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1. Definitions and basic properties

Throughout this section, R is a ring.

1.1. Left and right modules, vector spaces, and algebras

1.1.1. A left R-module, or a left module over R, is an abelian groupM , written additively, with an operation
of “left multiplication by elements of R”: a mapping R ×M −→ M , (a, u) 7→ au, satisfying the properties
a(u+ v) = au+ av, (a+ b)u = au+ bu, and (ab)u = a(bu) for all a, b ∈ R and u, v ∈M . If R is unital (that
is, contains the multiplicative identity 1), it is usually additionally required that 1u = u for all u ∈M . The
elements of R are often called scalars .

Notice that an R-module structure defines a left action of the multiplicative semigroup of R on the
group M by homomorphisms of M . (That is, for any a ∈ G the mapping u 7→ au is a homomorphism
M −→M , and the homomorphism corresponding to the product ab of elements a, b ∈ R is the composition
of the homomorphisms corresponding to these elements.)

1.1.2. A right R-module is defined similarly, with a right action of (the multiplicative semigroup of) R onM .
In the case R is a commutative ring, the notions of a left and a right R-modules coincide, and a left=right
R-module is simply called an R-module. Also, under an R-module we often understand a left (or a right)
R-module when it is either clear from the context or does not matter which, left or right, action of R on M
is meant.

1.1.3. An R-bimodule, or a two-sided R-module, is an abelian group M that has both structures, – of a left
R-module and of a right R-module, – with the property a(ub) = (au)b for all a, b ∈ R and u ∈M .

1.1.4. If F is a field, an F -module is called an F -vector space.

1.1.5. An R-algebra A is a ring whose additive group has a structure of an R-module satisfying the property
a(αβ) = (aα)β = α(aβ) for all a ∈ R and α, β ∈ A.

1.2. Examples and constructions of modules

1.2.1. The zero R-module is the module M = {0}.
1.2.2. R itself is a left R-module (and a right R-module; and, actually, an R-bimodule).

1.2.3. Any left ideal in R is a left R-module (a right ideal is a right R-module, and a two-sided ideal is a
bimodule).

1.2.4. Any abelian group G (written additively) is a Z-module, by putting nu = u+ · · ·+ u︸ ︷︷ ︸
n

for n > 0,

nu = −(−n)u for n < 0, and 0u = 0, u ∈ G.
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1.2.5. For any n ∈ N, the direct product Rn = R× · · · ×R︸ ︷︷ ︸
n

, with the multiplication by elements of R defined

by a(b1, . . . , bn) = (ab1, . . . , abn), a ∈ R, (b1, . . . , bn) ∈ Rn, is called a free R-module of rank n. Rn also has
a natural structure of a right R-module, and is, actually, an R-bimodule.

1.2.6. Let X be a set. The set of functions (mappings) X −→ R has a structure of a left R-module (and
of an R-bimodule), by putting (af)(x) = af(x), a ∈ R, x ∈ X. This module is sometimes denoted by RX .
(The free R-module of rank n is a special case of this, corresponding to X = {1, . . . , n}.) In the case R is a
commutative ring, RX is an R-algebra.

More generally, if X is a set and M is an R-module, then the set MX of functions X −→ M is an
R-module.

1.2.7. The ring R[x] of polynomials with coefficients from R is an R-module, and is an R-algebra if R is
commutative. Same applies to the ring R[x1, . . . , xn] of polynomials in n variables over R.

1.2.8. Let G be a group and R be a commutative ring. The group algebra of G with coefficients from R is
the R-module RG =

{
a1g1 + · · · + akgk, ai ∈ R, gi ∈ G

}
of formal linear combinations of elements of G

with coefficients from R; the multiplication in RG is defined by (ag)(bh) = (ab)(gh).

1.2.9. The group Matm,n(R) of m × n matrices with entries from R is an R-module (which is, actually, a
free R-module of rank mn). If R is commutative, the ring Matn,n(R) of square n× n matrices with entries
from R is an R-algebra.

1.2.10. Let F be a field, V be an n-dimensional F -vector space, and R be the ring of n × n matrices over
F . Then V is a left R-module, with the standard multiplication Au of matrices and vectors.

1.2.11. The following example will be especially important to us in this course. Let F be a field, V be an
F -vector space, and T be a linear transformation of V . Consider the action of (the multiplicative semigroup
of) the polynomial ring F [x] on V defined by

(anx
n + · · ·+ a1x+ a0)u = anT

n(u) + · · ·+ a1T (u) + a0u,

where anx
n + · · ·+ a1x+ a0 ∈ F [x] and u ∈ V . This action converts V into an F [x]-module.

1.2.12. The preceding example is easily generalizable: Let G be a group, R be a commutative ring, and RG
be the group algebra of G with coefficients from R. Then any left (or right) action of G on an abelian group
M by homomorphisms defines on M a structure of a left (respectively, right) RG-module.

1.2.13. If A is a unital ring and R is a unital subring of A that lies in the center of A and with 1R = 1A,
then A has a structure of an R-algebra. More generally, if ϕ:R −→ A is a homomorphism of unital rings
with ϕ(R) ⊆ Z(A) and ϕ(1R) = 1A, then A has a structure of an R-algebra defined by au = ϕ(a)u, a ∈ R,
u ∈ A. (It is easy to see that any unital R-algebra A can be constructed this way, by defining ϕ(a) = a1A,
a ∈ R.)
1.2.14. Every ring is a Z-algebra.

1.2.15. If M is an R-module and S is a subring of R, then M has a structure of an S-module as well. The
operation of converting an R-module into an S-module is called reduction of scalars .

1.3. Elementary properties of modules

The following properties of modules are easily verifiable:

Proposition. let R be a ring and M be a left R-module. Then

(i) for any u ∈M , 0u = 0;

(ii) for any a ∈ R, a0 = 0;

(iii) for any a ∈ R and u ∈M , (−a)u = a(−u) = −au.

1.4. Submodules

1.4.1. Let M be a left R-module. A submodule of M is a subgroup N of M which is a left R-module under
the multiplication by scalars (elements of R) defined in M . For a subset N of M to be a submodule of M it
is necessary and sufficient that N is a subgroup of M and is closed with respect to multiplication by scalars:
N −N ⊆ N and RN ⊆ N .

1.4.2. Examples. (i) M itself and the zero submodule 0 = {0} are submodules of M .
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(ii) For R viewed as a left R-module, left submodules of R are the left ideals of R.

(iii) Let I be a left ideal in R; then the set IM =
{∑k

i=1 aiui, k ∈ N, ai ∈ I, ui ∈ M
}
is a submodule of

M .

(iv) Let V be a vector space over a field F and let T be a linear transformation of V . Then V is a F [x]-module,
with xu = T (u), u ∈ V . A subsetW of V is a submodule of this module iffW is a subgroup of V , is invariant
under multiplication by scalars from F : aW ⊆ W for all a ∈ F , and is invariant under multiplication by x:
xW = T (W ) ⊆W ; that is, iff W is a vector subspace of V invariant under T : T (W ) ⊆W .

1.4.3. Proposition. The intersection of any collection of submodules of a module M is also a submodule
of M .

1.4.4. The sum of two submodules N1 and N2 of a module M is the set N1+N2 =
{
u1+u2 : u1 ∈ N1, u2 ∈

N2

}
. More generally, the sum of a collection {Nα}α∈Λ of submodules of a module M is the set of elements

of M representable as a sum of elements of the members of this collection:

∑

α∈Λ

Nα =
{ k∑

i=1

uαi
: k ∈ N, αi ∈ Λ, ui ∈ Nαi

, i = 1, . . . , k
}

1.4.5. Proposition. The sum of any collection of submodules of a module M is also a submodule of M .

1.5. Generating sets of modules

1.5.1. LetM be a left module and S be a subset ofM . The minimal submodule ofM containing S (namely,
the intersection of all submodules of M containing S) is called the submodule generated by S. If R be unital,

the submodule generated by S is the set of all finite sums of the form
∑k
i=1 aisi with a1, . . . , ak ∈ R and

s1, . . . , sk ∈ S; this set is denoted by RS. (If R is not unital, it is RS + ZS.)

Let’s introduce the notation
∑fin
α∈Λ wα for

∑
α∈Λ wα in which wα = 0 for all but finitely many αs. Then

(in the case 1 ∈ R) we can write RS =
{∑fin

s∈S ass : as ∈ R, s ∈ S
}
.

1.5.2. If M = RS for some S ⊆M , we say that M is generated by S, or that S generates M , or that S is a
generating set of M . (In the case R is a field and so, M is an R-vector space, we say that S spans M .) If S
is finite, we say that M is finitely generated .

1.5.3. The submodule of M generated by a collection {Nα}α∈Λ of submodules of M is, clearly, the sum∑
α∈ΛNα of these submodules.

1.5.4. A (left) R-module M is said to be cyclic if it is generated by a single element, M = Ru for some
u ∈M .

1.6. Quotient modules

1.6.1. Let M be a left R-module and let N be a submodule of M . The factor-group M/N is the group
{ū, u ∈ M}, where for u ∈ M , ū = u + N , the class of elements equivalent to u modulo N . M/N has a
structure of a left R-module defined by aū = au; this module is denoted by M/N and is called the quotient ,
or the factor module of M by N .

1.6.2. Example. Let R be a non-commutative ring and I be a left ideal in R. If I is not a two-sided ideal,
then R/I is not a ring, but is a left R-module.

1.7. Torsion elements of a module and the torsion submodule

1.7.1. An element u of a (left) R-module M is said to be a torsion element if au = 0 for some nonzero
a ∈ R. If all elements of M are torsion, then M is called a torsion module; if no elements of M , except 0,
are torsion, then M is said to be torsion-free.

1.7.2. If R is an integral domain and M is an R-module, then the torsion elements of M form a submodule
of M ; this submodule is called the torsion submodule of M and is denoted by Tor(M).

Proposition. If R is an integral domain and M is an R-module, the quotient module M/Tor(M) is torsion-
free.
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1.8. Annihilators

1.8.1. Let M be a left R-module and let P be a subset of M . The annihilator of P is the set Ann(P ) =
{a ∈ R : aP = 0}; this is a left ideal in R. If N is a submodule of M , then Ann(N) is a two-sided ideal in
R, and N has a structure of an (R/Ann(N))-module, defined by (a+Ann(N))u = au, a ∈ R, u ∈ N .

1.8.2. Proposition. LetM be a module and N1, N2 be submodules ofM . Then Ann(N1+N2) = Ann(N1)∩
Ann(N2), and Ann(N1 ∩N2) ⊇ Ann(N1) + Ann(N2).

1.8.3. Let M be a left R-module and S be a subset of R; the annihilator of S in M is the set Ann(S) =
{u ∈M : Su = 0}. If I is the left ideal of R generated by S, I = (S) = RS, then Ann(I) = Ann(S). If I is
a right ideal in R, then Ann(I) is a submodule of M .

1.8.4. Proposition. Let M be an R-module and let I1, I2 be right ideals in R. Then Ann(I1 + I2) =
Ann(I1) ∩Ann(I2), and Ann(I1 ∩ I2) ⊇ Ann(I1) + Ann(I2).

1.9. Homomorphisms of modules

1.9.1. Let M and N be left R-modules. A mapping ϕ:M −→ N is called an R-module homomorphism, or
just a homomorphism, if it satisfies ϕ(u+v) = ϕ(u)+ϕ(v) for all u, v ∈M (that is, is a group homomorphism
from M to N) and ϕ(au) = aϕ(u) for all a ∈ R and u ∈M .

1.9.2. Examples. (0) The zero mapping ϕ(u) = 0 for all u ∈M is the zero homomorphism from module M
(to any other module).

(i) Z-module homomorphisms of abelian groups, viewed as Z-modules, is the same as group homomorphisms,
since for any group homomorphism we automatically have ϕ(na) = nϕ(a) for any element a and n ∈ Z.

(ii) If M is a module and N is a submodule of M , then we have the embedding homomorphism π:N −→M
defined by u 7→ u, u ∈ N .

(iii) If M is a module and N is a submodule of M , then we have the factorization, or the projection
homomorphism π:M −→M/N defined by u 7→ ū, u ∈M .

(iv) If R is a commutative ring and M is an R-module, then for any a ∈ R multiplication by a (the mapping
u 7→ au) is a homomorphism M −→M . (This is not so, generally speaking, if R is not commutative.)

(v) If R is a unital ring, then for any R-module M and any element u ∈M there exists a unique homomor-
phism ϕ:R −→M that maps 1 to u, namely, ϕ is defined by ϕ(a) = au for all a ∈ R.
(vi) Let R be a ring, M be an R-module, X be a set, and MX be the set of functions X −→M . Let x0 ∈ X;
then the mapping MX −→ M defined by f 7→ f(x0) is a module homomorphism, called the evaluation
homomorphism.

(vii) Homomorphisms of vector spaces are called linear mappings , or linear transformations .

(viii) Let V and W be two vector spaces over a field F , let T be a linear transformation of V and S be a
linear transformation of W . Then V and W have a structure of F [x]-modules, by putting xu = T (u) for
u ∈ V and xv = S(v) for v ∈ W . An F [x]-module homomorphism between these two F [x]-modules is an
F -linear mapping ϕ:V −→W satisfying ϕ◦T = S◦ϕ.

1.9.3. Any ring R is simultaneously an R-module, but module homomorphisms R −→ R are not the same as
ring homomorphisms. For example the mapping Z −→ Z defined by n 7→ 2n is a Z-module homomorphism
but not a ring homomorphism; the mapping Z[x] −→ Z[x] defined by p(x) 7→ p(x2) is a ring homomorphism
but not a Z[x]-module homomorphism.

1.9.4. An algebra homomorphism from an R-algebra A to an R-algebra B is a mapping ϕ:A −→ B which
is an R-module homomorphism and a ring homomorphism: ϕ(u+ v) = ϕ(u) +ϕ(v), ϕ(uv) = ϕ(u)ϕ(v), and
ϕ(au) = aϕ(u) for any u, v ∈ A and a ∈ R.
1.9.5. Proposition. If S is a generating set of a module M , then any homomorphism ϕ from M is uniquely
defined by its restriction ϕ|S on S.

1.9.6. Proposition. The composition ψ◦ϕ:M −→ K of two homomorphisms ϕ:M −→ N and ψ:N −→ K
of modules is a homomorphism. If a homomorphism ϕ:M −→ N of modules is an invertible mapping, then
its inverse ϕ−1:N −→M is also a homomorphism.
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1.9.7. Proposition. Let ϕ:M −→ N be a homomorphism of R-modules. Then for any submodule L of M ,
its image ϕ(L) is a submodule of N , and for any submodule K of N , its preimage ϕ−1(K) is a submodule of
M . In particular, the image ϕ(M) of ϕ is a submodule of N , and the preimage ϕ−1(0) of 0 is a submodule
of M .

1.9.8. The kernel ker(ϕ) of a homomorphism ϕ:M −→ N of R-modules is the submodule ϕ−1(0) ofM . The
cokernel coker(ϕ) of ϕ is the factor module N/ϕ(M) of N .

1.9.9. A surjective homomorphism of modules is called an epimorphism, an injective homomorphism of
modules is called a monomorphism, a bijective (i.e., invertible) homomorphism of modules is called an
isomorphism. A self-homomorphism of a module (that is, a homomorphism of a module to itself) is called
an endomorphism, and a self-isomorphism of a module is called an automorphism.

1.9.10. Proposition. A homomorphism ϕ:M −→ N of modules is a monomorphism iff ker(ϕ) = 0, is an
epimorphism iff coker(ϕ) = 0, and is an isomorphism iff both ker(ϕ) = 0 and coker(ϕ) = 0.

1.9.11. Two R-modules M and N are said to be isomorphic if there is an isomorphism M −→ N ; this is
denoted by M ∼= N . (Isomorphic modules are often identified, and considered as “the same” module. For
example, the modules R[x] and R[y] can both be called “the module of polynomials in one variable”, whereas
these are, of course, two distinct submodules of the module R[x, y].)

1.10. Isomorphism theorems for modules

The isomorphism theorems for modules are the same as for the (abelian) groups (since modules are
abelian groups!). To prove them, it suffices to check that the group isomorphisms appearing in these theorems
are, actually, module homomorphisms as well. In fact, it is enough to check this for the first isomorphism
theorem only, since the other isomorphism theorems are its corollaries.

1.10.1. The 1st Isomorphism Theorem. Let ϕ:M −→ N be a homomorphism of R-modules. Then
range(ϕ) = ϕ(M) ∼= M/ ker(ϕ). In more details, the mapping M/ ker(ϕ) −→ N defined by u +N 7→ ϕ(u),
u ∈M , is an isomorphism between M/ ker(ϕ) and ϕ(M).

1.10.2. The 2nd Isomorphism Theorem. Let M be an R-module and N , K be submodules of M . Then
(N+K)/K ∼= N/(N ∩K); namely, the mapping u+(N ∩K) 7→ u+K is an isomorphism between N/(N ∩K)
and (N +K)/K.

1.10.3. The 3rd Isomorphism Theorem. Let M be an R-module, N be a submodule of M , and K be
a submodule of N . Then M/N ∼= (M/K)/(N/K); namely, the mapping u + N 7→ (u + K) + N/K is an
isomorphism between M/N and (M/K)/(N/K).

1.11. Finitely generated modules as factors of Rn

Let R be a unital ring.

1.11.1. Let M be a cyclic module, M = Ru for some u ∈ M . The mapping ϕ:R −→ M defined by
ϕ(a) = au is then an epimorphisms of R-modules, so M is isomorphic to the quotient module R/I where
I = ker(ϕ) = Ann(u) is a left ideal of R.

1.11.2. If R is unital and a R-module M is generated by a finite set {u1, . . . , un}, then the homomorphism
ϕ:Rn −→ M defined by ϕ(a1, . . . , an) =

∑n
i=1 aiui is an epimorphisms, so M is isomorphic to a quotient

module of Rn.

