-, K).
5.3.1. The functor Hom(K, -) maps a module M to the module Hom(K, M) and a homomorphism ¢: M —
N to the homomorphism Hom (K, M) — Hom(K, N) defined by n — @on:

M—*2>N

‘n\ fpon

K.

5.3.2. Proposition. For any module K the functor Hom(K,-) is left exact: whenever 0 — A LAy BN
is an exact sequence of modules, the sequence 0 — Hom(K, A) LA Hom(K, B) Yo Hom(K, C) is also exact.

Proof. Since ¢ is injective, for a € Hom(K, A), poa = 0 only if o = 0, so Hom(K, A) 2% Hom(K, B) is
injective.

0—s A—2-B-“.C
E\g/f

For oo € Hom(K, A), we have (1)o)(¢o-)(a) = (1)o)(gocx) = thoocr, which is = 0 since thop = 0.
Finally, let 8 € Hom(K, B) be such that o8 = 0. Then B(K) C ker(¢) = Im(y). Define a: K — A
by a(u) = ¢~ (8(u)) (which is well defined since ¢ is injective), then 3 = pocr. g

5.3.3. The functor Hom(P, -) may not be right exact; if it is exact, the module P is said to be projective. P
is projective iff whenever p: B — C' is an epimorphism, the corresponding homomorphism Hom(P, B) RN
Hom(P, C) is surjective too, that is, any homomorphism v: P — C “lifts” to a homomorphism 5: P — B
such that v = @of:
B—~C—0.
N

5.3.4. The criterion of projectivity is, actually, very simple:
Proposition. A module P is projective iff P is a direct summand of a free module.

Proof. Let P be a direct summand of a free module: let F' = P @ P’ be free. To prove that P is projective,
consider an epimorphism ¢: B — C' and let v: P — C' be a homomorphism. Extend 7 to a homomorphism
F' — C by putting 7|, = 0. Let B a basis in F; for each u € B choose an element v, € 0" (y(u)), and
define a homomorphism §: F — B by 5(u) = v,. Then pof =+, and in particular cpoﬁ|P =|p-

B—2~C —0.

N
PoP =F

Conversely, let P be a projective module. Find a free module F' with an epimorphism 7: F — P. Since
P is projective, the identity mapping P — P lifts to a homomorphism §: P — F', so that mo3 = Idp. This
means that § is a section of , that is, the exact sequence 0 — ker(n) — F -+ P — 0 splits. Hence, P

is a direct summand of F'.
F—/—P—0.

5 TIdp

5.3.5. Examples. (i) Every free module is projective.
(ii) Zg is a projective non-free Zg-module.
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(iil) Here is how one can get an example of a projective non-free module over an integral domain. Let R be an
ID and let I, J be proper comaximal ideals of R such that I.J is principal, but I is not (and so, I.J = R as a
module and [ is not a free R-module). Define ¢: I®J — R by p(u,v) = u+v; we have ker(p) =INJ =1J.
Since R is free, ¢ splits, thus I & J = R® IJ = R2. So, I and J are projective. (As a concrete example of
the scheme just described, we can take R = Z[v/=5], I = (3,14 +/=5) and J = (3,1 —/=5).)

5.4. The functor Hom(-, K) and injective modules

5.4.1. The functor Hom(-, K') maps a module M to the module Hom(M, K) and a homomorphism ¢: M —
N to the homomorphism Hom(N, K) — Hom(M, K) defined by 7 — no¢p:

now s B
=
M ——N.
5.4.2. Proposition. For any module K the functor Hom(-, K) is left exact: whenever A LNy BN N
is an exact sequence of modules, the sequence 0 — Hom(C, K) % Hom(B, K) =% Hom(A, K) is also
exact.

Proof. If v € Hom(C, K) is such that yot) = 0, then v = 0 since 1 is surjective.

K
o 8 Y
AN
A—B—C — 0.
For v € Hom(C, K) we have (-op)(yot)) = yothop = 0 since 1o = 0.
Finally, let 8 € Hom(B, K) be such that So¢ = 0. Then ker(8) D p(A) = ker(v), so [ factorizes to a
homomorphism v: C — K so that 5 = vo1). g
5.4.3. A sort of converse of Proposition 5.4.2 (which we will need) is also true:

Proposition. If a sequence A —>» B Yy ¢ — 0 is such that the sequence 0 — Hom(C, K) %

Hom(B, K) % Hom(A, K) is exact for all modules K, then A+ B s ¢ —5 0 is ezact.

Proof. The proof is by contraposition. If ¢ is not surjective, for the (nonzero) projection homomorphism
~v:C — C/y(B) we have yotp = 0, so Hom(C, K) 4 Hom(B, K) is not injective.

If wo(p 7é O, then ((-o(p)o(-ol/}))(ldc) = wotp 7& 0, SO (-o(p)o(-ow) 7& 0.

Finally, assume that ¢(A) % ker(y). Let 8 be the factorization homomorphism B — K = B/p(A).
Then (-0p)(8) = Bow = 0, however since ker()) € p(A), 8 # votp for any v € Hom(C, K). g

5.4.4. The functor Hom(-, K') may not be right exact; if it is exact, the module @ is said to be injective. Q
is injective iff whenever ¢: A — B is a monomorphism, the corresponding homomorphism Hom (B, Q) =5
Hom(A, @) is surjective, that is, any homomorphism a: A — @ can be extended to a homomorphism
B: B — @, so that a = Poy:
Q
L
0 —A—B.
In other words, @ is injective if for any module B and its submodule A any homomorphism A — @ is
extendible to a homomorphism B — Q.
5.4.5. A module M is said to be divisible if aM = M for every a € R that is not a zero divisor in R.
Every injective module is divisible. Indeed, let a € R be not a zero divisor; then the multiplication by
a, ©(b) = ab, is a monomorphism ¢: R — R. If @ is an injective module and u € @, the homomorphism
a: R — M defined by «(1) = u extends to a homomorphism 8: R — M such that Sop = a. Let v = 8(1);
then u = a(1) = B(p(1)) = B(a) = av.
5.4.6. The converse is true when R is a PID:

Proposition. If R is a PID then an R-module Q is injective iff it is divisible.

I won’t prove this criterion; the proof requires Zorn’s lemma.
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5.4.7. We can however prove the following fact:
Proposition. If R is an integral domain and F' is a field that contains R, then F' is an injective R-module.

Proof. Let A be a submodule of a module B and let « € Hompg(A, F). First, assume that B/A is a
torsion module. Then « can be extended to a homomorphism 5: B — F' in the following way: for u €
B, if a # 0 is such that au € A, put B(u) = éa(au). B is well defined since if also bu € A, then
fa(bu) = La(abu) = La(au). And B is a homomorphism since for any u,v € M with au = bv € A4,
a,b # 0, we have B(u+v) = La(abu + abv) = La(abu) + La(abv) = B(u) + B(v) and for any ¢ € R,
B(cu) = La(acu) = Sa(au) = cB(u).

Now consider the general situation: A C B and a: A — F. Let B/A = C, let C’ be a maximal free
submodule of C, let B’ be the preimage of C’ in B. We have the exact sequence 0 — A — B’ — C' — 0;
since C’ is free, this sequence splits, and B’ = A @ C” for some submodule C” isomorphic to C’. We may
now extend a to a homomorphism g": B" — F by putting 8’|, = 0. Finally, B/B’ =2 C/C" is a torsion

module, so we may extend §' to 5:B — F. g

5.4.8. We can now prove that for any module K, the functor ® K (or equivalently K®) is right exact:

Proof. Let A %5 B Y5 ¢ — 0 be an exact sequence. By Proposition 5.4.2; for any module N the
sequence

0 — Hom(C, N) -4 Hom(B, N) =% Hom(A, N)

is exact. Now, by Proposition 5.3.2, the sequence
0 — Hom(K, Hom(C, N)) 225 Hom (K, Hom(B, N)) 25 Hom (K, Hom(A, N))

is also exact. But Hom (K, Hom(M, N)) is functorially isomorphic to Hom(M ® K, N) (see 5.4.9 below), so
that the sequence

0 — Hom(K ® C,N) ol £v) Hom(K ® B, N) ol £9) Hom(K ® A, N)

is exact. Since this is true for any module N, by Proposition 5.4.3, the sequence

KoA " KeB "8 KoC —0

is exact. g

5.4.9. Let us show that Hom(K, Hom(M, N)) is, indeed, functorially isomorphic to Hom(M ® K, N) with
respect to M, meaning that for any homomorphism ¢: M — M’ the induced diagram

Hom(K @ M’,N) — Hom(K,Hom(M’', N))

\: 1
Hom(K @ M,N) — Hom(K,Hom(M,N))

is commutative. (It is functorial with respect to K and N as well, but let’s confine ourselves to M.) Let
n € Hom(K ® M’, N). The image of n in Hom(K ® M, N) is no(Idx ®¢), and then in Hom(K, Hom(M, N))
is 7 defined by 7(u)(v) = no(Idx ®¢)(u ® v) = n(u @ p(v)) for all w € K and v € M.