1.12. The module Hom(M,N) and the algebra End(M)

Let R be a commutative ring (this is important here!).

1.12.1. For two R-modules M and N , the set of homomorphisms M −→ N is denoted by HomR(M,N),
or just Hom(M,N). For ϕ,ψ ∈ Hom(M,N) and a ∈ R, the homomorphisms ϕ + ψ, aϕ ∈ Hom(M,N) are
defined by (ϕ+ ψ)(u) = ϕ(u) + ψ(u), (aϕ)(u) = aϕ(u), u ∈M ; these two operations induce on Hom(M,N)
a structure of an R-module.

1.12.2. If R is a unital ring, then for any R-module M , Hom(R,M) ∼=M , were the isomorphism is defined
by ϕ 7→ ϕ(1).
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1.12.3. For an R-module M , the set Hom(M,M) of endomorphism of M is denoted by EndR(M), or just
End(M). With the operation of composition playing the role of multiplication, ψϕ = ψ◦ϕ, End(M) is a ring
and an R-algebra (usually, noncommutative). The set Aut(M) of automorphisms of M is the set of units
(invertible elements) of the ring End(M), and is a group under multiplication. M has a structure of a left
End(M)-module, by defining ϕu = ϕ(u), u ∈M , ϕ ∈ End(M).

1.13. Schur’s lemma

1.13.1. A module with no nontrivial (that is, not counting itself and 0) submodules is said to be simple or
irreducible. A module is simple iff it is generated by every its nonzero element. A left module is simple iff
it is isomorphic to R/I, where I is a maximal proper left ideal in R. (In the case R is commutative, this
means that the only simple modules are fields.)

1.13.2. Shur’s lemma. If M and N are simple modules, then any homomorphism M −→ N is either zero
or an isomorphism.

Proof. Let ϕ:M −→ N be a homomorphism. Since M is simple, ker(ϕ) = 0 or ker(ϕ) = M . Since N is
simple, ϕ(M) = N or ϕ(M) = 0. If ker(ϕ) = M or ϕ(M) = 0, then ϕ = 0; if ker(ϕ) = 0 and ϕ(M) = N ,
then ϕ is an isomorphism.

It follows that for a simple module M , End(M) is a division ring.

1.14. Commutative diagrams and exact sequences of modules

The following terminology turns out to be pretty handy.

1.14.1. A diagram of module homomorphisms (and actually, of any mappings) is said to be commutative
if for any two modules in this diagram, the composition of the homomorphisms along any path connecting
these two modules is independent of the path.

Example. The diagram of module homomorphisms

A
ϕ−→ B

ψ−→ C

A′ ϕ′

−→ B′ ψ′

−→ C ′

α β γ

is commutative iff ϕ′
◦α = β◦ϕ, ψ′

◦β = γ◦ψ, and, as a corollary, γ◦ψ◦ϕ = ψ′
◦ϕ′

◦α.

1.14.2. A sequence . . . −→ A
ϕ−→ B

ψ−→ C −→ . . . of module homomorphisms is said to be exact at term

B if ker(ψ) = ϕ(A), and just exact if it is exact at all its terms. In particular, the sequence 0 −→ A
ϕ−→ B

is exact iff ϕ is a monomorphism, the sequence A
ϕ−→ B −→ 0 is exact iff ψ is an epimorphism, and the

sequence 0 −→ A
ϕ−→ B −→ 0 is exact iff ϕ is an isomorphism.

1.14.3. An exact sequence of the form 0 −→ A −→ B −→ C −→ 0 is called a short exact sequence. This
sequence expresses the idea that A is (isomorphic to) a submodule of B, and B/A ∼= C.

1.14.4. For any module homomorphism ϕ:A −→ B, the sequence 0 −→ ker(ϕ) −→ A
ϕ−→ B −→

coker(ϕ) −→ 0 (where ker(ϕ) −→ A is the natural embedding and B −→ coker(ϕ) is the natural pro-
jection) is exact.

1.14.5. Any exact sequence can be “decomposed” into a sequence of short exact sequences: a sequence

· · · −→ Ai−1
ϕi−1−→ Ai

ϕi−→ Ai+1 −→ · · ·

of module homomorphisms is exact iff there are exact short sequences 0 −→ Bi −→ Ai
ϕi−→ Bi+1 −→ 0, for

some submodules Bi of Ai (in which case Bi = ker(ϕi) = ϕi−1(Ai−1) for all i).

1.14.6. As an example of an application of commutative diagrams and exact sequences, here is the so-called

The short five lemma. Suppose that the diagram of module homomorphisms

0 −→ A
ϕ−→ B

ψ−→ C −→ 0

0 −→ A′ ϕ′

−→ B′ ψ′

−→ C ′ −→ 0

α β γ

is commutative with exact rows. Then
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(i) if α and γ are monomorphisms, then β is also a monomorphism;

(ii) if α and γ are epimorphisms, then β is also an epimorphism;

(iii) if α and γ are isomorphisms, then β is also an isomorphism.

Proof. This sort of proving is called “diagram wandering”:

(i) Let α and γ be injective. Let b ∈ B be such that β(b) = 0; we need to show that b = 0. We have
γ(ψ(b)) = ψ′(β(b)) = 0. Since γ is injective, ψ(b) = 0. Since the first raw is exact, b = ϕ(a) for some a ∈ A.
Now, ϕ′(α(a)) = β(ϕ(a)) = β(b) = 0; since ϕ′ and α are injective, a = 0, so b = ϕ(a) = 0.

(ii) Let α and γ be surjective. Let b′ ∈ B′; we need to show that b′ = β(b) for some b ∈ B. Let c′ = ψ′(b′).
Since γ is surjective, c′ = γ(c) for some c ∈ C. Since ψ is surjective, there is d ∈ B such that ψ(d) = c. Now
ψ′(β(d)) = γ(ψ(d)) = c′ = ψ′(b′), so ψ′(b′ − β(d)) = 0. Since the second row is exact, there is a′ ∈ A′ such
that ϕ′(a′) = b′ − β(d). Since α is surjective, a′ = α(a) for some a ∈ A. Let b = ϕ(a) + d. Then

β(b) = β(ϕ(a)) + β(d) = ϕ′(α(a)) + β(d) = ϕ′(a′) + β(d) = b′ − β(d) + β(d) = b′.

1.14.7. The following lemma (from which The short five lemma 1.14.6 follows) is important in homological
algebra:

The snake lemma. Suppose that the diagram of module homomorphisms

0 −→ A
ϕ−→ B

ψ−→ C −→ 0

0 −→ A′ ϕ′

−→ B′ ψ′

−→ C ′ −→ 0

α β γ

is commutative with exact rows. Then there is a homomorphism δ: ker(γ) −→ coker(α) such that the sequence

0 −→ ker(α)
ϕ−→ ker(β)

ψ−→ ker(γ)
δ−→ coker(α)

ϕ̄′

−→ coker(β)
ψ̄′

−→ coker(γ) −→ 0

(where ϕ̄′ and ψ̄′ are the natural quotients of the homomorphisms ϕ′ and ψ′ to the quotient modules coker(α)
and coker(β) respectively) is exact, and the diagram

0 0 0

000 kerα kerβ ker γ

0 −→ A
ϕ−→ B

ψ−→ C −→ 0

0 −→ A′ ϕ′

−→ B′ ψ′

−→ C ′ −→ 0

cokerα cokerβ coker γ 0

0 0 0

α β γ

δ

b

(with exact rows, exact columns, and the exact “snake”) is commutative.

Sketch of the proof. δ is defined in the following way: Let c ∈ ker(γ). Let b ∈ B be such that ψ(b) = c. Let
b′ = β(b). Then ψ′(b′) = γ(ψ(b)) = γ(c) = 0, so b′ = a′ for some a′ ∈ A′. Put δ(c) = a′ modα(A) ∈ coker(α).
It is now to show that δ is well defined (doesn’t depend on the choise of b), that δ is a homomorphism, that
“the snake” is exact, and that the obtained diagram is commutative; it’s a lot of work.

2. The direct product and the direct sum of modules as universal objects

2.1. The direct sum and product of two modules

2.1.1. The direct sum, or the direct product of two R-modules M1 and M2 is the R-module M1 ⊕M2 =
M1 ×M2 =

{
(u1, u2) : u1 ∈M1, u2 ∈M2

}
with the componentwise addition and multiplication by scalars:

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) and a(u1, u2) = (au1, au2), for u1, v1 ∈M1, u2, v2 ∈ N , and a ∈ R.
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2.1.2. Clearly, for any two modules M1 and M2, M1 ⊕M2
∼= M2 ⊕M1, under the isomorphism (u1, u2) 7→

(u2, u1). Also, for any three modules M1, M2 and M3, (M1 ⊕M2)⊕M3
∼=M1 ⊕ (M2 ⊕M3).

2.1.3. The submodule M1 ×{0} of the module M1 ⊕M2 is isomorphic to M1, and is usually identified with
M1, so that M1 can be assumed to be a submodule of M1 ⊕M2. Similarly, M2 can be assumed to be a
submodule of M1 ⊕M2 after identifying it with the submodule {0} ×M2. Let η1:M1 −→ M1 ⊕M2 and
η2:M2 −→ M1 ⊕M2 be the corresponding embeddings. Notice also that M1 ⊕M2 is generated by M1 and
M2 (so that M1 ⊕M2 =M1 +M2), and M1 ∩M2 = 0.

2.1.4. Also, there are natural projections π1:M1 ⊕ M2 −→ M1 and π2:M1 ⊕ M2 −→ M2 defined by
π1(u1, u2) = u1 and π2(u1, u2) = u2. For these projections one has ker(π1) = M2 and ker(π2) = M1,
so that the sequences

0 −→M1
η1−→M1 ⊕M2

π2−→M2 −→ 0 and 0 −→M2
η2−→M1 ⊕M2

π1−→M1 −→ 0

are exact, and we have the isomorphisms (M1 ⊕M2)/M1
∼=M2 and (M1 ⊕M2)/M2

∼=M1.

2.2. The universal properties of the direct sum and product

2.2.1. In the notation of the preceding section, the direct sum M1 ⊕M2 has the following “universal prop-
erties”:

Theorem. (i) Given a module N and homomorphisms ϕ1:M1 −→ N and ϕ2:M2 −→ N , there exists a
unique homomorphism ϕ:M1 ⊕M2 −→ N that makes the diagram

M1

M1 ⊕M2 N

M2

ϕ

η1 ϕ1

η2 ϕ2

commutative (that is, such that ϕ1 = ϕ◦η1 and ϕ2 = ϕ◦η2). ϕ is defined by ϕ(u1, u2) = ϕ1(u1) + ϕ2(u2),
u1 ∈M1, u2 ∈M2.

(ii) Given a module N and homomorphisms ϕ1:N −→ M1 and ϕ2:N −→ M2, there exists a unique homo-
morphism ϕ:N −→M1 ⊕M2 that makes the diagram

M1

N M1 ⊕M2

M2

ϕ

ϕ1 π1

ϕ2 π2

commutative (that is, such that ϕ1 = π1◦ϕ and ϕ2 = π2◦ϕ). ϕ is defined by ϕ(v) = (ϕ1(v), ϕ2(v)), v ∈ N .

2.2.2. It follows that for any module N the set Hom(M1 ⊕M2, N) is in a one-to-one correspondence with
the product Hom(M1, N) × Hom(M2, N) (each homomorphism M1 ⊕M2 −→ N corresponds to a pair of
homomorphismsM1 −→ N andM2 −→ N), and the set Hom(N,M1⊕M2) is in a one-to-one correspondence
with the product Hom(N,M1)×Hom(N,M2).

Proposition. If R is a commutative ring, then for any R-modules M1, M2 and N the bijections defined
above are module isomorphisms Hom(M1⊕M2, N) ∼= Hom(M1, N)×Hom(M2, N) and Hom(N,M1⊕M2) ∼=
Hom(N,M1)×Hom(N,M2).

2.3. Categories and universal objects

The notion of “universality” comes from the category theory .

2.3.1. A category consists of objects and morphisms ϕ:A −→ B between objects. (Usually, objects are sets,
and morphisms are mappings between these sets, but this is not required.) A category can be seen as a
directed graph whose vertices are called “objects” and (directed) edges are called “morphisms”. For any two
morphisms ϕ:A −→ B and ψ:B −→ C their composition morphism ψ◦ϕ:A −→ C must be defined, and
the operation of composition must be associative: τ◦(ψ◦ϕ) = (τ◦ψ)◦ϕ. Also, for every object A the identity
morphism IdA:A −→ A must exist so that ϕ◦ IdA = ϕ for any morphism ϕ:A −→ B and IdA ◦ϕ = ϕ for any
morphism ϕ:B −→ A.
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2.3.2. Here are some examples of categories:

(i) In the category of sets the objects are sets and the morphisms are mappings between these sets.

(ii) In the category of groups the objects are groups and the morphisms are group homomorphisms.

(iii) In the category of topological spaces the objects are topological spaces and the morphisms are continuous
mappings.

(iv) Let R be a ring; then the category of (left) R-modules consists of (left) R-modules as objects and their
homomorphisms as morphisms.

(v) In the category of sets with a marked element the objects are pairs (A, a) where A is a set and a ∈ A
and the morphisms between two objects (A, a) and (B, b) are mappings ϕ:A −→ B with ϕ(a) = b.

2.3.3. A morphism ϕ:A −→ B is said to be an isomorphism if there is an inverse morphism ψ:B −→ A
such that ϕ◦ψ = IdB and ψ◦ϕ = IdA; in this case, the objects A and B are said to be isomorphic.

2.3.4. An object A of a category is said to be universal repelling , or initial , if for any object B of this category
there is a unique morphism ϕ:A −→ B. An object A of a category is said to be universal attracting , or
terminal , if for any object B of this category there is a unique morphism ϕ:B −→ A.

If a universal repelling, or attracting, object exists, then it is unique up to an isomorphism (that is,
any two such objects are isomorphic). Indeed, assume that A1 and A2 are two repelling objects in some
category. Then there is a unique morphism ϕ1:A1 −→ A2 and a unique morphism ϕ2:A2 −→ A1. Then the
composition ϕ1◦ϕ2 is the unique morphism A1 −→ A1, which must be IdA1

, and likewise, ϕ2◦ϕ1 = IdA2
;

hence, ϕ1 is an isomorphism.

2.3.5. Example. Let S be a set, consider the category of groups G with mappings S −→ G: The objects
in this category are pairs (G, η) where G is a group and η is a mapping S −→ G, and morphisms (G, η) −→
(H, τ) are homomorphisms ϕ:G −→ H for which the diagram

S

G H
ϕ

η τ

is commutative. In this category the uiversal repelling object is the free group generated by S.

2.3.6. The direct sum M1 ⊕M2 of two R-modules M1, M2 is the universal repelling object in the category
whose objects are the triplets (N,ϕ1, ϕ2) where N is an R-module and ϕ1:M1 −→ N , ϕ2:M2 −→ N are
homomorphisms, with morphisms between (N,ϕ1, ϕ2) and (K,ψ1, ψ2) being homomorphisms η:N −→ K
that make the diagram

M1

N K

M2

σ

ϕ1 ψ1

ϕ2 ψ2

commutative.

2.3.7. Likewise, M1 ⊕M2 is the universal attracting object in the category of triplets (N,ϕ1, ϕ2) where N
is an R-module and ϕ1:N −→M1, ϕ2:N −→M2 are homomorphisms, with morphisms between (N,ϕ1, ϕ2)
and (K,ψ1, ψ2) being homomorphisms η:N −→ K that make commutative the diagram

M1

N K.

M2

η

ϕ1 ψ1

ϕ2 ψ2
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2.4. The direct product and the direct sum of families of modules

The direct product and the direct sum of a finite collection of modules are the same, but when infinitely
many modules are involved, the notions of a direct product and a direct sum differ!

2.4.1. Let {Mα}α∈Λ be a collection of R-modules. The direct product
∏
α∈ΛMα is the module

∏

α∈Λ

Mα =
{
(uα)α∈Λ : uα ∈Mα for all α ∈ Λ

}
,

with the addition and the multiplication by scalars defined by

(uα)α∈Λ + (vα)α∈Λ = (uα + vα)α∈Λ, a(uα)α∈Λ = (auα)α∈Λ.

For each α ∈ Λ, Mα is still naturally identified with a submodule and with a quotient module of
∏
α∈ΛMα

(and so, is a direct summand of this product); however,
∏
α∈ΛMα is no longer generated by the submodules

Mα. The direct product
∏
α∈ΛMα is the universal attracting object in the category whose objects are the

pairs
(
N, (ϕα)α∈Λ

)
, whereN is an R-module and ϕα:N −→Mα, α ∈ Λ, are homomorphisms, and morphisms

between (N, (ϕα)α∈Λ) and (K, (ψα)α∈Λ) are homomorphisms η:N −→ K satisfying ϕα = ψα◦η for all α ∈ Λ.
(In this category, the only morphism η: (N, (ϕα)α∈Λ) −→

∏
α∈ΛMα is that defined by η(v) = (ϕα(v))α∈Λ,

v ∈ N .)

2.4.2. The direct sum
⊕

α∈ΛMα is the submodule
∑
α∈ΛMα of the direct product

∏
α∈ΛMα that consists

of elements (uα)α∈Λ with uα = 0 for all but finitely many α ∈ Λ:

⊕

α∈Λ

Mα =
{
(uα)α∈Λ : uα ∈Mα for all α ∈ Λ, uα = 0 for all but finitely many α

}
.