On the other hand, the image of  in Hom(K, Hom(M’, N)) is 7/ defined by 7/(u)(v") = n(u®v’) for all
u € K and v' € M'. ¢ induces a homomorphism Hom(M’, N) — Hom(M, N) by 7 — Top, thus the image
of n in Hom(K,Hom(M, N)) is 7/ defined by 7" (u)(v) = (7' (w)op)(v) = 7' (u)(p(v)) = n(u @ ¢(v)) for all
u € K and v € M. Hence, 7" = 7.
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5.5. Dual modules and homomorphisms; contra- and covariant tensors
5.5.1. For an R-module M, the module Hompg (M, R) is called the dual module of M and is denoted by M*.
Its elements, homomorphisms M — R, are called covectors, linear forms, or linear functionals on M.

If R is noncommutative, for a left module M its dual M* = Hompg (M, R) is also defined, but is a right
R-module by (fa)(u) = f(u)a,a € R, f € M*, u e M.
5.5.2. We have
(i) R* @ R;
ii) for any R-modules M, ..., M,, (@?:1 Ml)* = @?:1 M} in particular, for any R-module M and n € N,

"= ()

iii) for any family {M,}aca of R-modules, (P, Ma)* = [aea M
iv) for any n € N, (Z,)* = 0 as a Z-module (and = Z,, as a Z,-module);
(v) Q* =0 as a Z-module (and = Q as a Q-module).
5.5.3. Given a vector u € M and a covector f € M*, they produce the scalar f(u) € R. This operation can
be considered as a pairing of M* and M: M* x M — R, (f,u) — f(u), and this pairing is linear with
respect to M*: (f1 + fo,u) = (f1,u) + (f2,u) and (af,u) = a(f,u). Thus, elements of M can also be viewed
as linear forms on M*: for u € M we have a homomorphism &: M* — R by defining 4(f) = f(u); the
mapping u — @ is a natural homomorphism M — (M*)* = M**, called the double duality homomorphism.
The double duality homomorphism is, generally speaking, neither injective nor surjective.
5.5.4. For a set S C M, the annihilator of S in M* is the submodule Ann(S) = S+ = {f € M* :
f(u) =0 for all w € S} of M*. If N is the module generated by S, then Ann(N) = Ann(S). For any two
submodules Ny and Ny of M, Ann(N;+Nz) = Ann(N7)NAnn(Nz) and Ann(N;NN2) O Ann(Ny)+Ann(Ny).
5.5.5. The pairing M* x M — R is bilinear, thus defines a homomorphism M* ® M — R called the
contraction of tensors: the contraction of a tensor w = Zle a; f; Qu; € M*® M is the scalar Ele a; fi(u;) €
R.
5.5.6. For two modules M and N we have a natural homomorphism N ® M* — Hom(M, N), defined in
the following way: a tensor w = Zle v; @ fi € N® M* sends u € M to Ele fi(u)v; € N. (This mapping
is, actually, nothing else but the contraction of u € M with the M*-components of w.)
5.5.7. From 4.3.14, for any modules M and N we have a natural isomorphism (M ® N)* = Hom(M, N*).
5.5.8. Any homomorphism ¢: M — N of R-modules induces the dual homomorphism @*: N* — M* by
putting ¢*(f) = fop, f € N™:

(
(
(
(

w*(f)/R\f
M—~N.

In the language of “pairing”, this reads as (¢*(f),u) = (f,¢(u)) for all w € M and f € N*.
5.5.9. The dual of the composition of two homomorphisms, (o¢)*, is equal to the composition of the duals,
p*otp*. (The operation -* of taking the dual is a contravariant functor from the category of R-modules to
itself.)
5.5.10. If p: M — N is an epimorphism of R-modules, the dual homomorphism ¢* is injective. (The
duality functor -* is left exact.)

If N is a submodule of a module M, the dual of the embedding ¢: N — M is the homomorphism
" M* — N*, ©*(f) = f|y- We have ker(¢*) = Ann(N). ¢* does not have to be surjective; it is surjective
if R is an injective R-module.
5.5.11. Tensor products M®* @ (M*)®!, of k copies of a module M and I copies of its dual M* with k,l > 0,
often appear in applications. Elements of such a tensor product are called k-times contravariant l-times
covariant tensors, or just (k,l)-tensors over M.

6. Linear algebra: homomorphisms of free modules of finite rank

In this section, R will be assumed to be a commutative unital ring. We will develop a sort of “linear
algebra” for free modules of finite rank; it generalizes the conventional linear algebra of finite dimensional
vector spaces. (Notice that any vector space is a free module over the corresponding field.)
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I will call elements of R-modules vectors (and elements of R scalars).

6.1. Homomorphisms of free modules of finite rank and matrices

6.1.1. The standard free module of rank n is R", its elements are n-tuples (a1, ..., a,) of scalars. It is often
ay
convenient to write a vector u = (ay,...,a,) € R™ as a column, u = ( : )
an
1 0 0 ay
0 1 0 ) as
6.1.2. The vectors ey = <Q>, ey = <Q>, e €1 = (Q) form the standard basis of R". For u = (“f) € R"
0 0 1 an
we have u = Z?:l a;e;, that is, aq,...,a, are the coordinates of u in the standard basis.
6.1.3. We have Hom(R, R) = R, under the isomorphism that maps Idg to 1. For any n, m € N we therefore
have

Hom(R", R™) = Hom(R", R)"™ = Hom(R, R)"™ = R™",

that is, is a free module. The standard basis in this module consists of homomorphisms Idg € Hom(R, R)
corresponding to distinct components of this sum; these are the homomorphisms ¢; ;: R* — R™, i =

o
1,...,m, j=1,...,n, defined by ¢; ;(ex) = {6i k= where {ej,...,e,} is the standard basis in R"

0 otherwise,
and {e],..., el } is the standard basis in R™. Every homomorphism ¢: R — R™ is uniquely representable

as a linear combination of these homomorphisms, ¢ = > i—1,....m @ ;9ij, @i ; € R.
Jj=1...,n
ai,1 ... A1 n

6.1.4. The m x n table A, = ( : : of coordinates of ¢ in the basis {¢; ;, i=1,....,m, j=1...,n}

Am,1 e Qmn

is called the matriz of ¢; for each j, the j-th column of A, is the vector ¢(e;) € R™. Given u € R", we
write A, u for ¢(u) and call this the product of the matrix A, and the vector w.

Conversely, any m x n matrix A defines a homomorphism ¢: R* — R™ by putting ¢(e;) to be the j-th
column of A, j = 1,...,n. The one-to-one correspondence ¢ — A, between the module Homg(R", R™) and
the module Mat,, ,(R) of m x n matrices over R is a module isomorphism.

6.1.5. The result of the application of a homomorphism ¢ =Y i—1,...m @i j@i ; t0 a vector u = E?Zl bje; €
j=1,....n
R™ is the vector

pw) = D aigen (Croibrer) = Y ai; (Cio bewig(ern)) = D aibrpi(er)

1<i<m 1<i<m 1<i<m
1<j<n 1<j<n 1<j,k<n
m
= E aijbje; = E (Zj:l alﬂb])ei,
1<i<m i=1
1<j<n

that is, the product of the matrix A, and the vector u is
ai,1 ... Ain by Z;lzl a1,5b;
Agu= ( : : )() = :
am,1 - Am,n bn Z::1 am,jb]‘

ai1 ... Q1n
6.1.6. Let ©: R* — R™ and 9: R™ — RF be two homomorphisms and let A, = < : : ) and

Am,1 -+ Am n

bi,1 .o bim
Ay = ( : : ) be the corresponding matrices. Then the matrix of the composition tpop: R* — RF is

bk71 bk,m
the k x n matrix ’ ’
ST by iain . STbyiain
Ad)‘:’@ = : : s
S ibkiain o B b iain

which is called the product of the matrices A, and A, and is denoted by A, A,.
6.1.7. In the case n = m = k, the matrix multiplication just introduced defines an R-algebra structure on
the module Mat,, ,,(R), which makes it isomorphic to the algebra Endg(R™).
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100...0
6.1.8. The matrix of the identity mapping Idg~: R* — R" is I,, = (0 1 0 0) , called the unit n x n-matrix.
000...1

If A and B are n x n-matrices such that AB = BA = I,,, then B is said to be the inverse of A, and is
denoted by A~!. A homomorphism ¢: R* — R" is invertible iff A, is an invertible matrix, in which case

A<p—1 . A;l

6.2. Change of basis and the transition matrix

6.2.1. A module M is free of rank n, that is, M = R™ iff M has a basis of cardinality M; every such (an
ordered) basis B = {u1,...,u,} defines an isomorphism MnR" which maps every vector u = > ., a;u; € M
to the n-tuple (a1, ...,a,) € R™ of its coordinates with respect to B.

6.2.2. Now let M be a free R-module of rank n and N be a free R-module of rank m, and let o: M — N
be a homomorphism. Let B be a basis in M, C be a basis in N, and : M — R™, 7: N — R™ be the
corresponding isomorphisms. Then we have the commutative diagram

M—2>N

| I

R’ﬂ Rm ,

which defines a homomorphism 7opon™!: R — R™. The matrix A of this homomorphism is called the
matriz of @ with respect to the bases B and C; for each j, the j-th column of A is the vector of coordinates
of p(u;), where u; is the j-th element of B, with respect to the basis C.

6.2.3. Now let M be a free R-module of rank n, let B = {uy,...,u,} and B’ = {u},...,u,} be two bases
of M, let n and i’ be the corresponding homomorphisms M — R"™. We then get the change of basis
isomorphism n’on~!: R — R™

’

M
v N

R™ = R™.
The matrix P of this isomorphism is called the transition matriz; multiplied by the “old” coordinates
(a1,...,ay,) (with respect to basis B) of a vector u € M it gives “the new” coordinates (aj,...,a,) of u

(with respect to B')

()=

6.2.4. A transition matrix is always invertible: its inverse P! is the transition matrix from the basis B’
to the basis B. (Often, P~! and P are switched, and it is P~! that is called the transition matrix from B
to B’.) On the other hand, any invertible matrix P € Mat,, ,,(R) is a transition matrix for some change of
basis; indeed, P defines an automorphism ¢ of R™; given an isomorphism 7: M — R™, define 7’ = pon;
then P is the transition matrix from the basis B corresponding to n to the basis B’ corresponding to 7'.
(The columns of P are the coordinates of the elements of B with respect to B’.)
6.2.5. Now let M be a free R-module of rank n and N be a free R-module of rank m, and let o: M — N
be a homomorphism. Let B’ and C’ be two other bases in M and N respectively, and let P and @ be the
transition matrices from B to B’ and from C to C’ respectively. Let A be the matrix of ¢ with respect to
the bases B and C and A’ be the matrix of ¢ with respect to the bases B’ and C’. Then A’ = QAP 1.
6.2.6. In particular, if N =M, C = B, and C' = B’, then Q = P and A’ = PAP~".
6.2.7. Two n x n matrices A and A’ are said to be similar (or conjugate) if A’ = PAP~! for some invertible
P € Mat,, ,,(R). We see that two matrices are similar iff they represent, in (potentially) distinct bases, the
same endomorphism of a free R-module of rank n.
6.2.8. Let ¢: V — W be a homomorphism of vector spaces. Choose a basis B = {uy,...,u,} in V such
that {ur41,...,un} is a basis of ker(¢). The vectors {p(u1),...,¢(ur)} are linearly independent in W;
choose a basis C = {vy,...,v,} in W such that v; = ¢(u;), i = 1,..., k. Then matrix of ¢ with respect to
the bases B and C is the m x n matrix (IO’“ 8), where Iy, is the k X k unit matrix and O denotes zero matrices
of different sizes.

As a corollary, we obtain that for any matrix A € Mat,, ,(F) over a field F there exist invertible
matrices P € Mat,, ,(F) and Q € Mat,, ,,,(F'), such that QAP has the form (IO" 8).
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6.3. The dual module of a free module of finite rank
6.3.1. The dual module (R™)* of R", n € N, is also isomorphic to R". The standard basis in (R™)* is

{f1,---, fn}, where for each 7 the lincar form f;: R™ — R is defined by fi(e;) = {(1) i; ; i The row of
coordinates of f € M* with respect to this basis is (f(e1),..., f(en)). For every i, fi is the “reading the ith

coordinate” linear form: for u = (ay,...,ay), fi(u) = a;.
ay
It is customary to write the coordinates of vectors (elements of R™) as columns, ( : ) , and the coordinates

of covectors (elements of (R™)*) in the dual basis as rows, (b1 ...b,). (And indeed, for a covector f having
coordinates by, ..., by, (b1..bn) is the matrix of f as an element of Hom(R™, R).) Then the result f(u) of
a

ai 1
pairing of a covector f = (b1 ...b.) and a vector u = < : ) is the matrix product (b1 ... bn)< ) =30 aibi.
Qp, QAn

6.3.2. The dual module of the free module Fr(S) generated by a set S is the direct product [[, g R; if S
is infinite, this module has larger rank than Fr(S), and does not have to be a free module.

6.3.3. Now let M be a free R-module of rank n and let B = {uy,...,u,} be a basis in M. Then the dual
module M* is also free of rank n, and has a basis B* = {f,..., f,} that corresponds to B: for each i,

filu;) = {(1) gj ; z B* is called the dual basis for B. For every i, f; is the “reading the ith coordinate”
linear form: if u € M has coordinates (aq,...,a,), then f;(u) = a;.

Forue M, u=>"au;, and f € M*, f=>""b;fi, we have f(u) =>"  a;b; = (b1 .. bn)(ail>.

6.3.4. For a free module M of finite rank, the double duality homomorphism M — M** is an isomorphism,
and for any basis B in M, its dual-of-the-dual basis B** coincides with B under this isomorphism.
6.3.5. If M is a free module of finite rank, then, identifying M** with M, for any subset S C M* we have
its annihilator submodule Ann(S) = S+ C M.

For any submodule N of M we have Ann(Ann(N)) D N.

6.3.6. If V is a vector space over a field F' and W is a subspace of V, then the natural homomorphism
V* — W* is an epimorphism (since F, as an F-module, is injective). Hence, W* =2 V*/ Ann(WW).

For finite dimensional vector spaces this implies that dim Ann(W) = dimV — dim W.
6.3.7. If V is a finite dimensional vector space and W is a subspace of V, then Ann(Ann(W)) = W. In
this case, for any two subspaces Wy and Wa of V' we have Ann(W; + Wa) = Ann(W;) N Ann(Ws) and
Ann(W; N Ws) = Ann(W1) + Ann(Ws).

ai,1 ... G1,n

a1 ... Gm,1
6.3.8. For an m X n matrix A = ( : : >, the transpose of A is the n x m matrix AT = ( : : >

Am,1 - Gm,n A1,n o G
6.3.9. Let M and N be free modules of finite rank, let B be a basis in M, C' be a basis in N, and let B* and
C* be the dual bases in M* and N* for B and C respectively. Let ¢: M — N be a homomorphism and let
A, be the matrix of ¢ with respect to the bases B and C'. Then the matrix A« of the dual homomorphism
@*: N* — M* with respect to C* and B* is the transpose Ag of A,. Indeed, for every i and j, the (4, j)-th
entry of Ay is (fi,¢(uj)) = (¢*(fi),u;), which is the (j,)-th entry of the matrix Ag-.
It follows that for any k x m matrix A and m x n matrix D, (AD)T = DT AT.

6.3.10. If B and B’ are two bases in a free module M of finite rank and P is the transition matrix from B
to B’, then the transition matrix from the dual basis B* to the dual basis (B’)* in M* is (PT)~1L.

6.4. The rank of modules, submodules, dual modules and homomorphisms

In this section let R be an integral domain and F' be the field of fractions of R.
6.4.1. Let V be a finite dimensional vector space; then dim V* = dim V and V** 2 V naturally. If W is a
subspace of V, then dimV = dim W + dim(V/W); dim W = dim V iff W = V; the natural homomorphism
V* — W™ is surjective.

If ¢: V — W is a linear mapping (a homomorphism), the rank of ¢, rank ¢, is defined as dim ¢(V'), and
is equal to dim V — dim(Ker ¢). Such a homomorphism ¢ is the composition of an epimorphism V' — ¢(V)
and the monomorphism ¢(V) — W; so the dual mapping ¢*: W* — V* is the composition of the
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epimorphism W* — ¢(V)* and a monomorphism ¢(V)* — V*:

V—w vy
N/ N/
(V) p(V)*

Thus, rank ¢* = dim ¢*(W*) = dim(p(V)*) = dim (V) = rank ¢.

If A is a matrix of ¢, then the column rank of A (the dimension of the space spanned by the columns
of A) equals the rank of ¢; since the matrix of ¢* (with respect to the dual bases) is the transpose AT of 4,
we obtain that the row rank of A (the dimension of the space spanned by the rows of A) equals its column
rank.

6.4.2. Now, let M be an R-module and V = F ®r M, an F-vector space. By 4.3.13, the kernel of the
natural homomorphism from M to V' is the torsion submodule Tor(M) of M; thus, M/ Tor(M) is contained
in V' (more exactly, is naturally isomorphic to an R-submodule of V).