Every element of
⊕

α∈ΛMα is uniquely representable as a sum
∑k
i=1 uαi

with distinct α1, . . . , αk ∈ Λ and

uαi
∈ Mαi

, i = 1, . . . , k; or in the form
∑fin
α∈Λ uα (that is, a sum

∑
α∈Λ uα where uα = 0 for all but finitely

many αs) with uα ∈ Mα for all α ∈ Λ. The direct sum
⊕

α∈ΛMα is the universal attracting object in the

category whose objects are the pairs
(
N, (ϕα)α∈Λ

)
, where N is an R-module and ϕα:Mα −→ N , α ∈ Λ, are

homomorphisms, and morphisms between (N, (ϕα)α∈Λ) and (K, (ψα)α∈Λ) are homomorphisms σ:N −→ K
satisfying ψα = σ◦ϕα for all α ∈ Λ. (In this category, the only morphism σ:

⊕
α∈ΛMα −→ (N, (ϕα)α∈Λ) is

that defined by σ
(∑

α∈Λ uα
)
=
∑
α∈Λ ϕα(uα); notice that this sum is finite.)

2.4.3. Let {Mα}α∈Λ be a family of R-modules, and let N be an R-module. Any family of homomorphisms
ϕα:N −→Mα, α ∈ Λ, defines the homomorphism ϕ:N −→∏

α∈ΛMα by ϕ(v) = (ϕα(v))v∈N , and vice versa,
any such homomorphism ϕ defines a family of homomorphisms {ϕα}α∈Λ. We therefore have a one-to-one
correspondence between

∏
α∈Λ Hom(N,Mα) and Hom

(
N,
∏
α∈ΛMα

)
,

Hom
(
N,
∏

α∈Λ

Mα

)
↔
∏

α∈Λ

Hom(N,Mα).

In the case R is commutative, this bijection is an R-module isomorphism.

2.4.4. Likewise, any family of homomorphisms ϕα:Mα −→ N , α ∈ Λ, defines the homomorphism
ϕ:
∏
α∈ΛMα −→ N by ϕ

(∑fin
α∈Λ uα

)
=
∑fin
α∈Λ ϕα(uα), uα ⊂ Mα, α ∈ Λ, and vice versa, any such homo-

morphism ϕ defines a family of homomorphisms {ϕα}α∈Λ. We therefore have a one-to-one correspondence
between

∏
α∈Λ Hom(Mα, N) and Hom

(⊕
α∈ΛMα, N

)
:

Hom
(⊕

α∈Λ

Mα, N
)
↔
∏

α∈Λ

Hom(Mα, N).

In the case R is commutative, this bijection is an R-module isomorphism.
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2.5. The internal direct sum of two submodules and splitting short exact sequences

The direct sum of two modules defined in 2.1 is the so-called external direct sum; we will now deal with
the internal one, appearing when a module already exists and only has to be recognized as a direct sum of
its submodules.

2.5.1. Let M be a module and let M1, M2 be two submodules of M . We say that M is a direct sum of M1

and M2 and write M = M1 ⊕M2 if the triplet (M, ξ1, ξ2), where ξi are the embeddings Mi −→ M , is the
universal repelling object in the category of triplets described in 2.3.6.

If M =M1 ⊕M2, we say that M1 and M2 are direct summands of M .

2.5.2. There are several criteria for a module to be a direct sum of two its submodules:

Theorem. Let M be a module and M1, M2 be its submodules. Then the following are equivalent:

(i) M =M1 ⊕M2;

(ii) M =M1 +M2 and M1 ∩M2 = 0;

(iii) every element u of M is uniquely representable in the form u = u1 + u2 with u1 ∈M1 and u2 ∈M2;

(iv) for the projection homomorphism π:M −→M/M1, the restriction π|M2
is an isomorphism between M2

and M/M1.

Proof. If M = M1 ⊕M2, then M is isomorphic to “the abstract”, external direct sum M1 ⊕M2, under an
isomorphism that is identical on M1 and M2; since statements (ii)-(iv) hold for the outer direct sum, they
hold for M . So, (i) implies (ii)-(iv).

(ii) and (iii) are clearly equivalent: M =M1 +M2 means that every u ∈M is representable as u1 + u2
with u1 ∈ M1 and u2 ∈ M2. If M1 ∩M2 = 0, such a representaqtion is unique: if u1 + u2 = v1 + v2 with
u1, v1 ∈M1 and u2, v2 ∈M2, then u1 − v1 = v2 − u2 ∈M1 ∩M2 = 0, so u1 = v1 and u2 = v2. Conversely, if
every u ∈M has a unique representation in the form u1 + u2 with ui ∈Mi, then since for u ∈M1 ∩M2 we
have u = u+ 0 = 0 + u with u ∈M1, 0 ∈M2 and 0 ∈M1, u ∈M2, we get that u = 0.

Next, (iii) implies (i): Given (iii), consider the homomorphism ϕ:M1⊕M2 −→M , ϕ(u1, u2) = u1 +u2.
Then ϕ is identical on M1 and M2: ϕ(u1) = u1 and ϕ(u2) = u2 for any u1 ∈ M1 and u2 ∈ M2. And since
every u ∈M can be uniquely written as u1 + u2 with u1 ∈M1 and u2 ∈M2, ϕ is bijective.

Suppose (iv). Then M1 ∩ M2 = ker
(
π|M2

)
= 0 since π|M2

is injective. Let u ∈ M . Since π|M2
is

surjective, there is u2 ∈ M2 such that π(u) = π(u2). Then π(u − u2) = 0, so u1 = u − u2 ∈ M1, and
u = u1 + u2. Hence, (iv) implies (ii).

2.5.3. If N is a submodule of a module M , we may ask whether N is a direct summand of M , that is,
whether M = N ⊕K for some submodule K of M . Similarly, if K is a quotient module of a module M , we
may ask whether M is a direct product of (a copy of) K and some other submodule. Theorem 2.5.6 below
helps recognize these situations.

2.5.4. For an epimorphism ϕ:M −→ N , if a homomorphism σ:N −→ M is such that ϕ◦σ = IdN , we say
that σ is a section of ϕ:

M
ψ−→←−
σ

N −→ 0.

If in a short exact sequence 0 −→ N
ϕ−→M

ψ−→ K −→ 0 the epimorphism ψ has a section, we say that this
sequence splits from the right :

0 −→ N −→M
ψ−→←−
σ

K −→ 0.

2.5.5. For a monomorphism ϕ:N −→ M , if a homomorphism τ :M −→ N is such that τ◦ϕ = IdN , we say
that τ is a projection for ϕ:

0 −→ N
ϕ−→←−
τ

M.

If in a short exact sequence 0 −→ N
ϕ−→ M

ψ−→ K −→ 0 the monomorphism ϕ has a projection, we say
that the sequence splits from the left :

0 −→ N
ϕ−→←−
τ

M −→ K −→ 0.
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2.5.6. Theorem. (i) If a short exact sequence 0 −→ N
ϕ−→ M

ψ−→ K −→ 0 splits from the right, with
σ:K −→ M being a section of ψ, then M = N ′ ⊕K ′ where N ′ = ϕ(N) is isomorphic to N (under ϕ) and
K ′ = σ(K) is isomorphic to K (under σ).

(ii) If a short exact sequence 0 −→ N
ϕ−→ M

ψ−→ K −→ 0 splits from the left, with τ :M −→ N being a
projection for ϕ, then M = N ′ ⊕K ′ where N ′ = ϕ(N) is isomorphic to N (under ϕ) and K ′ = ker(τ) is
isomorphic to K (under ψ|K′

).

Proof. (i) Consider the diagram

0−→N η1−→N ⊕K π2−→←−
η2

K−→0

l ↓ρ l
0−→N ϕ−→ M

ψ−→←−
σ

K−→0

(where ηi are the embeddings and πi are the projections). By the universal property of the direct sum, the
homomorphisms ϕ:N −→M and σ:K −→M define a homomorphism ρ:N ⊕K −→M such that ρ◦η1 = ϕ
and ρ◦η2 = σ. This makes the diagram commutative. (The right square of the diagram is commutative
since σ is a section of ψ: for any u ∈ N and v ∈ K we have ρ(u, 0) = ϕ(u) and ρ(0, v) = σ(v), so
ρ(u, v) = ϕ(u) + σ(v), so ψ(ρ(u, v)) = ψ(ϕ(u)) + ψ(σ(v)) = v = π2(u, v).) By the short five lemma, ρ is an
isomorphism, so M = ϕ(N)⊕ σ(K).

As a corollary we get that a short exact sequence splits from the left iff it splits from the right; so, we
can simply say that it splits .

2.6. The internal direct sum of a family of submodules

2.6.1. For finitely many modules M1, . . . ,Mk, the direct sum and the direct product of R-modules
M1, . . . ,Mk is

k⊕

i=1

Mi =
k∏

i=1

Mi =
{
(u1, . . . , uk) : ui ∈Mi, i = 1, . . . , k

}

with the componentwise addition and multiplication by scalars:

(u1, . . . , uk) + (v1, . . . , vk) = (u1 + v1, . . . , uk + vk), a(u1, . . . , uk) = (au1, . . . , auk),
ui, vi ∈Mi, i = 1, . . . , k, a ∈ R.

For each i, Mi is identified with a submodule and with a quotient module of
⊕k

i=1Mi. Under the first of

these identifications we have M =M1 + . . .+Mk and Mj ∩
∑k

i=1
i6=j

Mi = 0 for every j = 1, . . . , k.

2.6.2.
⊕k

i=1Mi is the universal repelling object in the category whose objects are the k + 1-tuples
(N,ϕ1, . . . , ϕk), where N is an R-module and ϕi:Mi −→ N , i = 1, . . . , k, are homomorphisms, and mor-
phisms between (N,ϕ1, . . . , ϕk) and (K,ψ1, . . . , ψk) are homomorphisms σ:N −→ K satisfying ψi = σ◦ϕi
for all i = 1, . . . , k:

Mi

N K.σ

ϕi ψi

(In this category, the only morphism σ:
⊕k

i=1Mi −→ (N,ϕ1, . . . , ϕk) is that defined by σ(u1, . . . , uk) =
ϕ1(u1) + · · ·+ ϕk(uk).)

2.6.3.
∏k
i=1Mi =

⊕k
i=1Mi is also the universal attracting object in the category whose objects are the

k + 1-tuples (N,ϕ1, . . . , ϕk), where N is an R-module and ϕi:N −→Mi, i = 1, . . . , k, are homomorphisms,
and morphisms between (N,ϕ1, . . . , ϕk) and (K,ψ1, . . . , ψk) are homomorphisms η:N −→ K satisfying
ϕi = ψi◦η for all i = 1, . . . , k:

Mi

N K.
η

ϕi ψi

(In this category, the only morphism η: (N,ϕ1, . . . , ϕk) −→
⊕k

i=1Mi is that defined by η(v) =
(
ϕ1(v), . . . ,

ϕk(v)
)
, v ∈ N .)
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2.6.4. Let M be a module and Mα, α ∈ Λ, be a (finite or infinite) family of submodules of M . We say
that M is an (internal) direct sum of this family and write M =

⊕
α∈ΛMα if M , with the embeddings

Mα −→M , α ∈ Λ, is a universal repelling object in the category described in 2.4.2.

2.6.5. Theorem. Let M be a module and Mα, α ∈ Λ, be a family of submodules of M . Then the following
are equivalent:

(i) M =
⊕

α∈ΛMα.

(ii) M =
∑
α∈ΛMα (that is, M is generated by the modules Mα) and for every α ∈ Λ, Mα ∩

∑
β∈Λ
β 6=α

Mβ = 0

(which is equivalent to saying that for any distinct α, α1, . . . , αk, Mα ∩
∑k
i=1Mαi

= 0).

(iii) Every nonzero u ∈ M is uniquely representable in the form u =
∑fin
α∈Λ uα with uα ∈ Mα for every α.

(Equivalently, every nonzero element u of M is uniquely representable in the form u = u1 + . . . + uk with
nonzero ui ∈Mαi

, i = 1, . . . , k, and distinct α1, . . . , αk ∈ Λ.)

2.7. The Chinese remainder theorem and p-primary components of modules

Here are two situations where direct sums naturally appear.

2.7.1. If M is a left R-module and I is a left ideal of R, then the set

IM =
{ k∑

i=1

aiui : k ∈ N, ai ∈ I, ui ∈M, i = 1, . . . , k
}

is a submodule of M .

2.7.2. The Chinese remainder theorem. Let R be a commutative unital ring, let M be an R-module,
and let I1, . . . , In be ideals in R which are pairwise comaximal (that is, Ii + Ij = R for all i 6= j). Then
I1M ∩ · · · ∩ IkM = (I1 · · · In)M and M/(I1 · · · In)M ∼=

⊕n
i=1(M/IiM), under the homomorphism that

maps u + (I1 · · · In)M to
(
u + I1M, . . . , u + InM

)
, u ∈ M . In particular, if (I1 · · · In)M = 0, then M ∼=⊕n

i=1(M/IiM).

Proof. We know that I1 and I2 · · · In are comaximal, so it suffices to prove the theorem for the case n = 2
and then use induction.

Let I and J be comaximal, let a ∈ I and b ∈ J be such that a+b = 1. We clearly have IJM ⊆ IM∩JM ,
let now u ∈ IM ∩ JM ; then u = au+ bu ∈ aJM + bIM ⊆ IJM , so IM ∩ JM ⊆ IJM .

Consider the natural homomorphism ϕ:M −→ (M/IM)⊕ (M/JM). We have ker(ϕ) = IM ∩ JM , so
it remains to show that ϕ is surjective. Given v, w ∈M , put u = av+ bw; then u = v− bv+ bw = vmod JM
and u = av + w − aw = wmod IM , so ϕ(u) = (wmod IM,wmod JM).

2.7.3. Let R be a PID and let M be a torsion R-module. For a prime p ∈ R, the p-primary component of M
is the submodule Mp =

{
u ∈M : pku = 0 for some k ∈ N

}
. Then M is a direct sum of its nonzero primary

components: M =
⊕

p:Mp 6=0Mp.

In the case M has a anonzero annihilator a = pr11 · · · prkk , where pi are distinct primes in R and ri ≥ 1

for all i, we have Mpi = Ann(prii ) for all i, and M =
⊕k

i=1Mpi .

3. Free modules

In this section R is assumed to be a unital ring.

3.1. Free modules of finite rank

3.1.1. Let n ∈ N. The free R-module of rank n is the direct product Rn (which is the same as the direct
sum

∑n
i=1R) of n copies of R; more generally, an R-module M is said to be free of rank n if M ∼= Rn.

3.1.2. Let B be a subset of a module M . A linear combination of elements of B is a (finite) sum of the form∑fin
v∈B avv with av ∈ R, v ∈ B. A subset B of a module M is called a basis of M if M =

⊕
v∈B Rv, that is,

if every element u ∈ M is uniquely representable as a linear combination of element of B, u =
∑
v∈B avv;

the scalars av, v ∈ B, are called the coordinates of u in the basis B.
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3.1.3. The elements e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., en = (0, . . . , 0, 1) form the standard basis
of Rn: any u = (a1, . . . , an) ∈ Rn is uniquely representable in the form u =

∑n
i=1 aiei.

3.1.4. If M is free of rank n and ϕ:Rn −→ M is an isomorphism, let ui = ϕ(ei), i = 1, . . . , n; then
{u1, . . . , un} is a basis of M . Conversely, if M has a basis {u1, . . . , un} of cardinality n, we can construct an
isomorphism M −→ Rn by mapping u =

∑n
i=1 aiui ∈M to the n-tuple (a1, . . . , an) ∈ Rn of its coordinates

in the basis {u1, . . . , un}. Hence, M is free of rank n iff M has a basis of cardinality n.

3.2. Free modules generated by sets

Let S be a set, finite or infinite.

3.2.1. The free R-module generated by S is the direct sum
⊕

s∈S R; let us denote it by FR(S). It consists
of functions S −→ R, s 7→ as, such that as = 0 for all but finitely many s ∈ S. For each s ∈ S let es be
the function that is equal to 1 at s and to 0 at all other elements of S; then {es}s∈S is a basis of FR(S):
every element of this module is uniquely representable as a linear combination

∑fin
s∈S ases. Identifying each

s ∈ S with the corresponding es, we may assume that S ⊆ FR(S) and is a basis of this module, so that the
elements of FR(S) take the form

∑
s∈S ass.

3.2.2. We call an R-module M free if it is isomorphic to a free module. This is so iff M has a basis B, in
which case M is (isomorphic to) the module FR(B).

3.2.3. The rank of a free module M is defined as the cardinality of any its basis. (Generally speaking, the
rank is not defined uniquly: there is a ring R for which R2 ∼= R as R-modules. However if the ring R is
commutative and unital, the rank is well defined.)

3.2.4. Let M be an R-module and let η:S −→ M be a mapping. Then η is uniquely extendible to a
homomorphism FR(S) −→ M , by putting η

(∑fin
s∈S ass

)
=
∑fin
s∈S asη(s). This means that FR(S), with the

natural embedding S −→ FR(S), is the universal repelling object in the category of the pairs (M,η), where
η is a mapping S −→ M , with morphisms between two objects (M,η) and (N, θ) being homomorphisms
ϕ:M −→ N satisfying θ = ϕ◦η:

S

M N.
ϕ

η θ

3.2.5. In particular, if S is a subset ofM , we have a unique homomorphism ϕ:FR(S) −→M that is identical
on S: ϕ(s) = s for all s ∈ S. If S is a generating set of M , then ϕ is an epimorphism, and M is isomorphic
to a quotient module of FR(S). We therefore have the following theorem:

Theorem. Every module is isomorphic to a quotient module of a free module; if a module M is generated
by a set S, then M is isomorphic to a quotient module of FR(S).

3.3. Maximal free submodules and the rank of a module

3.3.1. A subset B of a module M is said to be linearly independent if a linear combination
∑fin
u∈B auu of

elements of B is equal to 0 only if au = 0 for all u ∈ B.

3.3.2. Lemma. A subset B of a module M is a basis of M iff B is linearly independent and generates M .

3.3.3. If B is a linearly independent subset of M and N is the submodule of M generated by B, then B is
a basis in N and so, N is free.