6.4.3. Let M be an R-module and V = F ®r M. Let N be a maximal free submodule of M, so that
M/N is a torsion module. Since F is a flat R-module, the exact sequence 0 — N — M — M/N — 0
produces the exact sequence 0 — FQN — F @ M — F ® (M/N) — 0; we have F ® N = F™ where
n =rank N = rank M and F @ (M/N) =0, so F ® M = F™. (Here n may be infnite.) This proves that
rankp M = dimp V, and so, is well defined. This also shows that if B is a maximal linearly independent
subset of M, then 1® B={1®u, u € B} is a basis in V.

6.4.4. Let N be a submodule of a module M. Then we have the exact sequence 0 — N — M —
M/N — 0, and so, the exact sequence 0 — FQ N — F M — F® (M/N) — 0. Thus the
F-vector space W = F @ N is a subspace of V. =F @ M, F ® (M/N) = V/W, and rank M = dimV =
dim W + dim(V/W) = rank N + rank(M/N).

In particular, if N is a submodule of M with rank(N) = rank(M), then M/N is a torsion module.
6.4.5. If a module M is generated by a set S, then rank M < |S|; in particular, a finitely generated module
has finite rank. (The converse is not true, as the example R = Z, M = Q shows.)

6.4.6. The dual module M* of a module M is always torsion-free: for f € M*, if af = 0 for some nonzero
a, that is, af(u) = 0 for all u € M, then, since R has no zero divisors, f(u) = 0 for all w € M. So, M* is
contained in F ®pr M*.

Also, for any f € M* and any u € Tor(M) we have f(u) =0, so M* = (M/ Tor(M))*.

6.4.7. Let M be an R-module, V = F ®r M, M* = Homgr(M,R) and V* = Hompg(V,F). There is
a natural R-module monomorphism M* —s V* f — f where f(a ®@u) = af(u), « € F, u € M; it
extends to an F-vector space monomorphism 7: FF ®p M* — V*. If M has finite rank, this implies that
rankg M* = dimp(F @ M*) < dimp V* = dimp V = ranky M.

If M is finitely generated, the image of M* spans V*, and 7 is an isomorphism, F' ®@g M* = V*. (This
may not be so if M is not finitely generated: consider R = Z and M = FF =V = Q.) So, in this case,
rankg M* = dimp V* = dimp V = rankp M.

6.4.8. Every nonzero element of V' defines a nonzero element of V** thus, if M is finitely generated, by
6.4.7, every element of M \ Tor(M) defines a nonzero element of M**. Hence, the kernel of the double duality
homomorphism M — M** is Tor(M), and rank M** = rank M.

6.4.9. Let N be a submodule of M and let W = F ®g N. The natural homomorphism 7=: M* — N*
(the dual of the embedding N — M) induces the homomorphism Idr @m: F @ g M* — F ®g N*. Since
W C V, we also have an epimorphism 7: V* — W* of F-spaces, and get the commutative diagram

F®g M8t R ®r N*
) /nn
% T W™,

where np; and 7y are the monomorphisms described in 6.4.7.

In the case M is finitely generated, 1y is an isomorphism, so Ton, is surjective, so 7y is an isomorphism
too, and Idr @ is surjective; hence, coker(w) = N*/7(M*) is a torsion module. Since kerm = Ann(N), we
get that M*/ Ann(N) is isomorphic to a submodule N* of N* such that N*/N* is a torsion module.

It follows that if N is a submodule of a finitely generated module M, then rank N* = dimW* =
dim W = rank N, and rank Ann(N) = rank M* — rank N* = rank M — rank N.
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6.4.10. Given an R-module homomorphism ¢: M — N, rank ¢(M) is called the rank of ¢ and is denoted
by rank . It follows from 6.4.4 that if rank M < oo, then rank ¢ = rank M — rank ker(¢p).

6.4.11. Let ¢p: M — N be a homomorphism of R-modules. The dual homomorphism ¢*: N* — M* is
the composition of two homomorphisms: N* — o(M)* and o(M)* — M™*.

*

M—2—N M*<2— N*
N/ N/
(M) p(M)*

Since M — (M) is surjective, o(M)* — M* is injective. (M) is a submodule of N; if N is finitely
generated, rank(p*(N*)) = rank(¢o(M)*) by 6.4.9, so rank ¢* = rank ¢(M)*; in the case M or N is finitely
generated, this equals rank (M) = rank ¢. We obtain:

Theorem. If o: M — N is a homomorphism of R-modules and N 1is finitely generated, then rank ¢* =
rank ¢.

6.4.12. For a matrix A € Mat,, ,(R) over an integral domain R, the column space of A is the submodule of
R™ generated by the columns of A; this is the image of the homomorphism, defined by A. The column rank
of A is the rank of the column space of A; it is equal to the rank of the homomorphism defined by A.

The row space of A is the submodule R™ generated by the rows of A, or, equivalently, it is the column
space of the transpose A7 of A; the row rank of A is the rank of its row space; it is equal to the rank of the
dual of the homomorphism defined by A.

If o: M — N is a homomorphism of free modules of finite rank and A, is the matrix of ¢ with respect
to some bases in M and N, then, in the corresponding coordinates, ¢(M) is the column subspace of A,
and so, rank ¢ equals the column rank of A,.

6.4.13. By 6.3.9, the row space of a matrix A is the image of the dual ¢* of the homomorphism ¢ defined
by A. By 6.4.11, we get:

Theorem. For any matriz over an integral domain, its row rank equals its column rank.

6.5. The tensor product of free modules of finite rank

6.5.1. Let m,n € N. The tensor product R™ ® R™ of free modules R™ and R" is isomorphic to (R® R)™" =
R™", The standard basis in R™ ® R" is {ei ®e, i=1...,m, j= 1,...,n}, where {ejy,...,en} is the
standard basis of R™ and {e],..., el } is the standard basis of R™. Every tensors from R™ ® R"™ has form

ai1 ai,n
= . .o / .. 1t< 3 < . . .
W=D a6 ®e;, a;; € R, and its coordinates form the m x n matrix (a S )
m, m,n

6.5.2. Now let M and N be free R-modules of ranks m and n respectively, let B = {uq,...,u,} be a
basis in M and C = {v1,...,v,} be a basis in N. Then the module M ® N is free of rank mn, with
the basis B® C = {uz ®vj, it =1...,m, j = 1,...,n}, so that every tensor in M ® N has the form

a1 ay,n
W=D iU ® V), a;j € R, and its coordinates form the m x n matrix < : : )

Am,1 e Qmn

6.5.3. Similarly, if My,..., M} are free R-modules of ranks my, ..., my respectively, then M; ® --- ® M,
is a free module of rank m;j ---myg, and any choice Bi,..., B of bases in My, ..., M} induces the basis
B1®: - ® By in M1 ® --- ® My; with respect to this basis, the coordinates of a tensor w € M; ® - -+ ® My,
form a k-dimensional mq X --- X my matrix (@i, ).

6.5.4. In particular, given a free module M of rank n with a basis fixed, the (k,[)-tensors, that is, ele-
ments of the tensor product M®* @ (M*)®!, are representable by (k + [)-dimensional n x - -+ X n matrices
(a;;:::?:)Z,...,ik,jl,...jz:l (it’s traditional to use superscripts for the contravariant indices and subscripts for
covariant indices), and tensors are often identified with the matrices of their coordinates. (This is just this
sort of tensors that appears in differential geometry: the Riemann metric (g;;), the Riemann curvature

(R§,k,1)7 or the Christoffel symbols (F;k))
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6.5.5. In old fasioned books tensors are defined as multidimensional tables (a;, ... ;) that “change in certain
way when coordinates are changed”. How do they change? If P = (b; ;) is the transition matrix from old to
new coordinates in the r-th component M, of M; ® --- ® My, then a tensor w = (aj,,... 4, ) of this product
transforms to (agl,...,ik) = (er bir,jail-,--qir—lyjf’:r#»l7~~-7ik) (the result of contraction of the corresponding
components of P @ w = (b; jai,,.. i) € Mr @ M} @ M1 @ --- @ My).

In the case tensor w is from the product M®* @ (M*)®!, where change of coordinates happens simultane-
ously in all factors, one has to apply P to contravariant (vector) components of w and (PT)~! to its covariant
(covector) components. For example, for w € End(M) = M ® M* represented by a matrix A = (a;, ;,), if
P = (b; ;) and (PT)™! = (¢; ;), the transformation of A is given by (3. . bi, j,Cis j2j,,5,) (which is just
the matrix product PA((PT)~1)T = PAP!).

6.5.6. For a free module M of rank n with a basis {uj,...,u,} and dual basis {f1,..., fn} in M*, the
elements of the tensor product M* ® M, which have form w = szzl a; ;i ® uj, are represented by n x n-

.....

J1,d2

matrices (a;;);';—; (or rather (af)?,j:l)-
The result of contraction (see 5.5.5 above) of a tensor 3", a; ; fi®@u; € M*@M is 377, a;; fi(u;) =
>or a;, that is, is the trace of the corresponding matrix.