3.3.4. A standard application of Zorn’s lemma gives:

Theorem. Every module M has a maximal linearly independent subset. Moreover, every linearly indepen-
dent subset of M is contained in a maximal one.

3.3.5. I will call the module generated by a maximal linearly independent subset of M a maximal free
submodule ofM . (Though such a module may not be, in fact, a maximal element in the set of free submodules
of M ! Consider, for instance, Q as a Z-module.)

3.3.6. Proposition. Let N be a free submodule of a module M . Then N is a maximal free submodule of
M iff M/N is a torsion module.

Proof. Let B be a basis of N . For u ∈ M , the set B ∪ {u} is linearly dependent iff au +
∑fin
v∈B avv = 0

for some a 6= 0, iff au = 0modN for some a 6= 0, iff ū = umodN is a torsion element in M/N . So, B is a
maximal linearly independent subset of M iff M/N is a torsion module.
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3.3.7. If R is an integral domain, then the rank of an R-module M , rankRM or rankM , is defined as the
rank of its maximal free submodule, that is, the cardinality of a maximal linearly independent subset. We
will see later (in 6.4.3) that rankM is well defined.

3.4. Vector spaces and dimension

3.4.1. Theorem. Any vector space is a free module; any maximal linearly independent subset of a vector
space is a basis of this space.

Proof. Let F be a field and V be a vector space. Let N be a maximal free F -submodule of V . Then
V/N is a torsion module; but since F has no nontrivial ideals, there are no nontrivial torsion F -modules, so
V/N = 0. Hence, V = N and V is free.

3.4.2. Theorem. Any subspace W of a vector space V is a free summand of V : there exists a subspace W ′

of V such that V =W ⊕W ′.

3.4.3. Theorem. Any two bases in a vector space have the same cardinality.

The proof of this theorem is based on the replacement lemma (or theorem), and, in the case of infnite
dimensional spaces, requires Zorn’s lemma.

The cardinality of any basis of an F -vector space V (that is, the rank of V as a free F -module) is called
the dimension of V and is denoted by dimV ; the theorem says that dimV is well defined. Two vector
F -spaces are isomorphic iff they have the same dimension.

3.4.4. As a corollary, we get:

Corollary. If R is a commutative unital ring, then the rank of a free R-module is well defined. (That is,
any two maximal linearly independent subsets in M have the same cardinality.)

Proof. Let I be a maximal ideal in R, let F be the field R/I. If M is an R-module, then M/IM has a
structure of an R/I-module, that is, is an F -vector space. And if M is free, then rankRM = dimF (M/IM),
and so is well defined. (If M ∼= Rn, then M/IM ∼= Rn/(IRn) = Rn/In ∼= (R/I)n = Fn. In the case M has
infinite rank, given a basis B of M , Bmod IM is a basis in M/IM . Indeed, Bmod IM generates (spans)
M/IM over R and so over F = R/I; and the fact that any finite subset of B is linearly indpendent modulo
IM follows from the finite rank case.)

3.4.5. If V is a finite dimensional vector space andW is a subspace of V , then dimV = dimW +dim(V/W ),
and if dimW = dimV , then W = V .

3.4.6. Proposition. If ϕ:V −→W is a homomorphism of finite dimensional vector spaces, then dimϕ(V ) =
dimV − dimker(ϕ).

3.4.7. As a corollary, we obtain:

Proposition. If ϕ:V −→W is a homomorphism of vector spaces with dimV = dimW <∞, then ϕ is an
isomorphism iff ϕ is a monomorphism iff ϕ is an epimorphism.

4. Tensor product of modules

To avoid unpleasant complications, I’ll only consider tensor products of modules over commutative rings;
for tensor products of modules over non-commutative rings see the book.

In this section, R will be a commutative unital ring.

4.1. Bilinear mappings of modules

4.1.1. Let M1, M2, N be R-modules. A mapping β:M1 ×M2 −→ N is said to be bilinear if

β(u1 + v1, u2) = β(u1, u2) + β(v1, u2); β(au1, u2) = aβ(u1, u2);
β(u1, u2 + v2) = β(u1, u2) + β(u1, v2); β(u1, au2) = aβ(u1, u2)

for all u1, v1 ∈M1, u2, v2 ∈M2, and a ∈ R; in other words, if for any u2 ∈M2 the mapping u1 7→ β(u1, u2)
is a homomorphism M1 −→ N , and for any u1 ∈ M1 the mapping u2 7→ β(u1, u2) is a homomorphism
M2 −→ N .
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Example. If A is an R-algebra, then the multiplication in A is a bilinear mapping A×A −→ A.

4.1.2. The composition of a bilinear mapping and a homomorphism is a bilinear mapping.

4.2. The tensor product of two modules

4.2.1. Let M1 and M2 be two R-modules. The tensor product M1⊗RM2, or just M1⊗M2, is the R-module
that is the universal repelling object in the category of bilinear mappings from M1 ×M2; in other words,
M1⊗M2 is the R-module with a bilinear mapping β:M1×M2 −→M1⊗M2 such that for any R-module N
with a bilinear mapping γ:M1 ×M2 −→ N there exists a unique homomorphism ϕ:M1 ⊗M2 −→ N with
the property that γ = ϕ◦β:

M1 ×M2

M1 ⊗M2 N.
ϕ

β γ
(4.1)

4.2.2. As a universal object, the tensor product is unique up to isomorphism; but its existence is not evident.
Here is a direct construction of M1 ⊗R M2. Consider the free module FR(M1 ×M2), that is, the module
of formal linear combinations of the pairs (u1, u2) ∈ M1 ×M2. Let K be the submodule of FR(M1 ×M2)
generated by the set of elements of the form

(u1 + v1, u2)− (u1, u2)− (v1, u2), (au1, u2)− a(u1, u2),
(u1, u2 + v2)− (u1, u2)− (u1, v2), (u1, au2)− a(u1, u2)

for u1, v1 ∈ M1, u2, v2 ∈ M2, and a ∈ R. Put M = FR(M1 ×M2)/K, and define β:M1 ×M2 −→ M by
β(u1, u2) = (u1, u2) = (u1, u2)+K. Then β is bilinear: modulo K, we have (u1 + v1, u2) = (u1, u2)+(v1, u2),
etc. Now, given any bilinear mapping γ:M1×M2 −→ N , by the universal property of free modules, there is
a unique homomorphism ϕ̃:FR(M1 ×M2) −→ N such that ϕ̃(u1, u2) = γ(u1, u2) for all u1 ∈M1, u2 ∈M2.
Because of bilinearity of γ, the elements of K are mapped by ϕ̃ to 0, that is, K ⊆ ker(ϕ); this implies that
ϕ̃ factorizes to a unique homomorphism ϕ:M1 ⊗M2 −→ N for which the diagram (4.1) is commutative:
ϕ
(
(u1, u2)

)
= γ(u1, u2).

4.2.3. Elements of the module M1 ⊗M2 are called tensors . The image β(M1 ×M2) of M1 ×M2 generates
M1 ⊗M2. For an element (u1, u2) ∈ M1 ×M2, its image in M1 ⊗M2 is denoted by u1 ⊗ u2; tensors of
this sort are called simple. Therefore, M1 ⊗M2 is generated by the set of simple tensors: every tensor is a
linear combination of simple tensors. Thus, any homomorphism from M1 ⊗M2 is defined by its values on
the simple tensors.

Moreover, if M1 is generated by a set S1 and M2 by a set S2, then M1 ⊗M2 is generated by simple
tensors of the form u1 ⊗ u2 with u1 ∈ S1 and u2 ∈ S2. Indeed, for every simple tensor w = v1 ⊗ v2 ∈
M1 ⊗M2 we have v1 =

∑k
i=1 aiu1,i with u1,1, . . . , u1,k ∈ S1 and v2 =

∑l
j=1 bju2,j with u2,1, . . . , u2.l ∈ S2,

so w =
∑
i,j aibju1,i ⊗ u2,j , which is a linear combination of tensors of the needed form. Since every tensor

is a linear combination of simple tensors, this holds true for every tensor either.

4.3. Elementary properties of tensor multiplication and examples of tensor products

In what follows, M,M1,M2,M3 are R-modules.

4.3.1. Remark. How can we construct a homomorphism M1 ⊗M2 −→ M? We first construct a bilinear
mapping γ:M1 ×M2 −→M , and then the universal property of tensor product will guarantee that there is
a homomorphism ϕ:M1 ⊗M2 −→ M such that ϕ(u1 ⊗ u2) = γ(u1, u2) for all u1 ∈ M1 and u2 ∈ M2. How
can we prove that this homomorphism is an isomorphism? We either construct its inverse, or prove that it
is both an epi- and monomorphism.

4.3.2. By definition, in the tensor product M1 ⊗M2,

(u1+v1)⊗u2 = u1⊗u2+v1⊗u2, u1⊗ (u2+v2) = u1⊗u2+u1⊗v2, (au1)⊗u2 = u1⊗ (au2) = a(u1⊗u2)

for any u1, v1 ∈M1, u2, v2 ∈M2, a ∈ R.
4.3.3. For any u1 ∈ M1 and any u2 ∈ M2 we have u1 ⊗ 0 = 0 ⊗ u2 = 0; indeed, u1 ⊗ 0 = u1 ⊗ (0 + 0) =
u1 ⊗ 0 + u1 ⊗ 0. It follows that for any module M , M ⊗ 0 = 0⊗M = 0.
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4.3.4. R⊗M ∼=M , where the isomorphism is given by a⊗ u 7→ au.

Proof. Define β:R×M −→M by β(a, u) = au. β is bilinear, thus induces a homomorphism ϕ:R⊗M −→M
with ϕ(a ⊗ u) = au, a ∈ R, u ∈ M . The homomorphism ψ:M −→ R ⊗M defined by ψ(u) = 1 ⊗ u is the
inverse of ϕ on simple tensors and thus is the inverse of ϕ. So, ϕ is an isomorphism.

4.3.5. M1 ⊗M2
∼=M2 ⊗M1, where the isomorphism is defined by u1 ⊗ u2 7→ u2 ⊗ u1.

Proof. Define β:M1 ×M2 −→ M2 ⊗M1 by β(u1, u2) = u2 ⊗ u1. Then β is a bilinear mapping, thus it
induces a homomorphism ϕ:M1 ⊗M2 −→ M2 ⊗M1 with ϕ(u1 ⊗ u2) = u2 ⊗ u1 for all u1 ∈ M1, u2 ∈ M2.
Similarly, there is a homomorphism ψ:M2 ⊗M1 −→ M1 ⊗M2 with ϕ(u2 ⊗ u1) = u1 ⊗ u2 for all u1 ∈ M1,
u2 ∈ M2. Since ψ is the inverse of ϕ on the generators (the simple tensors), ψ is the inverse of ϕ and ϕ is
an isomorphism.

4.3.6. (M1⊗M2)⊗M3
∼=M1⊗(M2⊗M3), where the isomorphism is defined by (u1⊗u2)⊗u3 7→ u1⊗(u2)⊗u3).

Proof. For each z ∈M3, define βz:M1 ×M2 −→M1 ⊗ (M2 ⊗M3) by βz(u1, u2) = u1 ⊗ (u2 ⊗ z), u1 ∈M1,
u2 ∈ M2. βz is bilinear, and thus induces a homomorphism ϕz:M1 ⊗ M2 −→ M1 ⊗ (M2 ⊗ M3) with
ϕz(u1⊗u2) = u1⊗(u2⊗z), u1 ∈M1, u2 ∈M2. Now define a mapping β: (M1⊗M2)×M3 −→M1⊗(M2⊗M3)
by β(w, z) = ϕz(w), z ∈ M3, w ∈ M1 ⊗M2; in particular, β((u1 ⊗ u2), z) = u1 ⊗ (u2 ⊗ z) for all u1 ∈ M1,
u2 ∈M2, z ∈M3. It is easy to check that β is bilinear, and thus induces a homomorphism ϕ: (M1 ⊗M2)⊗
M3 −→M1⊗ (M2⊗M3) with ϕ((u1⊗u2)⊗ z) = u1⊗ (u2⊗ z) for all u1 ∈M1, u2 ∈M2, z ∈M3. Similarly,
there is a homomorphism ψ:M1⊗ (M2⊗M3) −→ (M1⊗M2)⊗M3 with ψ(u1⊗ (u2⊗ z)) = (u1⊗u2)⊗ z for
all u1 ∈M1, u2 ∈M2, z ∈M3. So, ϕ and ψ are inverses of each other on the generators of (M1 ⊗M2)⊗M3

and M1 ⊗ (M2 ⊗M3), and so, are inverses of each other; hence, ϕ is an isomorphism.

4.3.7. (M1 ⊕M2) ⊗M3
∼= (M1 ⊗M3) ⊕ (M2 ⊗M3), where the isomorphism is defined by (u1, u2) ⊗ u3 7→

(u1 ⊗ u3, u2 ⊗ u3).

Proof. Define β: (M1⊕M2)×M3 −→ (M1⊗M3)⊕(M2⊗M3) by β((u1, u2), u3) =
(
u1⊗u3, u2⊗u3

)
. It is easy

to check that β is bilinear, hence it induces a homomorphism ϕ: (M1⊕M2)⊗M3 −→ (M1⊗M3)⊕(M2⊗M3)
with ϕ((u1, u2)⊗u3) =

(
u1⊗u3, u2⊗u3

)
. In particular, ϕ((u1, 0)⊗u3) = (u1⊗u3, 0) and ϕ((0, u2)⊗u3) =

(0, u2 ⊗ u3) for all ui ∈Mi, i = 1, 2, 3.

On the other hand, we have homomorphisms ψ1:M1 ⊗M3 −→ (M1 ⊕M2)⊗M3 and ψ2:M2 ⊗M3 −→
(M1 ⊕M2)⊗M3 with ψ1(u1 ⊗ u3) = (u1, 0)⊗ u3 and ψ2(u2 ⊗ u3) = (0, u2)⊗ u3, for all ui ∈Mi, i = 1, 2, 3.
Hence (by the universal property of the direct sum) there is a homomorphism ψ: (M1⊗M3)⊕(M2⊗M3) −→
(M1⊕M2)⊗M3 such that ψ(u1⊗u3, 0) = (u1, 0)⊗u3 and ψ(0, u2⊗u3) = (0, u2)⊗u3 for all ui ∈Mi, i = 1, 2, 3.
Thus, ϕ and ψ are inverses of each other on the generators of (M1⊕M2)⊗M3 and (M1⊗M3)⊕ (M2⊗M3),
and so, ϕ is an isomorphism.

4.3.8. For any n ∈ N, M ⊗ Rn ∼= Mn. (This follows by induction from 4.3.7 and 4.3.4: M ⊗ Rn =
M ⊗ (R⊕ · · · ⊕R) ∼= (M ⊗R)⊕ · · · ⊕ (M ⊗R) ∼=M ⊕ · · · ⊕M =Mn.)

For any n1, n2 ∈ N, Mn1

1 ⊗Mn2

2
∼= (M1 ⊗M2)

n1n2 . (This follows by induction from 4.3.7.)

4.3.9. For an infinite collection of modules, tensor product also commutes with the direct sum (but not with
the direct product!): Let {Mα}α∈Λ be a collection of modules and N be a module; then

(⊕
α∈ΛMα

)
⊗N ∼=⊕

α∈ΛMα ⊗N .

Proof. We cannot use induction (at least, not the ordinary one), but the proof in 4.3.7 can just be copied.
Define β:

(⊕
α∈ΛMα

)
×N −→⊕

α∈ΛMα⊗N by β((uα)α∈Λ, v) = (uα⊗ v)α∈Λ. It is easy to check that β is

bilinear, hence it induces a homomorphism ϕ:
(⊕

α∈ΛMα

)
⊗N −→⊕

α∈ΛMα ⊗N with ϕ((uα)α∈Λ ⊗ v) =
(uα ⊗ v)α∈Λ.

On the other hand, for every α ∈ Λ we have the homomorphism ψα:Mα ⊗ N −→
(⊕

α∈ΛMα

)
⊗ N

defined by ψα(u⊗v) = (uδ)δ∈Λ⊗v with uδ = u if δ = α and 0 otherwise. Hence (by the universal property of
the direct sum!) there is a homomorphism ψ:

⊕
α∈Λ(Mα⊗N) −→

(⊕
α∈ΛMα

)
⊗N satisfying, in particular,

ψ
(
(uα ⊗ v)α∈Λ

)
=
∑fin
α∈Λ ϕα(uα ⊗ v) = (uα)α∈Λ ⊗ v. Thus, ϕ and ψ are inverses of each other on the

generators, so are inverses of each other, and so, ϕ is an isomorphism.
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4.3.10. If I is an ideal of R, then (R/I)⊗M ∼=M/(IM), where the isomorphism is given by (amod I)⊗u 7→
(aumod IM). M/(IM) can be considered as an (R/I)-module.

Proof. The mapping β: (R/I) × M −→ M/(IM), β(amod I, u) = aumod IM , is well defined, since if
a = bmod I then au = bumod IM . β is bilinear, so defines a homomorphism ϕ: (R/I)⊗M −→M/IM with
ϕ((amod I)⊗ u) = aumod IM for all a ∈ R, u ∈M .

Let us define a homomorphism ψ̃:M −→ (R/I) ⊗M by ψ̃(u) = (1mod I) ⊗ u. For any a ∈ I, u ∈ M
we have ψ̃(au) = (1mod I)⊗ (au) = (amod I)⊗ u = 0, so ψ̃(IM) = 0, and ψ̃ factorizes to a homomorphism
ψ:M/IM −→ (R/I)⊗M . We can check that ψ is the inverse of ϕ on simple tensors: ψ(ϕ((amod I)⊗u)) =
ψ(aumod IM) = (1mod I)⊗ au = (amod I)⊗ u, and ϕ(ψ(umod IM)) = ϕ((1mod I)⊗ u) = umod IM for
all a ∈ R, u ∈M . Hence, ψ is the inverse of ϕ, and ϕ is an isomorphism.

4.3.11. For any n, n ∈ N, Zn ⊗Z Zm ∼= Zd where d = gcd(n,m).

Proof. The bilinear mapping Zn×Zm −→ Zd, (a, b) 7→ ab, is well defined, thus it induces a homommorphism
ϕ:Zn ⊗ Zm ∼= Zd with ϕ(a⊗ b) = abmodZd. Clearly, ϕ is surjective. To construct the inverse mapping, we
define ψ(c) = c⊗ 1, c ∈ Z, and check that it factorizes to a homomorphism from Zd: for this end, we write
d = kn+ lm and see that ψ(d) = (kn+ lm)⊗ 1 = k(n⊗ 1) + l(1⊗m) = 0.

It is however easier to use 4.3.10: Zn ⊗ Zm = (Z/(n))⊗ Zm ∼= Zm/((n)Zm) = Zm/(dZm) ∼= Zd.

4.3.12. If I and J are ideals inM , then (R/I)⊗(R/J) ∼= R/(I+J). (This can be proved directly or deduced
from 4.3.10.)

4.3.13. Let R be an integral domain, let F be the field of fractions of R, and let M be an R-module. Then
the kernel of the natural homomorphism M −→ F ⊗RM , u 7→ 1⊗u, u ∈M , is the torsion submodule of M .

Proof. Let ϕ:M −→ F ⊗M , ϕ(u) = 1⊗ u. It is easy to see that Tor(M) ⊆ ker(ϕ). Indeed, if u ∈ Tor(M),
let a 6= 0 be such that au = 0, then ϕ(u) = 1⊗ u =

(
a 1
a

)
⊗ u = 1

a ⊗ (au) = 0.
Now, assume that u ∈ ker(ϕ), that is, 1 ⊗ u = 0 in F ⊗M . This means that (1, u) is contained in the

“relations submodule” K of FR(F×M), the kernel of the projection FR(F×M) −→ F⊗M , that is, is a linear
combination of elements of FR(F ×M) of the form (q1 + q2, v)− (q1, v)− (q2, v), etc., with qi ∈ F , v ∈M .
Let d be a common multiple of the denominators of all elements of F involved in this linear combination;
then all elements of this linear combination are contained in FR(R 1

d ×M). This means that 1 ⊗ u = 0 in
the product R 1

d ⊗M . We have R 1
d
∼= R, under the isomorphism a 7→ da; so R 1

d ⊗M ∼= R ⊗M ∼=M under
the isomorphism defined by a ⊗ v 7→ da ⊗ v 7→ dav, a ∈ R, v ∈ M . Hence, since 1 ⊗ u = 0 in R 1

d ⊗M , we
have that du = 0 in M . So, u ∈ Tor(M).

4.3.14. For any three R-modules M1, M2, and N there is a natural isomorphism Hom(M1 ⊗ M2, N) ∼=
Hom

(
M1,Hom(M2, N)

)
.

Indeed, given a homomorphism ϕ:M1 ⊗ M2 −→ N , for every u ∈ M1 we have a homomorphism
ϕu:M2 −→ N defined by ϕu(v) = ϕ(u⊗v). This gives a mapping ψ:M1 −→ Hom(M2, N), u 7→ ϕu, and it is
easy to see that ψ is a homomorphism: for any u1, u2 ∈M1, ϕu1+u2

(v) = ϕ((u1+u2)⊗v) = ϕ(u1⊗v+u2⊗v) =
ϕu1

(v) + ϕu2
(v) for all v ∈ M2, so ψ(u1 + u2) = ψ(u1) + ψ(u2), and similarly ψ(au) = aψ(u). So, we have

a mapping Hom(M1 ⊗ M2, N) −→ Hom
(
M1,Hom(M2, N)

)
, and we can see that this mapping is also a

homomorphism: for ϕ1, ϕ2 ∈ Hom(M1 ⊗M2, N), ϕ1 + ϕ2 is mapped to ψ ∈ Hom
(
M1,Hom(M2, N)

)
such

that, for all u ∈M1 and v ∈M2, ψ(u)(v) = (ϕ1+ϕ2)(u⊗ v) = ϕ1(u⊗ v)+ϕ2(u⊗ v) = ψ1(u)(v)+ψ2(u)(v),
so ψ(u) = ψ1(u) + ψ2(u), so ψ = ψ1 + ψ2, where ψi is the image of ϕi, i = 1, 2; similarly, for ϕ ∈
Hom(M1 ⊗M2, N) and a ∈ R, the image of aϕ is aψ where ψ is the image of ϕ in Hom

(
M1,Hom(M2, N)

)
.

The inverse mapping Hom
(
M1,Hom(M2, N)

)
−→ Hom(M1 ⊗M2, N) is defined in the following way:

Given a homomorphism ψ:M1 −→ Hom(M2, N), define a mapping β:M1×M2 −→ N by β(u, v) = ψ(u)(v).
β is bilinear: for any u, u1, u2 ∈ M1, v, v1, v2 ∈ M2 and a ∈ R, β(u1 + u2, v) = ψ(u1 + u2)(v) = (ψ(u1) +
ψ(u2))(v) = ψ(u1)(v) + ψ(u2)(v) = β(u1, v) + β(u2, v) and β(au, v) = ψ(au)(v) = (aψ(u))(v) = aψ(u)(v) =
aβ(u)(v) since β is a homomorphism, and β(u, v1 + v2) = ψ(u)(v1 + v2) = ψ(u)(v1) + ψ(v)(v2) = β(u, v1) +
β(u, v2) and β(u, av) = ψ(u)(av) = aψ(u)(v) = aβ(u, v) since β(u) is a homomorphism for every u ∈ M1.
Thus β induces a homomorphism ϕ:M1 ⊗M2 −→ N with ϕ(u ⊗ v) = ψ(u)(v) for all u ∈ M1 and v ∈ M2.
And clearly, the constructed mapping ψ 7→ ϕ is the inverse of the homomorphism ϕ 7→ ψ above: for all
u ∈M1 and v ∈M2 we have ψ(u)(v) = ϕ(u⊗ v) and ϕ(u⊗ v) = ψ(u)(v).
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4.4. Extension of scalars

4.4.1. Let M be an R-module and A be an R-algebra. Then the tensor product A ⊗R M has a structure
of an A-module, defined by α(β ⊗ u) = (αβ) ⊗ u. This operation of passing from an R-module M to the
A-module A⊗RM is called an extension of scalars .

4.4.2. Examples. (i) If V is an R-vector space, the C-vector space C⊗R V is called the complexification of
V . C⊗R V is spanned by tensors of the form 1⊗ u and i⊗ u, u ∈ V , and, after identification V with 1⊗ V ,
can be written as V ⊕ iV .

(ii) If M is a free R-module and A is an R-algebra, then A⊗RM is a free A-module, of the same rank.

(iii) If R is an integral domain and F is its field of fractions, then for any R-module M , F ⊗R M is an
F -vector space.

(iv) 4.3.10 above also gives an example of an extension of scalars: R/I is an R-algebra and (R/I)⊗M is an
(R/I)-module.

4.4.3. If A is a unital R-algebra, the A-module A ⊗R M with the homomorphism M −→ A ⊗R M of
R-modules is also a universal repelling object, namely, in the category of A-modules N together with an
R-module homomorphism ϕ:M −→ N . (Given such a module and a homomorphism, the corresponding
homomorphism A⊗RM −→ N is defined by α⊗ u 7→ αϕ(u), α ∈ A, u ∈M .)

4.5. The tensor product of two algebras

4.5.1. If A1 and A2 are two R-algebras, then A1 ⊗R A2 has a structure of an R-algebra as well, where the
multiplication is defined by (u1 ⊗ u2)(v1 ⊗ v2) = (u1v1)⊗ (u2v2).

4.5.2. Examples. (i) If A is an R-algebra, then A⊗R R[x] ∼= A[x], the algebra of polynomials over A.

(ii) The product R[x]⊗R[y] is isomorphic to the algebra R[x, y] of polynomials in two variables.

4.6. The tensor product of two homomorphisms

4.6.1. Let ϕ1:M1 −→ N1 and ϕ2:M2 −→ N2 be two homomorphisms of R-modules. Then a homomorphism
ϕ:M1 ⊗R M2 −→ N1 ⊗R N2 is defined by ϕ(u1 ⊗ u2) = ϕ1(u1) ⊗ ϕ2(u2). ϕ is called the tensor product of
ϕ1 and ϕ2 and is denoted by ϕ1 ⊗ ϕ2.

4.6.2. We therefore have a mapping Hom(M1, N1) × Hom(M2, N2) −→ Hom(M1 ⊗M2, N1 ⊗ N2) defined
by (ϕ1, ϕ2) 7→ ϕ1 ⊗ ϕ2; this mapping is bilinear, and, hence, defines a homomorphism Hom(M1, N1) ⊗
Hom(M2, N2) −→ Hom(M1 ⊗M2, N1 ⊗N2) (which may be neither injective nor surjective).

4.7. The tensor product of several modules

4.7.1. Let M1, . . . ,Mk, N be R-modules. A mapping µ:M1 × · · · ×Mk −→ N is said to be multilinear , or
polylinear , if for every i ∈ {1, . . . , k}, every (u1, . . . , uk) ∈M1 × · · · ×Mk, every vi ∈Mi, and every a ∈ R,

µ(u1, · · · , ui−1, ui + vi, ui+1, . . . , uk) = µ(u1, · · · , ui−1, ui, ui+1, . . . , uk) + µ(u1, · · · , ui−1, vi, ui+1, . . . , uk)

and

µ(u1, · · · , ui−1, aui, ui+1, . . . , uk) = aµ(u1, · · · , ui−1, ui, ui+1, . . . , uk).

4.7.2. Given k R-modules M1, . . . ,Mk, the tensor product M1⊗RM2⊗R · · ·⊗RMk is defined the same way
as in the case k = 2, namely, as the universal repelling object in the category of R-modules N together with
multilinear mappings M1 × · · · ×Mk −→ N .

4.7.3. It is easy to see that, actually,

M1 ⊗M2 ⊗ · · · ⊗Mk−1 ⊗Mk
∼=
(
. . . ((M1 ⊗M2)⊗M3) · · · ⊗Mk−1

)
⊗Mk,

and, in light of 4.3.6, is also isomorphic to the sequential tensor product of these modules performed in any
other order.
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4.8. The tensor algebra of a module

Tensor multiplication allows to construct an algebra from any module. (And moreover, the best possible,
the universal one!)

4.8.1. Let M be an R-module. Put T 0(M) = R, T 1(M) = M , T 2(M) = M ⊗M , and for each k ∈ N,
T k(M) =M⊗k =M ⊗ · · · ⊗M︸ ︷︷ ︸

k

. The elements of T k(M) are called k-tensors .

4.8.2. Define

T (M) = R⊕M ⊕M⊗2 ⊕M⊗3 ⊕ · · · =
∞⊕

k=0

T k(M).

As an R-module, T (M) is generated by 1 and the simple tensors u1 ⊗ · · · ⊗ uk, k ∈ N, u1, . . . , uk ∈M . The
multiplication in T (M) is just the tensor multiplication ⊗:

(u1 ⊗ · · · ⊗ uk)⊗ (v1 ⊗ · · · ⊗ vl) = u1 ⊗ · · · ⊗ uk ⊗ v1 ⊗ · · · ⊗ vl.

Under this multiplication, T (M) becomes an R-algebra, called the tensor algebra of M .

4.8.3. Examples. (i) The tensor algebra T (R) is isomorphic to the algebra R[x], under the isomorphism
that maps a1 ⊗ · · · ⊗ ak to a1 · · · akxk.
(ii) Let M = FR({x1, . . . , xd}), the free R-module generated by the set {x1, . . . , xd}. Then T (M) is the
algebra of polynomials over R of noncommuting variables x1, . . . , xd.

4.8.4. An algebra A which is a direct sum A =
⊕∞

k=0Ak of its submodules with the property that for every
k and l, AkAk ⊆ Ak+l is called graded . T (M), with the decomposition T (M) =

⊕∞
k=0 T k(M), is a graded

algebra.

4.8.5. For a given R-module M , the tensor algebra T (M) is the universal repelling object in the category
of unital R-algebras A with an R-module homomorphism η:M −→ A, where morphisms (A, η): (B, τ) are
R-algebra homomorphisms ϕ:A −→ B satisfying ϕ◦η = τ and ϕ(1) = 1. (If η:M −→ A is a homomorphism,
then the unique homomorphism ϕ: T (M) −→ A extending η is defined by ϕ(u1⊗· · ·⊗uk) = η(u1) · · · η(uk).)
4.8.6. The tensor algebra T has a functorial property: any homomorphism ϕ:M −→ N extends to an
R-algebra homomorphism T (M) −→ T (N), by u1 ⊗ · · · ⊗ uk 7→ ϕ(u1)⊗ · · · · · · ⊗ ϕ(uk).

4.9. The symmetric and the exterior algebras of a module

The tensor algebra T (M) of a module M is, generally speaking, noncommutative; it can be made
commutative by proper factorization.

4.9.1. An ideal I in a graded algebra A =
⊕∞

k=0Ak is said to be graded if I =
⊕∞

k=0(I ∩ Ak). If I is a
two-sided graded ideal in A, then A/I is a graded algebra, with A/I =

⊕∞
k=0(Ak/Ik).

4.9.2. Consider the two-sided ideal C(M) in T (M) generated by the tensors of the form u ⊗ v − v ⊗ u,
u, v ∈M . The quotient ring T (M)/C(M) is called the symmetric algebra of M and is denoted by S(M). It
is easy to see that C(M) is a graded ideal, so S(M) is a graded algebra, S(M) =

⊕∞
k=0 Sk(M), with Sk(M) =

T k(M)/
(
T k(M) ∩ C(M)

)
. For each k, Sk(M) is the universal repelling object in the category of modules

N with a symmetric k-linear mapping µ:M −→ N , that is, satisfying µ(uσ(1), . . . , uσ(k)) = µ(u1, . . . , uk),
σ ∈ Sk.

As a ring, S(M) is generated by S0(M) = R and S1(M) =M ; as an R-module, S(M) is generated by 1
and simple tensors u1⊗· · ·⊗uk, ui ∈M , for all k (more exactly, by the equivalence classes of these tensors).
Since in S(M), u ⊗ v = v ⊗ u, it is commutative; and it is easy to see that S(M) is the universal repelling
object in the category of commutative unital R-algebras A with R-module homomorphisms M −→ A.

4.9.3. Example. For M = FR({x1, . . . , xd}), S(M) = R[x1, . . . , xd].
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4.9.4. Let A(M) be the ideal of T (M) generated by the tensors of the form u⊗u, u ∈M . The quotient ring
T (M)/A(M) is called the exterior algebra of M and is denoted by Λ(M). It is easy to see that A(M) is a
graded ideal, so Λ(M) is a graded algebra, Λ(M) =

⊕∞
k=0 Λ

k(M), with Λk(M) = T k(M)/
(
T k(M)∩A(M)

)
.

The multiplication on Λ, induced by the multiplication ⊗ in T (M), is denoted by ∧: the wedge product
of ω1 ∈ Λk(M) and ω2 ∈ Λl(M) is ω1 ∧ ω2 ∈ Λkl(M). For each k, Λk(M) is the universal repelling
object in the category of modules N with an alternating k-linear mapping µ:M −→ N , that is, satisfying
µ(uσ(1), . . . , uσ(k)) = sign(σ)µ(u1, . . . , uk), σ ∈ Sk.

As an R-module, Λ(M) is generated by 1 and the simple tensors u1 ∧ · · · ∧ uk, ui ∈ M , for all k. The
operation ∧ is “anticommutative”: it has the property that u2 ∧ u1 = −u1 ∧ u2 for any u1, u2 ∈ M , and
for any k, l ∈ N, ω1 ∈ Λk(M) and ω2 ∈ Λl(M), ω2 ∧ ω1 = (−1)klω1 ∧ ω2. Graded algebras with such a
multiplication are called alternating ; Λ(M) is, therefore, an alternating algebra, and is, in fact, the universal
repelling object in the category of alternating R-algebras A with R-module homomorphisms M −→ A.

4.9.5. Example. A valuable example of an exterior algebra is the algebra of differential forms on, say, an
open domain U ⊆ Rd: this is the exterior algebra of the module of (continuous or differentiable) covector
fields on U over the ring of (continuous or differentiable) functions on U .

4.9.6. The symmetric and the exterior algebras S and Λ have a functorial property: any homomorphism
ϕ:M −→ N extends to R-algebra homomorphisms S(M) −→ S(N) and Λ(M) −→ Λ(N).

4.10. Symmetric and alternating tensors

An alternative way of constructing symmetric and alternating tensors is by passing to subalgebras of
T (M) instead of quotient algebras.

4.10.1. For each k ∈ N, the symmetric group Sk acts on T k(M) by permuting the entries of tensors:
σ:u1 ⊗ · · · ⊗ uk 7→ uσ(1) ⊗ · · ·uσ(k). The tensors in T k(M) invariant under this action, ω ∈ T k(M) such

that σ(ω) = ω for all σ ∈ Sk, are said to be symmetric; they form a submodule of T k(M), which I will
denote by ST k(M). (The difference between, say, S2(M) and ST 2(M) is that, in the first case, we deal
with “symmetric” tensors of the form u1⊗u2 where ⊗ is assumed to be commutative, so that in this algebra
u1 ⊗ u2 = u2 ⊗ u1; in the second case we deal with “usual” tensors of the the form u1 ⊗ u2 + u2 ⊗ u1.)
4.10.2. The symmetrization Symk of a k-tensor is the operation defined by

Symk(u1 ⊗ · · · ⊗ uk) =
∑

σ∈Sk

uσ(1) ⊗ · · · ⊗ uσ(k);

this is a homomorphism from T k(M) to ST k(M). Symk may not be surjective; however, for sure, its image
contains the submodule k!ST k(M) of ST k(M), and so, in the case k! is a unit in R, Symk is surjective.
The kernel of Symk can be shown to be Ck(M), so, Symk induces an isomorphism between “the module of
symmetric k-tensors” Sk(M) and the submodule Symk(T k(M)) of ST k(M).