~

6.5.7. For any free modules M; and M of finite rank, we have the natural isomorphism (M; ® My)* =
M} ® M3 indeed, the natural homomorphism Hom (M7, R) ® Hom(Ms, R) — Hom(M; ® M, R® R) is an
isomorphism.

6.6. Homomorphisms and multilinear forms as tensors

6.6.1. Let M and N be free R-modules of ranks n and m respectively, then the natural homomorphism
N ® M* — Hom(M, N) (see 5.5.6 above) is an isomorphism; moreover, if bases B = {uy,...,u,} in M
and C = {v1,...,v} in N are chosen and B* = {f1,..., fn} is the dual of B basis in M*, then under
this isomorphism, for any 7 and j, the basis tensor v; ® f; corresponds to the basis homomorphism ¢; ; and
the matrix of coordinates of a tensor w € N ® M* with respect to the basis C' ® B* is just the matrix of
the corresponding homomorphism with respect to the bases B and C. So, in this case, homomorphisms
M — N can interpreted as tensors from N ® M*.

6.6.2. Let po: M — N and ¢: N — K be homomorphisms of free modules of finite rank, considered as
tensors from N ® M* and K ® N* respectively. Then the composition top: M — K is the contraction of
the N* ® N-components of the tensor y ® p € K @ N* ® N ® M* (which produces a tensor in K ® M*).

6.6.3. Let M and N be free modules of finite rank, let ¢p: M — N be a homomorphism, and let ¢*: N* —
M* be the dual homomorphism. Then, as tensors, ¢ € N@ M* and p* € M* @ N** =2 M* ® N are obtained
from each other simply by transposing the factors, v ® f — f ® v. (This explains why the matrix of ¢* is
the transpose of the matrix of .)

6.6.4. Let ¢ be an endomorphism of a free module M of finite rank. As noticed in 6.5.6, the trace of the
matrix of ¢, in any basis, is the contraction of the corresponding tensor from M ® M*. (This proves the fact
that similar matrices have the same trace.) We define the trace of ¢ as the result of this contraction (that
is, as the trace of the matrix of ¢ in any basis).

6.6.5. For any modules M7, Ms, and N, bilinear mappings M7 x My — N are in a one-to-one correspondence
with homomorphisms M; ® My — N. If all these modules are free of finite rank, then Hom (Ml ® M, N) =
N ® M{ ® Mj. and we have an isomorphism between this module and the module Bilg(M; x M3, N) of
bilinear mappings M; x My — N. (The result of the application of a tensor v ® f1 ® fo € N ® M} ® M3
to a pair (ui,u2) € My x My is the vector f1(u1)fa(ug)v € N.)
6.6.6. In particular, for any modules M; and Ms. the bilinear forms on My x Ms, that is, bilinear mappings
M; x My — R, are naturally identified with homomorphisms M; ® My — R, that is, elements of
(M7 ® Ms)*. Such a form (3 defines a pairing of M; and Ms: for vectors u € M; and v € Ms we get the
scalar B(u,v) € R, homomorphisms ¢: M1 — M3 and ¢: M7 — M3 by ¢(u)(v) = ¥(v)(u) = B(u,v),
u € My, v € Ms. The pairing is said to be perfect if these homomorphisms are isomorphisms. Thus, a
perfect pairing of M; and M, identifies My with MJ and My with M.

In the case M7 and Ms are free of finite rank, the bilinear forms M; x M can be seen as tensors from
My ® Ms.

34



6.6.7. A bilinear form on a moudle M is a bilinear mapping M x M — R; in the case M is free of finite
rank, it is an elements of M* ® M* = (M*)®2. A bilinear form 3 is symmetric, B(u1,us) = B(uz,u1) for
all uy,uy € M, iff the corresponding tensor is symmetric, and is alternating, B(u1,us) = —B(usz,uy) for all
uy,ug € M, iff the corresponding tensor is alternating.

If a bilinear form on M is such that the corresponding pairing M x M — R is perfect, it defines an
isomorphism M — M™*, that is, allows us to identify vectors (elements of M) and covectors (elements of

6.7. The tensor algebras of free modules of finite rank

Let M be a free R-module of rank n, with a basis B = {u1,...,u,}.
6.7.1. For any k € N, the tensor power T7*(M) = M®* is a free module of rank n*, with basis (induced by
B) {uj, ® -+ ®u;,, 1 <iy,...,i, <n}. The tensor algebra T (M) is therefore a free R-module (of infinite
rank).
6.7.2. The symmetric algebra S(M) of M is also a free R-module of infinite rank; for each k € N, a basis of
the symmetric k-power S¥(M) is {u;, ® -+ ®u;,, 1 <iy < -+ <ij < n}; the rank of S* is (k+z_1).
6.7.3. The exterior algebra A(M) of M is also a free R-module, but of finite rank. For each k € N, a basis
of the exterior k-power AF(M) is {us, A+ Awu;,, 1 <idy <--- <i, < n}; the rank of A* is therefore equal
to (Z) for k£ < n, and is equal to O for k& > n.
6.7.4. The senior wedge power A"(M) of M is a free R-module of rank 1, that is, is isomorphic to R. It is
generated by the single element u; A -+ A uy,.
6.7.5. For any modules M7, My and any k, a homomorphism ¢: M; — My induces a homomorphism
NFp: ARM, — A¥ M,y defined by /\kgo(ul ARREWA uk) = p(u1) A+ Ap(ug). For a composition top of two
homomorphisms, AF (o) = AFtpo AF .

If o is surjective, then A*¢ is surjective too. If ¢ is injective, A¥¢ may not be injective; but it is if R is
an integral domain and M7, M are free. (This fact is easy to check for vector spaces, and then M; and My
can be seen as submodules of FF ®r M; and F ® g M respectively, where F is the field of fractions of R.)

6.8. The determinant of endomorphisms of free modules of finite rank

Let R be a commutative unital ring and let M be a free R-module of rank n, with a basis B =
{ug, ..., un}.
6.8.1. From 6.7.5 we deduce:

Proposition. If R is an integral domain, then for any k, a set {v1,...,v;} is linearly independent in M
iff vi Ao Aoy # 0.

6.8.2. Let © be an endomorphism of M. Then A" is an endomorphism of A™(M) 2 R, so it is defined by a
multiplication by a scalar d € R: for any w € A™(M), A"¢(w) = dwj; in particular, if {uy,...,u,} is a basis
of M, then

Ato(ur A Aup) = @ur) A Ap(ug) = d(ug A Aug).

This scalar d is called the determinant of ¢ and is denoted by det .

If A= (aij)};— is the matrix of ¢, then detp = > 5 sign(c)ai (1) an,o(n). This sum is called
the determinant of A, det A; that is, the determinant of a matrix A is the determinant of the homomorphism
defined by this matrix.

6.8.3. From the definition of det we have:

(i) det ¢ only depends on ¢, not on the basis in M. It follows that similar matrices have the same determinant.
(ii) detIdp, = 1.

(iii) det(cp) = c™ det ¢ for any ¢ € R.

(iv) For any ¢, 1 € End(M), det(potp) = det -det 9; for two nxn matrices A and B, det(AB) = det Adet B.
(v) If R is an integral domain, det ¢ # 0 iff rank ¢ = n; for a square matrix A, det A # 0 iff the columns of
A are linearly independent.

(vi) An endomorphism ¢ of a free module of finite rank is invertible iff det ¢ is a unit in R; a square matrix
A is invertible iff det A is a unit in R.

(vii) det ¢* = det ; for a square matrix A, det AT = det A.
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6.8.4. Not all statements in 6.8.3 are evident. (v) follows from Proposition 6.8.1.

(vii) can be established in the following way: Let {ui,...,u,} be a basis in a (free) module M and
{f1,..., fn} be the dual basis in M*. There is a natural pairing of A" M and A"™(M*), which identifies
A™(M*) with (A™(M))* and satisfies f1 A+ A fn(ur A+ - Auy,) = 1. Thus for any ¢ € End(M) we can write

deto=(fi A Afu)(A"o(ur A Aup)) = (ur A Aup) (A" (FL A A f)).

It can be shown that the operation A™ commutes with the operation of “dualization”, (A"p)* = A™(¢*),
thus,

(ur A Aun) (") (fr A A fa)) = (wr A A ) (A" (fL A=+ A fa)) = det ™

So, for any endomorphism ¢ of a free module of finite rank, det o* = det .
6.8.5. The “if” part of 6.8.3(vi) is also not obvious. We have a natural pairing of the modules M and
A"~ (M), — a bilinear mapping M x A"~ Y(M) — A"(M) = R, defined by (u,w) + u A w. This pairing
defines an homomorphism M — Hom (A" (M), A"(M)), by u(w) = u A w, which is an isomorphism (the
pairing is perfect).