4.10.3. The submodule AT k(M) of alternating k-tensors is defined similarly: we say that a tensor ω ∈
T k(M) is alternating if σ(ω) = sign(σ)ω for every σ ∈ Sk.
4.10.4. The alternation, or the skew-symmetrization Altk of an k-tensor is defined by

Altk(u1 ⊗ · · · ⊗ uk) =
∑

σ∈Sk

sign(σ)uσ(1) ⊗ · · · ⊗ uσ(k);

this is a homomorphism from T k(M) to AT k(M). Altk may not be surjective; however, for sure, its image
contains the submodule k!AT k(M) of AT k(M), and so, in the case k! is a unit in R, Altk is surjective.
The kernel of Altk can be shown to be Ak(M), so, Altk induces an isomorphism between Λk(M) and the
submodule Altk(T k(M)) of AT k(M).

22



4.11. A word about tensor multiplication of modules over a noncommutative ring

4.11.1. If R is noncommutative, the tensor multiplication of R-modules becomes more complicated. If we
multiply two left or two right R-modules, we loose noncommutativity of R: (abu) ⊗ v = (bu) ⊗ (av) =
u ⊗ (bav) = (bau) ⊗ v. If M is a right and N is a left R-module, using, instead of bilinear mappings, the
so-called balanced mappings, with the property that β(ua, v) = β(u, av), so that (ua) ⊗ v = u ⊗ (av), we
obtain the product M ⊗R N which is not an R-module but only an abelian group. But if M is a bimodule
and N is a left R-module (or if M is a right R-module and N is a bimodule), then M ⊗RN gets a structure
of a left (respectively, right) R-module, by a(u⊗ v) = (au)⊗ v (respectively, (u⊗ v)a = u⊗ (va)).

4.11.2. We may also ignore the R-module structures and multiply R-modules over Z, M ⊗ZN . Multiplying
this way two left R-modules we produce a group with two different R-module structures: a(u ⊗ v) can be
defined as (au⊗v), or as u⊗(av). By multiplying over Z a left and a right R-modules, we get an R-bimodule,
with a(u⊗ v)b = (au)⊗ (vb).

5. Elements of homological algebra: flat, projective, and injective modules

In this section all modules are over a commutative ring R.

This may look strange, but it happens that, given a submodule N of a module M and some other
module K, N ⊗ K is no longer a submodule, and is not even isomorphic to a submodule, of the module
M ⊗K. (For example, Z is a submodule of Q, but Q⊗Z Z2 = 0 whereas Z⊗Z Z2

∼= Z2 6= 0.) In the language

of exact sequences, this means that the exactness of a sequence 0 −→ N
ϕ−→M does not imply the exactness

of the sequence 0 −→ N ⊗K ϕ⊗IdL−→ M ⊗K. However, the surjectivity of a homomorphism is preserved by

tensor multiplication: if a sequence M
ϕ−→ N −→ 0 is exact, then the sequence M ⊗K ϕ⊗IdK−→ N ⊗K −→ 0

is also exact. There is a categorial language to express such behavior.

5.1. Co- and contravariant functors, left and right exact

5.1.1. A covariant functor Φ from category A to category B assigns an object Φ(A) in B to every object A
of A (we could say that Φ is a mapping from A to B, but, unfortunately, categories are not necessarily sets!)
and a morphism Φ(ϕ): Φ(A) −→ Φ(B) to each morphism ϕ:A −→ B in A, preserving the compositions of
morphisms: Φ(ψ◦ϕ) = Φ(ψ)◦Φ(ϕ), and sending identity morphisms to identity morphisms: Φ(IdA) = IdΦ(A).

5.1.2. A contravariant functor Φ from category A to category B assigns an object Φ(A) in B to every object
A of A and a morphism Φ(ϕ): Φ(B) −→ Φ(A) to each morphism ϕ:A −→ B in A, reversing the composition:
Φ(ψ◦ϕ) = Φ(ϕ)◦Φ(ψ), and sending identity morphisms to identity morphisms: Φ(IdA) = IdΦ(A).

5.1.3. Here are some example of functors:

(i) The forgetting (covariant) functor from the category of groups (or the category of topological spaces; or
any other category of sets with a structure) the is functor that assigns to a group G the set G.

(ii) The fundamental group π1(X) is a covariant functor from the category of path-connected topological
spaces with a marked point to the category of groups.

(iii) T is a covariant functor from the category of R modules (where R is a commutative unital ring) to the
category of graded unital R-algebras.

(iv) To give an example of a contravariant functor, fix a set Z, and to each set X assign the set Φ(X) of
functions X −→ Z. For a mapping ϕ:X −→ Y , Φ(ϕ): Φ(Y ) −→ Φ(X) is defined by Φ(ϕ)(f) = f◦ϕ.

5.1.4. A covariant functor Φ from a category of modules to a category of modules (actually, from one abelian
category – a category where kernels and cokernels make sense, – to another abelian category) is said to be

left exact if for every exact sequence 0 −→ A
ϕ−→ B

ψ−→ C the sequence 0 −→ Φ(A)
Φ(ϕ)−→ Φ(B)

Φ(ψ)−→ Φ(C)

is also exact; and is said to be right exact if for every exact sequence A
ϕ−→ B

ψ−→ C −→ 0 the sequence

Φ(A)
Φ(ϕ)−→ Φ(B)

Φ(ψ)−→ Φ(C) −→ 0 is exact; and is said to be exact if it is both left and right exact, that is,
transforms short exact sequences to short exact sequences.
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5.1.5. A contravariant functor Φ from a category of modules to a category of modules is said to be left exact

if for every exact sequence A
ϕ−→ B

ψ−→ C −→ 0 the sequence 0 −→ Φ(C)
Φ(ψ)−→ Φ(B)

Φ(ϕ)−→ Φ(A) is exact, is

said to be right exact if for every exact sequence 0 −→ A
ϕ−→ B

ψ−→ C the sequence Φ(C)
Φ(ψ)−→ Φ(B)

Φ(ϕ)−→
Φ(A) −→ 0 is exact, and is said to be exact if it is both left and right exact, that is, transforms short exact
sequences to short exact sequences.

5.1.6. It follows from 1.14.5 that if a functor is exact, then it converts all exact sequences into exact sequences.

5.2. The functor ⊗K and flat modules

5.2.1. Let K be an R-module; the covariant functor ⊗K from the category of R-modules to itself maps a
module M to the module M ⊗K and a homomorphism ϕ:M −→ N to the homomorphism (ϕ⊗ IdK):M ⊗
K −→ N ⊗K.

5.2.2. Proposition. For any module K the functor ⊗K is right exact: for every exact sequence A
ϕ−→

B
ψ−→ C −→ 0 of modules the sequence A⊗K ϕ⊗IdK−→ B ⊗K ψ⊗IdK−→ C ⊗K −→ 0 is exact as well.

It is easy to see that ψ ⊗ IdK is surjective and that (ψ ⊗ IdK)◦(ϕ ⊗ IdK) = 0. It is not however clear why
ker(ψ ⊗ IdK) coincides with the image of ϕ⊗ IdK ; we will prove this in 5.4.8.

5.2.3. The functor ⊗K may not be left exact: for instance, the sequence 0 −→ Z −→ Q is exact, but
0 −→ Z ⊗ Z2 −→ Q ⊗ Z2 is not. If the functor ⊗K is exact, the module K is said to be flat : that is, K is

flat iff for every monomorphism N
ϕ−→M the homomorphism N ⊗K ϕ⊗IdK−→ M ⊗K is also injective.

5.2.4. There exists the following flatness criterion:

Proposition. An R-module K is flat iff for every ideal I of R the natural homomorphism I ⊗K −→ K,
a⊗ u 7→ au, is injective (and so, defines an isomorphism I ⊗K ∼= IK), and iff this is true for every finitely
generated ideal of R.

(I won’t prove this criterion.)

5.2.5. Here are some simple facts about flat modules:

(i) R is a flat R module.

(ii) Every free module is flat. (This follows from (i) and (iii).)

(iii) Any direct sum of flat modules is flat. Indeed, ifK =
⊕

α∈ΛKα where eachKα is flat and ϕ:A −→ B is a
monomorphism, then A⊗K ∼=

⊕
α∈Λ(A⊗Kα), B⊗K ∼=

⊕
α∈Λ(B⊗Kα), and ϕ⊗IdK acts “componentwisely”:

for ω =
∑fin
α∈Λ ωα ∈ A⊗K with ωα ∈ A⊗Kα for all α we have (ϕ⊗ IdK)(ω) =

∑fin
α∈Λ(ϕ⊗ IdKα

)(ωα) with
(ϕ⊗ IdKα

)(ωα) ∈ B ⊗Kα for all α. Thus ϕ⊗ IdK(ω) = 0 iff (ϕ⊗ IdKα
)(ωα) = 0 for all α, iff ωα = 0 for all

α, iff ω = 0.

(iv) Any direct summand of a flat module is flat; in particular, any direct summand of any free module
is flat. Indeed, assume that K = K1 ⊕ K2 is flat, and let ϕ:A −→ B be a monomorphism. Then A ⊗
K ∼= (A ⊗ K1) ⊕ (A ⊗ K2) and B ⊗ K ∼= (B ⊗ K1) ⊕ (B ⊗ K2), with ϕ ⊗ IdK acting componentwise:
ϕ⊗ IdK = (ϕ⊗ IdK1

)⊕ (ϕ⊗ IdK2
). Since ϕ⊗ IdK is injective, ϕ⊗ IdK1

and ϕ⊗ IdK2
are also injective.

(v) If R is an integral domain and F is its field of fractions, then F is a flat R-module. Indeed, let ϕ:A −→ B
be a monomorphism, and let ω ∈ A⊗ F be such that (ϕ⊗ IdF )(ω) = 0. ω can be written in the form u⊗ 1

d
for some u ∈ A and nonzero d ∈ R. Then (ϕ⊗ IdF )(ω) = ϕ(u)⊗ 1

d . Then dϕ(u)⊗ 1
d = ϕ(u)⊗ 1. By 4.3.13,

ϕ(u) ⊗ 1 = 0 iff ϕ(u) ∈ Tor(B), that is, ϕ(au) = aϕ(u) = 0 for some nonzero a ∈ R. But ϕ is injective, so
au = 0, so ω = u⊗ 1

d = au⊗ 1
ad = 0.

5.2.6. If R is an integral domain, then flat R-modules are torsion-free. Indeed, assume that u 6= 0 is a
torsion element of an R-module K, let au = 0 for a 6= 0. Consider the monomorphism ϕ:R −→ R defined
by ϕ(b) = ab, b ∈ R. Then (ϕ⊗ IdK)(1⊗ u) = a⊗ u = 1⊗ (au) = 0, whereas 1⊗ u 6= 0 since it corresponds
to u under the isomorphism R⊗K ∼= K.

5.2.7. Moreover, if R is a PID, we have:

Proposition. If R is a PID, then an R-module is flat iff it is torsion-free.

Proof. (This isn’t a fair proof, it is based on the unproved Proposition 5.2.4.) Let K be a torsion free
module and let I = (a) be an ideal in R. Every tensor ω = I ⊗ K can be written as ω = a ⊗ u for some
u ∈M . The image of ω in R is then au and is 6= 0 unless a = 0 or u = 0.
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If R is ID but not a PID, a torsion-free module may not be flat: such is the ideal (x, y) in the ring
F [x, y].

5.3. The functor Hom(K, ·) and projective modules

Given an R-module K, there are two more natural functors from the category of R-modules to itself:
the covariant functor Hom(K, ·), and the contravariant functor Hom(·,K).

5.3.1. The functor Hom(K, ·) maps a moduleM to the module Hom(K,M) and a homomorphism ϕ:M −→
N to the homomorphism Hom(K,M) −→ Hom(K,N) defined by η 7→ ϕ◦η:

M N

K.

ϕ

η
ϕ◦η

5.3.2. Proposition. For any module K the functor Hom(K, ·) is left exact: whenever 0 −→ A
ϕ−→ B

ψ−→ C

is an exact sequence of modules, the sequence 0 −→ Hom(K,A)
ϕ◦·−→ Hom(K,B)

ψ◦·−→ Hom(K,C) is also exact.

Proof. Since ϕ is injective, for α ∈ Hom(K,A), ϕ◦α = 0 only if α = 0, so Hom(K,A)
ϕ◦·−→ Hom(K,B) is

injective.

0 −→ A B C

K

ϕ ψ

α β γ

For α ∈ Hom(K,A), we have (ψ◦·)(ϕ◦·)(α) = (ψ◦·)(ϕ◦α) = ψ◦ϕ◦α, which is = 0 since ψ◦ϕ = 0.
Finally, let β ∈ Hom(K,B) be such that ψ◦β = 0. Then β(K) ⊆ ker(ψ) = Im(ϕ). Define α:K −→ A

by α(u) = ϕ−1(β(u)) (which is well defined since ϕ is injective), then β = ϕ◦α.

5.3.3. The functor Hom(P, ·) may not be right exact; if it is exact, the module P is said to be projective. P

is projective iff whenever ϕ:B −→ C is an epimorphism, the corresponding homomorphism Hom(P,B)
ϕ◦·−→

Hom(P,C) is surjective too, that is, any homomorphism γ:P −→ C “lifts” to a homomorphism β:P −→ B
such that γ = ϕ◦β:

B C−→ 0.

P

ϕ

β
γ

5.3.4. The criterion of projectivity is, actually, very simple:

Proposition. A module P is projective iff P is a direct summand of a free module.

Proof. Let P be a direct summand of a free module: let F = P ⊕P ′ be free. To prove that P is projective,
consider an epimorphism ϕ:B −→ C and let γ:P −→ C be a homomorphism. Extend γ to a homomorphism
F −→ C by putting γ|P ′

= 0. Let B a basis in F ; for each u ∈ B choose an element vu ∈ ϕ−1(γ(u)), and
define a homomorphism β:F −→ B by β(u) = vu. Then ϕ◦β = γ, and in particular ϕ◦β|P = γ|P .

B C −→ 0.

P ⊕ P ′ = F

ϕ

β
γ

Conversely, let P be a projective module. Find a free module F with an epimorphism π:F −→ P . Since
P is projective, the identity mapping P −→ P lifts to a homomorphism β:P −→ F , so that π◦β = IdP . This
means that β is a section of π, that is, the exact sequence 0 −→ ker(π) −→ F

π−→ P −→ 0 splits. Hence, P
is a direct summand of F .

F P−→ 0.

P

π

β
IdP

5.3.5. Examples. (i) Every free module is projective.

(ii) Z2 is a projective non-free Z6-module.
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(iii) Here is how one can get an example of a projective non-free module over an integral domain. Let R be an
ID and let I, J be proper comaximal ideals of R such that IJ is principal, but I is not (and so, IJ ∼= R as a
module and I is not a free R-module). Define ϕ: I⊕J −→ R by ϕ(u, v) = u+v; we have ker(ϕ) = I∩J = IJ .
Since R is free, ϕ splits, thus I ⊕ J ∼= R ⊕ IJ ∼= R2. So, I and J are projective. (As a concrete example of
the scheme just described, we can take R = Z[

√
−5], I =

(
3, 1 +

√
−5
)
and J =

(
3, 1−

√
−5
)
.)

5.4. The functor Hom(·,K) and injective modules

5.4.1. The functor Hom(·,K) maps a moduleM to the module Hom(M,K) and a homomorphism ϕ:M −→
N to the homomorphism Hom(N,K) −→ Hom(M,K) defined by η 7→ η◦ϕ:

K

M N.

η◦ϕ
η

ϕ

5.4.2. Proposition. For any module K the functor Hom(·,K) is left exact: whenever A
ϕ−→ B

ψ−→ C −→ 0

is an exact sequence of modules, the sequence 0 −→ Hom(C,K)
·◦ψ−→ Hom(B,K)

·◦ϕ−→ Hom(A,K) is also
exact.

Proof. If γ ∈ Hom(C,K) is such that γ◦ψ = 0, then γ = 0 since ψ is surjective.

K

A B C −→ 0.

α β
γ

ϕ ψ

For γ ∈ Hom(C,K) we have (·◦ϕ)(γ◦ψ) = γ◦ψ◦ϕ = 0 since ψ◦ϕ = 0.
Finally, let β ∈ Hom(B,K) be such that β◦ϕ = 0. Then ker(β) ⊇ ϕ(A) = ker(ψ), so β factorizes to a

homomorphism γ:C −→ K so that β = γ◦ψ.

5.4.3. A sort of converse of Proposition 5.4.2 (which we will need) is also true:

Proposition. If a sequence A
ϕ−→ B

ψ−→ C −→ 0 is such that the sequence 0 −→ Hom(C,K)
·◦ψ−→

Hom(B,K)
·◦ϕ−→ Hom(A,K) is exact for all modules K, then A

ϕ−→ B
ψ−→ C −→ 0 is exact.

Proof. The proof is by contraposition. If ψ is not surjective, for the (nonzero) projection homomorphism

γ:C −→ C/ψ(B) we have γ◦ψ = 0, so Hom(C,K)
·◦ψ−→ Hom(B,K) is not injective.

If ψ◦ϕ 6= 0, then
(
(·◦ϕ)◦(·◦ψ)

)
(IdC) = ψ◦ϕ 6= 0, so (·◦ϕ)◦(·◦ψ) 6= 0.

Finally, assume that ϕ(A) ⊂
6=

ker(ψ). Let β be the factorization homomorphism B −→ K = B/ϕ(A).

Then (·◦ϕ)(β) = β◦ϕ = 0, however since ker(ψ) 6⊆ ϕ(A), β 6= γ◦ψ for any γ ∈ Hom(C,K).

5.4.4. The functor Hom(·,K) may not be right exact; if it is exact, the module Q is said to be injective. Q

is injective iff whenever ϕ:A −→ B is a monomorphism, the corresponding homomorphism Hom(B,Q)
·◦ϕ−→

Hom(A,Q) is surjective, that is, any homomorphism α:A −→ Q can be extended to a homomorphism
β:B −→ Q, so that α = β◦ϕ:

Q

0 −→A B.

α
β

ϕ

In other words, Q is injective if for any module B and its submodule A any homomorphism A −→ Q is
extendible to a homomorphism B −→ Q.

5.4.5. A module M is said to be divisible if aM =M for every a ∈ R that is not a zero divisor in R.
Every injective module is divisible. Indeed, let a ∈ R be not a zero divisor; then the multiplication by

a, ϕ(b) = ab, is a monomorphism ϕ:R −→ R. If Q is an injective module and u ∈ Q, the homomorphism
α:R −→M defined by α(1) = u extends to a homomorphism β:R −→M such that β◦ϕ = α. Let v = β(1);
then u = α(1) = β(ϕ(1)) = β(a) = av.

5.4.6. The converse is true when R is a PID:

Proposition. If R is a PID then an R-module Q is injective iff it is divisible.

I won’t prove this criterion; the proof requires Zorn’s lemma.
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5.4.7. We can however prove the following fact:

Proposition. If R is an integral domain and F is a field that contains R, then F is an injective R-module.

Proof. Let A be a submodule of a module B and let α ∈ HomR(A,F ). First, assume that B/A is a
torsion module. Then α can be extended to a homomorphism β:B −→ F in the following way: for u ∈
B, if a 6= 0 is such that au ∈ A, put β(u) = 1

aα(au). β is well defined since if also bu ∈ A, then
1
bα(bu) = 1

abα(abu) = 1
aα(au). And β is a homomorphism since for any u, v ∈ M with au = bv ∈ A,

a, b 6= 0, we have β(u + v) = 1
abα(abu + abv) = 1

abα(abu) +
1
abα(abv) = β(u) + β(v) and for any c ∈ R,

β(cu) = 1
aα(acu) =

c
aα(au) = cβ(u).

Now consider the general situation: A ⊆ B and α:A −→ F . Let B/A = C, let C ′ be a maximal free
submodule of C, let B′ be the preimage of C ′ in B. We have the exact sequence 0 −→ A −→ B′ −→ C ′ −→ 0;
since C ′ is free, this sequence splits, and B′ = A ⊕ C ′′ for some submodule C ′′ isomorphic to C ′. We may
now extend α to a homomorphism β′:B′ −→ F by putting β′|C′′

= 0. Finally, B/B′ ∼= C/C ′ is a torsion

module, so we may extend β′ to β:B −→ F .

5.4.8. We can now prove that for any module K, the functor ⊗K (or equivalently K⊗) is right exact:

Proof. Let A
ϕ−→ B

ψ−→ C −→ 0 be an exact sequence. By Proposition 5.4.2, for any module N the
sequence

0 −→ Hom(C,N)
·◦ψ−→ Hom(B,N)

·◦ϕ−→ Hom(A,N)

is exact. Now, by Proposition 5.3.2, the sequence

0 −→ Hom(K,Hom(C,N))
·◦ψ◦·−→ Hom(K,Hom(B,N))

·◦ϕ◦·−→ Hom(K,Hom(A,N))

is also exact. But Hom(K,Hom(M,N)) is functorially isomorphic to Hom(M ⊗K,N) (see 5.4.9 below), so
that the sequence

0 −→ Hom(K ⊗ C,N)
·◦(IdK ⊗ψ)−→ Hom(K ⊗B,N)

·◦(IdK ⊗ψ)−→ Hom(K ⊗A,N)

is exact. Since this is true for any module N , by Proposition 5.4.3, the sequence

K ⊗A IdK ⊗ϕ−→ K ⊗B IdK ⊗ψ−→ K ⊗ C −→ 0

is exact.

5.4.9. Let us show that Hom(K,Hom(M,N)) is, indeed, functorially isomorphic to Hom(M ⊗K,N) with
respect to M , meaning that for any homomorphism ϕ:M −→M ′ the induced diagram

Hom(K ⊗M ′, N)
∼−→ Hom

(
K,Hom(M ′, N)

)

↓ ↓
Hom(K ⊗M,N)

∼−→ Hom
(
K,Hom(M,N)

)

is commutative. (It is functorial with respect to K and N as well, but let’s confine ourselves to M .) Let
η ∈ Hom(K ⊗M ′, N). The image of η in Hom(K ⊗M,N) is η◦(IdK ⊗ϕ), and then in Hom(K,Hom(M,N))
is τ defined by τ(u)(v) = η◦(IdK ⊗ϕ)(u⊗ v) = η(u⊗ ϕ(v)) for all u ∈ K and v ∈M .

On the other hand, the image of η in Hom(K,Hom(M ′, N)) is τ ′ defined by τ ′(u)(v′) = η(u⊗ v′) for all
u ∈ K and v′ ∈M ′. ϕ induces a homomorphism Hom(M ′, N) −→ Hom(M,N) by τ 7→ τ◦ϕ, thus the image
of η in Hom(K,Hom(M,N)) is τ ′′ defined by τ ′′(u)(v) = (τ ′(u)◦ϕ)(v) = τ ′(u)(ϕ(v)) = η(u ⊗ ϕ(v)) for all
u ∈ K and v ∈M . Hence, τ ′′ = τ .
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5.5. Dual modules and homomorphisms; contra- and covariant tensors

5.5.1. For an R-module M , the module HomR(M,R) is called the dual module of M and is denoted by M∗.
Its elements, homomorphisms M −→ R, are called covectors , linear forms , or linear functionals on M .

If R is noncommutative, for a left module M its dual M∗ = HomR(M,R) is also defined, but is a right
R-module by (fa)(u) = f(u)a, a ∈ R, f ∈M∗, u ∈M .

5.5.2. We have

(i) R∗ ∼= R;

(ii) for any R-modulesM1, . . . ,Mn,
(⊕n

i=1Mi

)∗ ∼=
⊕n

i=1M
∗
i ; in particular, for any R-moduleM and n ∈ N,

(Mn)∗ ∼= (M∗)n;

(iii) for any family {Mα}α∈Λ of R-modules,
(⊕

α∈ΛMα

)∗ ∼=
∏
α∈ΛM

∗
α;

(iv) for any n ∈ N, (Zn)
∗ = 0 as a Z-module (and ∼= Zn as a Zn-module);

(v) Q∗ = 0 as a Z-module (and ∼= Q as a Q-module).

5.5.3. Given a vector u ∈M and a covector f ∈M∗, they produce the scalar f(u) ∈ R. This operation can
be considered as a pairing of M∗ and M : M∗ ×M −→ R, (f, u) 7→ f(u), and this pairing is linear with
respect to M∗: (f1 + f2, u) = (f1, u)+ (f2, u) and (af, u) = a(f, u). Thus, elements of M can also be viewed
as linear forms on M∗: for u ∈ M we have a homomorphism û:M∗ −→ R by defining û(f) = f(u); the
mapping u 7→ û is a natural homomorphism M −→ (M∗)∗ =M∗∗, called the double duality homomorphism.
The double duality homomorphism is, generally speaking, neither injective nor surjective.

5.5.4. For a set S ⊆ M , the annihilator of S in M∗ is the submodule Ann(S) = S⊥ =
{
f ∈ M∗ :

f(u) = 0 for all u ∈ S
}
of M∗. If N is the module generated by S, then Ann(N) = Ann(S). For any two

submodules N1 and N2 ofM , Ann(N1+N2) = Ann(N1)∩Ann(N2) and Ann(N1∩N2) ⊇ Ann(N1)+Ann(N2).

5.5.5. The pairing M∗ ×M −→ R is bilinear, thus defines a homomorphism M∗ ⊗M −→ R called the
contraction of tensors: the contraction of a tensor ω =

∑k
i=1 aifi⊗ui ∈M∗⊗M is the scalar

∑k
i=1 aifi(ui) ∈

R.

5.5.6. For two modules M and N we have a natural homomorphism N ⊗M∗ −→ Hom(M,N), defined in

the following way: a tensor ω =
∑k
i=1 vi ⊗ fi ∈ N ⊗M∗ sends u ∈M to

∑k
i=1 fi(u)vi ∈ N . (This mapping

is, actually, nothing else but the contraction of u ∈M with the M∗-components of ω.)

5.5.7. From 4.3.14, for any modules M and N we have a natural isomorphism (M ⊗N)∗ ∼= Hom(M,N∗).

5.5.8. Any homomorphism ϕ:M −→ N of R-modules induces the dual homomorphism ϕ∗:N∗ −→ M∗ by
putting ϕ∗(f) = f◦ϕ, f ∈ N∗:

R

M N.
ϕ

ϕ∗(f) f

In the language of “pairing”, this reads as (ϕ∗(f), u) = (f, ϕ(u)) for all u ∈M and f ∈ N∗.

5.5.9. The dual of the composition of two homomorphisms, (ψ◦ϕ)∗, is equal to the composition of the duals,
ϕ∗

◦ψ∗. (The operation ·∗ of taking the dual is a contravariant functor from the category of R-modules to
itself.)

5.5.10. If ϕ:M −→ N is an epimorphism of R-modules, the dual homomorphism ϕ∗ is injective. (The
duality functor ·∗ is left exact.)

If N is a submodule of a module M , the dual of the embedding ϕ:N −→ M is the homomorphism
ϕ∗:M∗ −→ N∗, ϕ∗(f) = f |N . We have ker(ϕ∗) = Ann(N). ϕ∗ does not have to be surjective; it is surjective
if R is an injective R-module.

5.5.11. Tensor products M⊗k⊗ (M∗)⊗l, of k copies of a moduleM and l copies of its dualM∗ with k, l ≥ 0,
often appear in applications. Elements of such a tensor product are called k-times contravariant l-times
covariant tensors , or just (k, l)-tensors over M .

6. Linear algebra: homomorphisms of free modules of finite rank

In this section, R will be assumed to be a commutative unital ring. We will develop a sort of “linear
algebra” for free modules of finite rank; it generalizes the conventional linear algebra of finite dimensional
vector spaces. (Notice that any vector space is a free module over the corresponding field.)
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I will call elements of R-modules vectors (and elements of R scalars).

6.1. Homomorphisms of free modules of finite rank and matrices

6.1.1. The standard free module of rank n is Rn, its elements are n-tuples (a1, . . . , an) of scalars. It is often

convenient to write a vector u = (a1, . . . , an) ∈ Rn as a column, u =
(a1...
an

)
.

6.1.2. The vectors e1 =

(1
0
0...
0

)
, e2 =

(0
1
0...
0

)
, . . ., e1 =

(0
0
0...
1

)
form the standard basis of Rn. For u =

(a1
a2
a3...
an

)
∈ Rn

we have u =
∑n
i=1 aiei, that is, a1, . . . , an are the coordinates of u in the standard basis.

6.1.3. We have Hom(R,R) ∼= R, under the isomorphism that maps IdR to 1. For any n,m ∈ N we therefore
have

Hom(Rn, Rm) ∼= Hom(Rn, R)m ∼= Hom(R,R)nm ∼= Rnm,

that is, is a free module. The standard basis in this module consists of homomorphisms IdR ∈ Hom(R,R)
corresponding to distinct components of this sum; these are the homomorphisms ϕi,j :R

n −→ Rm, i =

1, . . . ,m, j = 1, . . . , n, defined by ϕi,j(ek) =

{
e′i if k = j
0 otherwise,

where {e1, . . . , en} is the standard basis in Rn

and {e′1, . . . , e′m} is the standard basis in Rm. Every homomorphism ϕ:Rn −→ Rm is uniquely representable
as a linear combination of these homomorphisms, ϕ =

∑
i=1,...,m
j=1,...,n

ai,jϕi,j , ai,j ∈ R.

6.1.4. The m×n table Aϕ =

(
a1,1 ... a1,n...

...
am,1 ... am,n

)
of coordinates of ϕ in the basis {ϕi,j , i = 1, . . . ,m, j = 1 . . . , n}

is called the matrix of ϕ; for each j, the j-th column of Aϕ is the vector ϕ(ej) ∈ Rm. Given u ∈ Rn, we
write Aϕu for ϕ(u) and call this the product of the matrix Aϕ and the vector u.

Conversely, any m×n matrix A defines a homomorphism ϕ:Rn −→ Rm by putting ϕ(ej) to be the j-th
column of A, j = 1, . . . , n. The one-to-one correspondence ϕ 7→ Aϕ between the module HomR(R

n, Rm) and
the module Matm,n(R) of m× n matrices over R is a module isomorphism.

6.1.5. The result of the application of a homomorphism ϕ =
∑

i=1,...,m
j=1,...,n

ai,jϕi,j to a vector u =
∑n
j=1 bjej ∈

Rn is the vector

ϕ(u) =
∑

1≤i≤m
1≤j≤n

ai,jϕi,j
(∑n

k=1 bkek
)
=

∑

1≤i≤m
1≤j≤n

ai,j
(∑n

k=1 bkϕi,j(ek)
)
=

∑

1≤i≤m
1≤j,k≤n

ai,jbkϕi,j(ek)

=
∑

1≤i≤m
1≤j≤n

ai,jbje
′
i =

m∑

i=1

(∑n
j=1 ai,jbj

)
e′i;

that is, the product of the matrix Aϕ and the vector u is

Aϕu =

(
a1,1 ... a1,n...

...
am,1 ... am,n

)(
b1...
bn

)
=



∑

n

j=1
a1,jbj
...∑

n

j=1
am,jbj


.

6.1.6. Let ϕ:Rn −→ Rm and ψ:Rm −→ Rk be two homomorphisms and let Aϕ =

(
a1,1 ... a1,n...

...
am,1 ... am,n

)
and

Aψ =

(
b1,1 ... b1,m...

...
bk,1 ... bk,m

)
be the corresponding matrices. Then the matrix of the composition ψ◦ϕ:Rn −→ Rk is

the k × n matrix

Aψ◦ϕ =

(
Σm

i=1b1,iai,1 ... Σm
i=1b1,iai,n...

...
Σm

i=1bk,iai,1 ... Σm
i=1bk,iai,n

)
,

which is called the product of the matrices Aψ and Aϕ and is denoted by AψAϕ.

6.1.7. In the case n = m = k, the matrix multiplication just introduced defines an R-algebra structure on
the module Matn,n(R), which makes it isomorphic to the algebra EndR(R

n).
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6.1.8. The matrix of the identity mapping IdRn :Rn −→ Rn is In =

(1 0 0 ... 0
0 1 0 ... 0...
...
...

...
0 0 0 ... 1

)
, called the unit n×n-matrix.

If A and B are n× n-matrices such that AB = BA = In, then B is said to be the inverse of A, and is
denoted by A−1. A homomorphism ϕ:Rn −→ Rn is invertible iff Aϕ is an invertible matrix, in which case
Aϕ−1 = A−1

ϕ .

6.2. Change of basis and the transition matrix

6.2.1. A module M is free of rank n, that is, M ∼= Rn, iff M has a basis of cardinality M ; every such (an
ordered) basis B = {u1, . . . , un} defines an isomorphismMηRn which maps every vector u =

∑n
i=1 aiu1 ∈M

to the n-tuple (a1, . . . , an) ∈ Rn of its coordinates with respect to B.

6.2.2. Now let M be a free R-module of rank n and N be a free R-module of rank m, and let ϕ:M −→ N
be a homomorphism. Let B be a basis in M , C be a basis in N , and η:M −→ Rn, τ :N −→ Rm be the
corresponding isomorphisms. Then we have the commutative diagram

M N

Rn Rm,

ϕ

η τ

which defines a homomorphism τ◦ϕ◦η−1:Rn −→ Rm. The matrix A of this homomorphism is called the
matrix of ϕ with respect to the bases B and C; for each j, the j-th column of A is the vector of coordinates
of ϕ(uj), where uj is the j-th element of B, with respect to the basis C.

6.2.3. Now let M be a free R-module of rank n, let B = {u1, . . . , un} and B′ = {u′1, . . . , u′n} be two bases
of M , let η and η′ be the corresponding homomorphisms M −→ Rn. We then get the change of basis
isomorphism η′◦η−1:Rn −→ Rn:

M

Rn
∼−→ Rn.

η η′

The matrix P of this isomorphism is called the transition matrix ; multiplied by the “old” coordinates
(a1, . . . , an) (with respect to basis B) of a vector u ∈ M it gives “the new” coordinates (a′1, . . . , a

′
n) of u

(with respect to B′) (
a′1...
a′n

)
= P

(a1...
an

)
.

6.2.4. A transition matrix is always invertible: its inverse P−1 is the transition matrix from the basis B′

to the basis B. (Often, P−1 and P are switched, and it is P−1 that is called the transition matrix from B
to B′.) On the other hand, any invertible matrix P ∈ Matn,n(R) is a transition matrix for some change of
basis; indeed, P defines an automorphism ϕ of Rn; given an isomorphism η:M −→ Rn, define η′ = ϕ◦η;
then P is the transition matrix from the basis B corresponding to η to the basis B′ corresponding to η′.
(The columns of P are the coordinates of the elements of B with respect to B′.)

6.2.5. Now let M be a free R-module of rank n and N be a free R-module of rank m, and let ϕ:M −→ N
be a homomorphism. Let B′ and C ′ be two other bases in M and N respectively, and let P and Q be the
transition matrices from B to B′ and from C to C ′ respectively. Let A be the matrix of ϕ with respect to
the bases B and C and A′ be the matrix of ϕ with respect to the bases B′ and C ′. Then A′ = QAP−1.