Let ¢ € End(M), and let v € End(M) be “the dual” of A"~y € End(A"~1(M)) in the above sense:
) Aw =uA (A" Lp(w)) for all u € M and w € A"~ (M). (¢ is the adjoint homomorphism of A"~ 1¢p
with respect to the pairing above.) Then for any u € M and w € A"~1(M) we have

P(p(w) Aw = p(u) A (A" W) = Ap(uAw) = (det p)uAw.

Since the pairing is perfect, this implies that ¥(¢(u)) = (det p)u for all w € M, that is, Yop = det ¢ - Id .
It follows that if d = det is a unit in R, then d~'¢ is the left inverse of ¢. Hence, in the monoid
of endomorphisms of M with invertible determinant, each element has a left inverse; this implies that this
monoid is, actually, a group, and d~11) = ¢~1. (We can also obtain a formula for the matrix of ¢! in terms
of the matrix of ¢.)
6.8.6. The following operations on a matrix are called elementary column operations:
(i) switching two columns;
(ii) multiplying a column by a scalar;
(iii) adding a multiple of one column to another column.
Each of these operations on a matrix A can be performed by multiplying A from the left by an invertible
matrix.
Elementary row operations are defined accordingly; they can be performed by multiplying A by a
invertible matrices from the right.
6.8.7. Let A be a square matrix over R. The column operations affect the determinant of A the following
way:
(i) If matrix A’ is obtained from A by switching two columns, then det A’ = — det A4;
(ii) if matrix A’ is obtained from A by multiplying a column by a scalar ¢, then det A’ = cdet A;
(iii) if matrix A’ is obtained from A by adding a multiple of one of its columns to another, then det A’ = det A.
Since det A = det AT, in (i)-(iii), “columns” can be replaced by “rows”.

7. The theory of finitely generated modules over PIDs and normal forms of matrices

A commutative unital ring is said to be a Principal Ideal Domain, or a PID, if R is an integral domain
such that every ideal in R is principal (generated by a single element). Every ED (an Euclidean domain) is
a PID. Examples of PIDs (and EDs) are Z and F[z] — the ring of polynomials over a field F.

7.1. Submodules of a free module of finite rank over a PID
7.1.1. The following theorem is the basic result of this section:

Theorem. Let R be a PID, let M be a free R-module of rank n, and N be a nonzero submodule of M.
Then N is also free, of rank k < n. Moreover, there is a basis {u1,...,un} of M and scalars a1, ...,ar € R
with aq | as | | ay such that {ayuy, ... ,axug} is a basis in N.
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We will also see below that, though the basis {u1,...,u,} is not defined uniquely, the scalars aq, ..., a
are defined uniquely (up to association — multiplication by units in R, of course).

Proof. We will use the double duality isomorphism and identify M™** with M.

Recall that, being a PID, R is a Noetherian ring, which implies that every family of ideals in R has a
maximal element, — an ideal not contained in any other ideal of that family.

We will use induction on n. For n = 1, we have M = R, and we may assume that M = R. Then N
is an ideal in R; since R is a PID, there is an element a; € R, such that N = (a;). Thus, the basis {1} of
M = R and the scalar a; satisfy the assertion of the theorem.

Now let n > 2. For every f € M*, f(N) is an ideal of R. Since R is Noetherian, there exists a linear
form h € M* such that the ideal 2(NN) is maximal in the family {f(N), f € M*} of ideals of R; let a; be
such that (a1) = h(N). There is f such that f(IN) # 0; so, a; # 0. Since a; € h(N), there exists v; € N
such that a; = h(vy).

I claim now that a; divides f(vq) for all f € M*. Indeed, put I = v1(M*) = {f(v1), f € M*}. I is an
ideal in R; let I = (b). Then ay = h(v1) € I, so b | a;. Let f € M* be such that f(vi) = b, then f(N) b,
so f(N) D (a1); but the ideal (a1) is maximal in the family of ideals of the form f(NV), so f(N) = (a1), so
a1 | b, so I = (ay).

Since ap divides vi(f) = f(v1) for all f € M*, v1, as an element of M**, is divisible by a;. But
M** = M, so vq is divisible by a; in M: there exists u; € M such that v; = aju1. We then have h(uq) = 1.

Let M' = ker(h). Then Ru;NM’ = 0, and any vector u € M can be written as u = h(u)ui+(u—h(u)uy),
where h(u)u; € Ruy and u — h(u)u; € M’, so M = Ru; & M'.

Let N' = M'NN. If u € N, then a; | h(u), so, in the decomposition u = h(u)us + (u — h(u)us),
h(u)u; € a;Ru; = Rv; C N and u — h(u)uy € N'; so, N = Rv; @ N, and rank(N’) = rank(N) —1 =k — 1.
We will now use induction on k to prove that N is free: If k = 1, then rank(N’) = 0; but since M has no
torsion, N’ =0, so N = Rv; and is free. If k > 2, by induction on k, N’ is a free submodule of M, so N is
also a free submodule of M.

We have proved that every submodule of M is free. So, M’ is free; it has rank n — 1, and N’ is
a submodule of M’ of rank k — 1. By induction on n, there is a basis {ug,...,u,} in M’ and scalars
as,...,ar € R such that as | ‘ an and {agus,...,arui} is a basis in N'. Then {uy,ua,...,u,} is a basis
in M = Ru; & M’, and {a1u1 = v1,asus,...,axuy} is a basis in N = Rv; & N'.

It remains to show that a; ’ ay. Define f € M* by f(xiu; + -+ + Tpun) = x1 +22. Then f(ajuy) = aq,
so (a1) C f(N), so (a1) = f(N). But ag = f(aguz) € f(N),s0 az € (a1). m

7.1.2. If N is a submodule of a free module M of finite rank over a PID, then N may not be a direct
summand of M. It however follows from Theorem 7.1.1 that there is a submodule N of M which is a direct
summand of M, contains N, and is such that N/N is a torsion module. (Namely, N is the submodule
generated by {u,...,ur}.)

If M/N is torsion-free, then N = N, N is a direct summand of M, and there is a basis {u,...,u,} in
M such that {uy,...,ux} is a basis of N.
7.1.3. Let R be a PID and let ¢: M — N be a homomorphism of free R-modules M and N of ranks n
and m respectively. Let K = ker(¢). The module M/K is isomorphic to a submodule of N, so has no
torsion; hence, K is a direct summand in M, M = M’ ® K. Let L = ¢(M), then P|ar 1 an isomorphism

between M’ and L. Find a basis {v1,...,v,} in N and scalars ay,...,a; € R with a; | ’ ay, such that
{ajv1,...,axv;} is a basis in L. For every i, let u; = (@‘M,)_l(aivi) € M’, then {uq,...,ur} is a basis in
M’. Choose a basis {ug41,...,un} in K, then {uy, ..., ug,...,u,} is a basis in M. Then the m x n matrix

of ¢ with respect to the bases {u1,...,u,} in M and {vq,...,v,,} in N has form

a1 0 .. 00..0

0as.. 00..0

00 .. an0..0 (7.1)
0 00..0

00 ..00..0

7.1.4. We obtain as a corollary that for any matrix A € Mat,, ,(R) there exist invertible matrices Q €
Mat,, m(R) and P € Mat,, ,,(R) such that the matrix A’ = QAP~! has form (7.1) with a; | | ag. This
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matrix A’ is called the Smith normal form of A. (We will see below that the Smith normal form of a matrix
is uniquely defined.)

7.1.5. In the case R is an ED (a Euclidean domain), there is an effective algorithm allowing to find the
Smith normal form of any m x n matrix A over R, which uses the division algorithm in EDs along with the
following elementary row/column operations: switching two columns, switching two rows, adding a multiple
of a column to another column, and adding a multiple of a row to another row. (Multiplying rows/columns
by units is also allowed.) Each of these operations can be performed by a multiplication of A by an invertible
n X n matrix from the right (column operations) or by an invertible m x m matrix from the left (row
operations), and corresponds to a certain elementary change of basis in R™ (column operations) or in R™
(row operations). Thus, the algorithm allows to find the bases in R™ and R™ with respect to which the
matrix takes the form (7.1).

Let N be the Euclidean norm on R; but for convenience, let’s assume that N(0) = co. We start with a
nonzero m X n matrix A; the entries of A and of the matrices obtained after each operations will be denoted
by am—.

(i) If there is (4, 7) with N(a; ;) < N(a1,1), find (4, j) for which N(a; ;) is minimal, and switch rows 1 and ¢

and columns 1 and j; else

(ii) If there is j such that a; 1 ){al,j, write a1 j = cai,1 +r with N(r) < N(ay,1), subtract ¢-(column 1) from

column j, and switch columns 1 and j; else

(iii) If there is ¢ such that aq 1 *ai,l, write a; 1 = caj 1 +r with N(r) < N(aq,1), subtract c-(row 1) from row

i, and switch rows 1 and 7; else

(iv) (We are here if all entries in column 1 and in row 1 are divisible by aq1.) If there is (4, ) such that

a1 )(am, write a1,; = baq,1 and subtract (b — 1)-(column 1) from column j, write a; ; = ca11 + r with

N(r) < N(ay), subtract ¢-(row 1) from row ¢, and switch rows 1 and ¢ and columns 1 and j; else

(v) (We are here if all entries of the matrix are divisible by a1 ;.) Subtract a multiple of column 1 from all

other columns to get all entries in the first row, except a1 1, equal to 0, and subtract a multiple of row 1

from all other rows to get all entries in the first column, except a4 1, equal to 0. (If needed, the first row can

now be multiplied by a unit, to make a;1 “look better”.) If m or n = 1, or if the submatrix (a; ;) 2<i<m 1S
2<j<n

zero, stop; otherwise pass to this submatrix. ==

(vi) Start over.

During this process, each step makes N (ay 1) (or the size of the matrix) smaller, so the process terminates
after finitely many steps.

7.1.6. If we want to reduce a matrix to the form (7.1) without requiring that a; ‘ e | ag, the algorithm in
7.1.5 can be essentially shortened by removing item (iv) from it.

7.1.7. Let N be a submodule of rank k of a free module M of rank m over a PID R. Find a finite set
of generators of N and construct an epimorphism ¢: R — N. Then the matrix of ¢, with respect to
some bases in R™ and M, is an m X n matrix whose columns generate N. Finding bases in R™ and M in
which the matrix of ¢ has form (7.1) is equivalent to finding bases in N and M satisfying the assertion of
Theorem 7.1.1.

7.2. The fundamental theorem of finitely generated modules over PIDs; invariant factors and
elementary divisors of a module

7.2.1. Theorem I — existence. Any finitely generated module M over a PID R is a direct sum of cyclic
submodules, M = R'®R/(a1)®- - - ®R/(am), where | = rank M and the nonzero nonunit scalars ay, . .., ay, €
R satisfy aq | } A -

We will see that the scalars aq, ..., a,, are defined uniquely up to association (multiplication by units);
they are called the invariant factors of M.

Proof. Assume that M is generated by n elements, then M = R"™/N for some submodule N of R"™. Using
Theorem 7.1.1, find a basis {ug,...,u,} in R™ and (nonzero) scalars ay,...,a; such that a; ’ ’ ag and
{ajuy,...,aguy} is a basis in N. Then M = R*/N =~ R/(a;) @ --- @ R/(az) ® R"*. If, for some i, a; is a
unit, then R/(a;) = 0 and can be removed from this sum, and we get M = R/(a;,) ® - ® R/(a;,,) ® R"~*
where all a;; are already non-units. g
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7.2.2. It follows that any finitely generated module over a PID is a direct sum of a free submodule and the
torsion submodule. It then follows that if such a module is torsion-free, then it is free.

7.2.3. Let R be a PID. Let a be a nonzero nonunit element of R, and let a = pi* - - - p;*, be the factorization
of a where p1,...,p; are distinct irreducible elements of R and ry,...,7, € N. The ideals I; = (p;'),
i = 1,...,k, are comaximal in R, and (I;---I;)M = 0, so by The Chinese remainder theorem 2.7.2,
R/(a) = R/(p\') ©--- & R/(p")-

Let now M be a finitely generated module over R. After constructing such an isomorphism for all a;
in the assertion of Theorem 7.2.1, we may write M = R' & ", @f’zl R/ (p:]’ ) for some (not necessarily
distinct) irreducible elements p; ; € R and integers r; ; € N. The scalars p:j] are called the elementary
divisors of M.

7.2.4. Lemma. Let R be a PID, p be a prime element of R, and M = R/(p") for some r € N. Then
p*M/psTIM = R/(p) for any 0 < s <r —1 and = 0 for any s > r. If q is another prime element of R (so
that q and p are not associates), then ¢*M/q*T*M = 0 for all s.

Proof. If s > r, we have p* M = 0, so p* M /p*+t1M = 0. If s < r, we have (p") C (p*), so p*M = (p*)/(p"),
and p*M/p*TtM = (p®)/(p**1). The isomorphism R — (p*), a — p°a, maps (p) onto (p**!), thus
®*)/ (") = R/(p).

For any ¢ coprime with p and any s, ¢*M = ((¢°) + (p"))/(p") = R/(p") = M, so ¢*M/¢*' M =
M/M=0. g

7.2.5. Based on Lemma 7.2.4, we obtain the uniqueness of the decomposition M @le(R/p?) of a torsion
module M:

Theorem II — uniqueness 1. The elementary divisors of a finitely generated module over a PID are
defined uniquely (up to permutation and association).

Proof. Let M be a finitely generated module over a PID R, let M’ = Tor(M), let M’ = R/(p|*) ®--- @
R/(p,r) where pi,...,pi are (not necessarily distinct) irreducible elements of R and 71,...,7; € N. Then
by Lemma 7.2.4, for every irreducible p € R and any s € N, the number of ¢ for which p;* = p® (up to
association) is dimp ) (p* "M’ /p*M') — dimp,) (p*M' /p*t*M'). g

7.2.6. By 7.2.3, knowing the invariant factors of a finitely generated module M over a PID, we easily find
the elementary divisors of M by decomposing the invariant factors to products of powers of irreducibles.
Conversely, having elementary divisors of M, we easily reconstruct the invariant factors of M: if we list the
elementary divisors this way:

T1,m 71,1 72, m 72,1 Tk,m Tk, 1

p] 7"'7p1 9 p2 7"'7p2 ) "'7pk 7"'7pk I

where p; are distinct irreducibles in R, and 7 ; are (possibly, zero) integers satisfying r; m, > 7 m—1 > - >
r;,1 > 0 for every ¢ and 7., > 0 for all 4, then we have no other choice but to put a,, = pytm ~p2’°””, e

T Tk,1
ai 7p1 pk .

7.2.7. We obtain:

Theorem II — uniqueness 2. The invariant factors of a finitely generated module over a PID are defined
uniquely (up to association).

7.2.8. It follows that for a submodule N of a fintely generated free module M over a PID, the scalars
ai,...,ar in Theorem 7.1.1 are uniquely defined (up to association): if ¢,..., ¢y, are the invariant factors
of the module M/N, then (a1,...,ar) =(1,...,1,¢1,...,¢m).

7.2.9. How to find the invariant factors of a module? Let M be a finitely generated module over a PID
R defined via generators and relations: M is defined as a set of formal R-linear combinations of elements
v1,..., U, satisfying a finite family of linear relations,

n n
E ;10 = 0 = E i mU; = 0.
i=1 =1
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This is equivalent to defining M as the quotient of the free module R™ by the submodule N, generated by
a1 ai,m a1 a1 m
the vectors o, < : > The matrix A = : : ) is called the relations matriz of M. Now,

QAn,1 An,m QAn,1 o An m

as described in 7.1.3, A can be reduced, by left and right multiplication by invertible matrices, to its Smith
normal form (7.1), with a; | e ‘ ar; the nonunit scalars out of ay, ..., ay are just the invariant factor of M.

In the case R is an ED, the reduction of A to its Smith normal form can be made using row/column
operations from 7.1.5; by tracking these operations we can find an explicit presentation of M as a direct sum
of its cyclic submodules.

7.3. The rational normal form of the matrix of a linear transformation of a finite dimensional
vector space

We will now apply the results of subsection 7.2 in linear algebra — to establish the so-called normal
forms of square matrices over a field (the forms, to which any square matrix can be reduced by a change of
basis).

Let F be a field, let V be an n-dimensional F-vector space, and let T' be a linear transformation of V'
(an F-module homomorphism V — V).

7.3.1. The transformation T defines an F'[z]-module structure on V' by putting p(z)u = p(T)(u), p € F[z].
The F-basis of V' generates V as an F[z]-module, so V is generated by < n elements.

7.3.2. A submodule of the F[z]-module V is a subspace W of V invariant under the action of F[z], Fx]W C
W; for this, it is necessary and sufficient that T(W) C W. If a basis {u, ..., u,} of V issuch that {uy, ..., ux}

is a basis of W, then with respect to this basis the matrix of 7" has form (Aol i), where A; is the matrix of

1|y, with respect to the basis {u1, ..., ux}.

7.3.3. If the F[z]-module V is a direct sum of two its submodules (that is, T-invariant subspaces) V =
W1 @ Wa, and a basis {ug,...,u,} of V is such that {uy,...,ur} is a basis of W7 and {ug41,...,un} is a

basis of W5, then the matrix of T with respect to this basis has form (‘?)1 52), where A; is the matrix of T|W1

with respect to the basis {u1,...,ux} and Ay is the matrix of T|W2 with respect to the basis {ugy1,...,u,}.
7.3.4. Since F[z] is an infinite dimensional F-vector space, V contains no copy of F|x], so, is a torsion
F[z]-module. The annihilator Ann(V) is an ideal in F[x], generated by a monic polynomial my € Flz]. my
is called the minimal polynomial of T: we have my(T)u = 0 for all uw € V, so mp(T) = 0, and any other
polynomial p € F[x] satisfying p(T') = 0 is divisible by mr.

7.3.5. Since the ring F[z] is a PID (and even an ED), the theory of finite generated modules over PIDs
applies to V', and we get the following theorem:

Theorem. V is representable as a direct sum V. = W1 & --- & W,,, of T-invariant subspaces which are
cyclic Fx]-modules: for each i, W; = R/(p;), where p; are nonconstant polynomials from F[x] satisfying
b1 |P2 ‘ |pm'

The polynomials pi,...,p., are called the invariant factors of T; they are uniquely defined up to
multiplication by a constant, so, are uniquely defined if assumed to be monic. For each 4, p; is the minimal
polynomial of T|Wi; the senior invariant factor p,,, being divisible by all other, is just the minimal polynomial
my of T. V is a cyclic F[z]-module iff it has a single invariant factor, iff degmr = n.

7.3.6. Let W be an F[x]-submodule of V', that is, a subspace of V invariant under the action of T: T'(W) C
W. W is a cyclic Fz]-module iff there is u € W such that F[z]u = W; such vector u is called a cyclic
vector of T'|;,,. We have W = F[z]/(p) for some polynomial p = ¥ +ap_12Ft + -+ az + ag € Flal,
of degree k. As an F-vector space, F[z]/(p) has dimension k and basis {I,Z,...,Z*"!} (where ¢ denotes
the class ¢ + (p) of ¢ modulo (p)). So, dimp W = k, and {u,T(u),...,T* *(u)} is an F-basis of W, and
p(T)(u) = TF(u) + a1 TF 1 (u) + - + a1 T(u) + agu = 0.

Under the action of T', we have

s T(u) = T?(u) = - = TF(u) = —ag — art(u) — - — ap_1 T (u),
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so in the basis {u, T'(u),..., T *(u)}, the k x k matrix of T)yy is

000 ...0 —aq
100 ...0 —ay
010

... 0 —a2

CP: oot : (7'2)
000 ... 0 —ak_2
000 ... 1 —ajp_1
Matrix C), is called the companion matriz of the monic polynomial p = 2 +ap_12" T+ a4 ag. We
have det C}, = tag, and, since p(T‘W) =0, p(Cp) =0.

7.3.7. In the decomposition V.=W; & --- & W, of V into a sum of cyclic F[z]-modules, for each 4, choose
a basis in W; as described in 7.3.6, and let B be the union of these bases. Then with respect to basis B the
matrix of T has the block-diagonal form

Cp, O 0
0 0?2 o (7.3)
0 0 Corm

where for each ¢, C), is the companion matrix of the i-th invariant factor p; of 7". This form of a matrix is
called the Frobenius normal form or the rational normal form; for any transformation T', the rational normal
form of its matrix is unique.

7.3.8. As a corollary, we obtain that any square matrix is similar to a unique matrix of the form (7.3) with
P1 | e ‘ Pm, and that two matrices are similar iff they have the same rational normal form.

7.3.9. The invariant factors, along with the rational normal form of a matrix are field independent: if A is
a matrix over a field F} and F5 is a field containing F}, then the invariant factors and the rational normal
form of A over Fy are the same as over Fj.

7.3.10. Instead of invariant factors of T' (that is, of the F[z]-module V') we as well can use the elementary
divisors thereof. As a result, we will also obtain a matrix of the form (7.3), but now with polynomials p;,
instead of dividing each the next, being powers of irreducible polynomials, p; = ¢;*. Such a form of the
matrix is also unique for 7' (up to permutations of blocks), but is field dependent.

7.4. The Smith normal form of x — T" and the characteristic polynomial

How can the rational normal form of the matrix of a linear transformation be found? One possible
method is to utilize the theory from 7.2.9.

We preserve notation from the previous section.

a1 ... A1.n
7.4.1. Let A = < : : ) be a matrix of 7' in an arbitrary basis B = {uy,...,u,} of V. Then for each
An,1 - Gn,n
r—ai1 —ai,2 —ain
i, zu; = T(w;) = a14u1 + -+ + Gp iUy; these relations form the matrix <_a:1’1 e e T > =zl — A,
—Qn,1 —0n,2 ... T—Ann

where [ is the unit n x n matrix.
I claim that this is the complete relations matrix of the F[z]-module V, that is, that all relations of
V follow from the relations above. Indeed, let N be the submodule of the free module F[z]™ generated by

T ai,1 0 ay 2
these relations, and let M = F[z]"/N. Then in M, (0> = (az;’1>, (‘r) = <a2:,2>7 etc. So, z (and so any
0 0
its power) in this module, in any coordinate position, can be replaced by a vector from F™, and so M is
an F-vector space of dimension < n. But since V has all the relations from N, there is an epimorphism
M — V; and since dim V' = n, we have that V = M.
Thus, by 7.2.9, using the row/column operations from 7.1.5, we can reduce the matrix I — A to its
Smith normal form. Since rankp(,) V' = 0, the obtained matrix has no zero columns, and we will actually
get a diagonal matrix

An,1 QAn 2

10 ..000 ... 0
0ce ... 000 ... 0
00 ..,00 0
00 ..0p1 0 0 (7.4)
00 ..0 0



where c;1,...,¢; € F and py,...,Dp, are nonzero nonconstant polynomials with p; ’ ’ Pm; these are the
invariant factors of T. After multiplying ps, ..., pm by suitable constants (elements of F', which are units in
F[z]), we may and will assume that they all are monic.

7.4.2. Let A be the matrix of T' and let C be the Smith normal form of zI — A. Since the row/column
operations from 7.1.5 preserve, up to multiplication by an element of F' (a unit of F'[z]), the determinant of
the matrix (or since the matrices P and @ from 7.1.4 are invertible in Mat,, ,, (F[z]) and so, their determinants
are elements of F'), and since the invariant factors are assumed to be monic, we have det C' = det(z] — A).
The polynomial cr(x) = det(axl — A), of degree n, is called the characteristic polynomial of T (and of A);
we see that ¢y = det C = p1ps - - - pm, that is, up to multiplication by an element of F', is the product of the
elementary divisors of T.

7.4.3. In particular, the minimal polynomial my = p,, of T divides its characteristic polynomial c¢r. Since
mp(T) = 0, this implies

The Cayley-Hamilton theorem. IfT is a linear transformation of a finite dimensional vector space and
cr is the characteristic polynomial of T, then cp(T) = 0.

7.5. The Jordan normal form of a matrix

In the case the characteristic polynomial of T splits into a product of linear factors, 7" has another
standard normal form.
7.5.1. Assume that V is a cyclic F[z]-module and that the minimal polynomial of T has form er(z) = (z—A)"
for some A € F. Consider the transformation S = T — AI; the minimal polynomial of S is z™. (So,
S™ = 0; S is said to be nilpotent.) Since the degree of the minimal polynomial of S is n = dimV, V is
cyclic under the action of S as well; let u be a cyclic vector of V. Then S acts on u the following way:

u = Sur S%(u) = - S w) = S™(u) = 0, and {u, S(u),...,S" (u)} is a basis of V. If we reverse
01..00
00..00
the order of elements of this basis, that is, in the basis {S™ (u),...,S(u),u}, the matrix of S is ( P ) ,
00..01
00 ...00
the n x n matrix with 1s above the main diagonal. Accordingly, the matrix of 7' = S + AI in this basis is
0x 700
s i1 ). A matrix of this form is called a Jordan cell.
00 .21
00 ...0x

7.5.2. Now assume that T is a linear transformation of a vector space V and that the characteristic poly-
nomial of 7' splits into a product of linear factors, cr(z) = [\ (z — \;), A1,..., A, € F. Then every
elementary divisor of T has form (x — A;)" for some ¢ and some 7; € N, and so, in a suitable basis, the

Ji0 ..0
matrix of T is block-diagonal ( 0 Jf ? > with each J; being a Jordan cell. This matrix is called the Jordan
00 .. Jg

normal form of the matrix of T.
7.5.3. A field F is said to be algebraically closed if every polynomial over F' has a root in F'; equivalently, if
every polynomial over F' splits into a product of linear factors. (The fundamental theorem of algebra says
that C, the field of complex numbers, is algebraically closed.)

In the case F is an algebraically closed field, every transformation of an F-vector space has a Jordan
normal form (and so, every square matrix over F' does).
7.5.4. The roots of the characteristic polynomial of a transformation 1" are called eigenvalues of T'. So, if T
has a Jordan normal form, the diagonal elements of its Jordan cells are the eigenvalues of T'.

If A is an eigenvalue of T, then det(A —T) = 0, so AI — T is not invertible, so it has a nontrivial kernel,
so there is a nonzero vector v € V such that T'(u) = Au. Such a vector u is called the eigenvector of T
corresponding to eigenvalue A.
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