6.2.6. In particular, if N =M , C = B, and C ′ = B′, then Q = P and A′ = PAP−1.

6.2.7. Two n×n matrices A and A′ are said to be similar (or conjugate) if A′ = PAP−1 for some invertible
P ∈ Matn,n(R). We see that two matrices are similar iff they represent, in (potentially) distinct bases, the
same endomorphism of a free R-module of rank n.

6.2.8. Let ϕ:V −→ W be a homomorphism of vector spaces. Choose a basis B = {u1, . . . , un} in V such
that {uk+1, . . . , un} is a basis of ker(ϕ). The vectors {ϕ(u1), . . . , ϕ(uk)} are linearly independent in W ;
choose a basis C = {v1, . . . , vm} in W such that vi = ϕ(ui), i = 1, . . . , k. Then matrix of ϕ with respect to
the bases B and C is the m×n matrix

(
Ik O
O O

)
, where Ik is the k×k unit matrix and O denotes zero matrices

of different sizes.
As a corollary, we obtain that for any matrix A ∈ Matm,n(F ) over a field F there exist invertible

matrices P ∈ Matn,n(F ) and Q ∈ Matm,m(F ), such that QAP has the form
(
Ik O
O O

)
.
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6.3. The dual module of a free module of finite rank

6.3.1. The dual module (Rn)∗ of Rn, n ∈ N, is also isomorphic to Rn. The standard basis in (Rn)∗ is

{f1, . . . , fn}, where for each i the linear form fi:R
n −→ R is defined by fi(ej) =

{
1 if j = i
0 if j 6= i.

The row of

coordinates of f ∈M∗ with respect to this basis is
(
f(e1), . . . , f(en)

)
. For every i, fi is the “reading the ith

coordinate” linear form: for u = (a1, . . . , an), fi(u) = ai.

It is customary to write the coordinates of vectors (elements of Rn) as columns,
(a1...
an

)
, and the coordinates

of covectors (elements of (Rn)∗) in the dual basis as rows, (b1 ... bn). (And indeed, for a covector f having
coordinates b1, . . . , bn, (b1 ... bn) is the matrix of f as an element of Hom(Rn, R).) Then the result f(u) of

pairing of a covector f = (b1 ... bn) and a vector u =
(a1...
an

)
is the matrix product (b1 ... bn)

(a1...
an

)
=
∑n
i=1 aibi.

6.3.2. The dual module of the free module FR(S) generated by a set S is the direct product
∏
s∈S R; if S

is infinite, this module has larger rank than FR(S), and does not have to be a free module.

6.3.3. Now let M be a free R-module of rank n and let B = {u1, . . . , un} be a basis in M . Then the dual
module M∗ is also free of rank n, and has a basis B∗ = {f1, . . . , fn} that corresponds to B: for each i,

fi(uj) =

{
1 if j = i
0 if j 6= i

. B∗ is called the dual basis for B. For every i, fi is the “reading the ith coordinate”

linear form: if u ∈M has coordinates (a1, . . . , an), then fi(u) = ai.

For u ∈M , u =
∑n
i=1 aiui, and f ∈M∗, f =

∑n
i=1 bifi, we have f(u) =

∑n
i=1 aibi = (b1 ... bn)

(a1...
an

)
.

6.3.4. For a free moduleM of finite rank, the double duality homomorphismM −→M∗∗ is an isomorphism,
and for any basis B in M , its dual-of-the-dual basis B∗∗ coincides with B under this isomorphism.

6.3.5. If M is a free module of finite rank, then, identifying M∗∗ with M , for any subset S ⊆ M∗ we have
its annihilator submodule Ann(S) = S⊥ ⊆M .

For any submodule N of M we have Ann(Ann(N)) ⊇ N .

6.3.6. If V is a vector space over a field F and W is a subspace of V , then the natural homomorphism
V ∗ −→W ∗ is an epimorphism (since F , as an F -module, is injective). Hence, W ∗ ∼= V ∗/Ann(W ).

For finite dimensional vector spaces this implies that dimAnn(W ) = dimV − dimW .

6.3.7. If V is a finite dimensional vector space and W is a subspace of V , then Ann(Ann(W )) = W . In
this case, for any two subspaces W1 and W2 of V we have Ann(W1 + W2) = Ann(W1) ∩ Ann(W2) and
Ann(W1 ∩W2) = Ann(W1) + Ann(W2).

6.3.8. For an m× n matrix A =

(
a1,1 ... a1,n...

...
am,1 ... am,n

)
, the transpose of A is the n×m matrix AT =

(
a1,1 ... am,1...

...
a1,n ... am,n

)
.

6.3.9. Let M and N be free modules of finite rank, let B be a basis in M , C be a basis in N , and let B∗ and
C∗ be the dual bases in M∗ and N∗ for B and C respectively. Let ϕ:M −→ N be a homomorphism and let
Aϕ be the matrix of ϕ with respect to the bases B and C. Then the matrix Aϕ∗ of the dual homomorphism
ϕ∗:N∗ −→M∗ with respect to C∗ and B∗ is the transpose ATϕ of Aϕ. Indeed, for every i and j, the (i, j)-th
entry of Aϕ is (fi, ϕ(uj)) = (ϕ∗(fi), uj), which is the (j, i)-th entry of the matrix Aϕ∗ .

It follows that for any k ×m matrix A and m× n matrix D, (AD)T = DTAT .

6.3.10. If B and B′ are two bases in a free module M of finite rank and P is the transition matrix from B
to B′, then the transition matrix from the dual basis B∗ to the dual basis (B′)∗ in M∗ is (PT )−1.

6.4. The rank of modules, submodules, dual modules and homomorphisms

In this section let R be an integral domain and F be the field of fractions of R.

6.4.1. Let V be a finite dimensional vector space; then dimV ∗ = dimV and V ∗∗ ∼= V naturally. If W is a
subspace of V , then dimV = dimW + dim(V/W ); dimW = dimV iff W = V ; the natural homomorphism
V ∗ −→W ∗ is surjective.

If ϕ:V −→W is a linear mapping (a homomorphism), the rank of ϕ, rankϕ, is defined as dimϕ(V ), and
is equal to dimV −dim(Kerϕ). Such a homomorphism ϕ is the composition of an epimorphism V −→ ϕ(V )
and the monomorphism ϕ(V ) −→ W ; so the dual mapping ϕ∗:W ∗ −→ V ∗ is the composition of the
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epimorphism W ∗ −→ ϕ(V )∗ and a monomorphism ϕ(V )∗ −→ V ∗:

V W V ∗ W ∗

ϕ(V ) ϕ(V )∗

ϕ ϕ∗

Thus, rankϕ∗ = dimϕ∗(W ∗) = dim(ϕ(V )∗) = dimϕ(V ) = rankϕ.
If A is a matrix of ϕ, then the column rank of A (the dimension of the space spanned by the columns

of A) equals the rank of ϕ; since the matrix of ϕ∗ (with respect to the dual bases) is the transpose AT of A,
we obtain that the row rank of A (the dimension of the space spanned by the rows of A) equals its column
rank.

6.4.2. Now, let M be an R-module and V = F ⊗R M , an F -vector space. By 4.3.13, the kernel of the
natural homomorphism from M to V is the torsion submodule Tor(M) of M ; thus, M/Tor(M) is contained
in V (more exactly, is naturally isomorphic to an R-submodule of V ).

6.4.3. Let M be an R-module and V = F ⊗R M . Let N be a maximal free submodule of M , so that
M/N is a torsion module. Since F is a flat R-module, the exact sequence 0 −→ N −→ M −→ M/N −→ 0
produces the exact sequence 0 −→ F ⊗N −→ F ⊗M −→ F ⊗ (M/N) −→ 0; we have F ⊗N ∼= Fn where
n = rankN = rankM and F ⊗ (M/N) = 0, so F ⊗M ∼= Fn. (Here n may be infnite.) This proves that
rankRM = dimF V , and so, is well defined. This also shows that if B is a maximal linearly independent
subset of M , then 1⊗B = {1⊗ u, u ∈ B} is a basis in V .

6.4.4. Let N be a submodule of a module M . Then we have the exact sequence 0 −→ N −→ M −→
M/N −→ 0, and so, the exact sequence 0 −→ F ⊗ N −→ F ⊗ M −→ F ⊗ (M/N) −→ 0. Thus the
F -vector space W = F ⊗ N is a subspace of V = F ⊗M , F ⊗ (M/N) ∼= V/W , and rankM = dimV =
dimW + dim(V/W ) = rankN + rank(M/N).

In particular, if N is a submodule of M with rank(N) = rank(M), then M/N is a torsion module.

6.4.5. If a module M is generated by a set S, then rankM ≤ |S|; in particular, a finitely generated module
has finite rank. (The converse is not true, as the example R = Z, M = Q shows.)

6.4.6. The dual module M∗ of a module M is always torsion-free: for f ∈ M∗, if af = 0 for some nonzero
a, that is, af(u) = 0 for all u ∈ M , then, since R has no zero divisors, f(u) = 0 for all u ∈ M . So, M∗ is
contained in F ⊗RM∗.

Also, for any f ∈M∗ and any u ∈ Tor(M) we have f(u) = 0, so M∗ = (M/Tor(M))∗.

6.4.7. Let M be an R-module, V = F ⊗R M , M∗ = HomR(M,R) and V ∗ = HomF (V, F ). There is
a natural R-module monomorphism M∗ −→ V ∗, f 7→ f̃ where f̃(α ⊗ u) = αf(u), α ∈ F , u ∈ M ; it
extends to an F -vector space monomorphism η:F ⊗R M∗ −→ V ∗. If M has finite rank, this implies that
rankRM

∗ = dimF (F ⊗RM∗) ≤ dimF V
∗ = dimF V = rankRM .

If M is finitely generated, the image of M∗ spans V ∗, and η is an isomorphism, F ⊗RM∗ ∼= V ∗. (This
may not be so if M is not finitely generated: consider R = Z and M = F = V = Q.) So, in this case,
rankRM

∗ = dimF V
∗ = dimF V = rankRM .

6.4.8. Every nonzero element of V defines a nonzero element of V ∗∗, thus, if M is finitely generated, by
6.4.7, every element ofM \Tor(M) defines a nonzero element ofM∗∗. Hence, the kernel of the double duality
homomorphism M −→M∗∗ is Tor(M), and rankM∗∗ = rankM .

6.4.9. Let N be a submodule of M and let W = F ⊗R N . The natural homomorphism π:M∗ −→ N∗

(the dual of the embedding N −→ M) induces the homomorphism IdF ⊗π:F ⊗R M∗ −→ F ⊗R N∗. Since
W ⊆ V , we also have an epimorphism τ :V ∗ −→W ∗ of F -spaces, and get the commutative diagram

F ⊗RM∗ F ⊗R N∗

V ∗ W ∗,

IdF ⊗π

τ
ηM ηN

where ηM and ηN are the monomorphisms described in 6.4.7.
In the caseM is finitely generated, ηM is an isomorphism, so τ◦ηM is surjective, so ηN is an isomorphism

too, and IdF ⊗π is surjective; hence, coker(π) = N∗/π(M∗) is a torsion module. Since kerπ = Ann(N), we
get that M∗/Ann(N) is isomorphic to a submodule N⋆ of N∗ such that N∗/N⋆ is a torsion module.

It follows that if N is a submodule of a finitely generated module M , then rankN∗ = dimW ∗ =
dimW = rankN , and rankAnn(N) = rankM∗ − rankN∗ = rankM − rankN .
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6.4.10. Given an R-module homomorphism ϕ:M −→ N , rankϕ(M) is called the rank of ϕ and is denoted
by rankϕ. It follows from 6.4.4 that if rankM <∞, then rankϕ = rankM − rank ker(ϕ).

6.4.11. Let ϕ:M −→ N be a homomorphism of R-modules. The dual homomorphism ϕ∗:N∗ −→ M∗ is
the composition of two homomorphisms: N∗ −→ ϕ(M)∗ and ϕ(M)∗ −→M∗.

M N M∗ N∗

ϕ(M) ϕ(M)∗

ϕ ϕ∗

Since M −→ ϕ(M) is surjective, ϕ(M)∗ −→ M∗ is injective. ϕ(M) is a submodule of N ; if N is finitely
generated, rank(ϕ∗(N∗)) = rank(ϕ(M)∗) by 6.4.9, so rankϕ∗ = rankϕ(M)∗; in the case M or N is finitely
generated, this equals rankϕ(M) = rankϕ. We obtain:

Theorem. If ϕ:M −→ N is a homomorphism of R-modules and N is finitely generated, then rankϕ∗ =
rankϕ.

6.4.12. For a matrix A ∈ Matm,n(R) over an integral domain R, the column space of A is the submodule of
Rm generated by the columns of A; this is the image of the homomorphism, defined by A. The column rank
of A is the rank of the column space of A; it is equal to the rank of the homomorphism defined by A.

The row space of A is the submodule Rn generated by the rows of A, or, equivalently, it is the column
space of the transpose AT of A; the row rank of A is the rank of its row space; it is equal to the rank of the
dual of the homomorphism defined by A.

If ϕ:M −→ N is a homomorphism of free modules of finite rank and Aϕ is the matrix of ϕ with respect
to some bases in M and N , then, in the corresponding coordinates, ϕ(M) is the column subspace of Aϕ,
and so, rankϕ equals the column rank of Aϕ.

6.4.13. By 6.3.9, the row space of a matrix A is the image of the dual ϕ∗ of the homomorphism ϕ defined
by A. By 6.4.11, we get:

Theorem. For any matrix over an integral domain, its row rank equals its column rank.

6.5. The tensor product of free modules of finite rank

6.5.1. Let m,n ∈ N. The tensor product Rm⊗Rn of free modules Rm and Rn is isomorphic to (R⊗R)mn ∼=
Rmn. The standard basis in Rm ⊗ Rn is

{
ei ⊗ e′j , i = 1 . . . ,m, j = 1, . . . , n

}
, where {e1, . . . , em} is the

standard basis of Rm and {e′1, . . . , e′n} is the standard basis of Rn. Every tensors from Rm ⊗ Rn has form

ω =
∑
i=1,...,n ai,jei ⊗ e′j , ai,j ∈ R, and its coordinates form the m× n matrix

(
a1,1 ... a1,n...

...
am,1 ... am,n

)
.

6.5.2. Now let M and N be free R-modules of ranks m and n respectively, let B = {u1, . . . , um} be a
basis in M and C = {v1, . . . , vn} be a basis in N . Then the module M ⊗ N is free of rank mn, with
the basis B ⊗ C =

{
ui ⊗ vj , i = 1 . . . ,m, j = 1, . . . , n

}
, so that every tensor in M ⊗ N has the form

ω =
∑
i=1,...,n ai,jui ⊗ vj , ai,j ∈ R, and its coordinates form the m× n matrix

(
a1,1 ... a1,n...

...
am,1 ... am,n

)
.

6.5.3. Similarly, if M1, . . . ,Mk are free R-modules of ranks m1, . . . ,mk respectively, then M1 ⊗ · · · ⊗Mk

is a free module of rank m1 · · ·mk, and any choice B1, . . . , Bk of bases in M1, . . . ,Mk induces the basis
B1 ⊗ · · · ⊗ Bk in M1 ⊗ · · · ⊗Mk; with respect to this basis, the coordinates of a tensor ω ∈ M1 ⊗ · · · ⊗Mk

form a k-dimensional m1 × · · · ×mk matrix (ai1,...,ik).

6.5.4. In particular, given a free module M of rank n with a basis fixed, the (k, l)-tensors, that is, ele-
ments of the tensor product M⊗k ⊗ (M∗)⊗l, are representable by (k + l)-dimensional n × · · · × n matrices(
ai1,...,ikj1,...,jl

)n
i1,...,ik,j1,...,jl=1

(it’s traditional to use superscripts for the contravariant indices and subscripts for

covariant indices), and tensors are often identified with the matrices of their coordinates. (This is just this
sort of tensors that appears in differential geometry: the Riemann metric (gi,j), the Riemann curvature
(Rij,k,l), or the Christoffel symbols (Γij,k).)
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6.5.5. In old fasioned books tensors are defined as multidimensional tables (ai1,...,ik) that “change in certain
way when coordinates are changed”. How do they change? If P = (bi,j) is the transition matrix from old to
new coordinates in the r-th component Mr of M1 ⊗ · · · ⊗Mk, then a tensor ω = (ai1,...,ik) of this product
transforms to (a′i1,...,ik) =

(∑
jr
bir,jai1,...,ir−1,j,ir+1,...,ik

)
(the result of contraction of the corresponding

components of P ⊗ ω = (bi,jai1,...,ik) ∈Mr ⊗M∗
r ⊗M1 ⊗ · · · ⊗Mk).

In the case tensor ω is from the productM⊗k⊗(M∗)⊗l, where change of coordinates happens simultane-
ously in all factors, one has to apply P to contravariant (vector) components of ω and (PT )−1 to its covariant
(covector) components. For example, for ω ∈ End(M) = M ⊗M∗ represented by a matrix A = (ai1,i2), if
P = (bi,j) and (PT )−1 = (ci,j), the transformation of A is given by

(∑
j1,j2

bi1,jici2,j2aj1,j2
)
(which is just

the matrix product PA((PT )−1)T = PAP−1).

6.5.6. For a free module M of rank n with a basis {u1, . . . , un} and dual basis {f1, . . . , fn} in M∗, the
elements of the tensor product M∗ ⊗M , which have form ω =

∑n
i,j=1 ai,jfi ⊗ uj , are represented by n× n-

matrices (ai,j)
n
i,j=1 (or rather (aji )

n
i,j=1).

The result of contraction (see 5.5.5 above) of a tensor
∑n
i,j=1 ai,jfi⊗uj ∈M∗⊗M is

∑n
i,j=1 ai,jfi(uj) =∑n

i=1 ai,i, that is, is the trace of the corresponding matrix.

6.5.7. For any free modules M1 and M2 of finite rank, we have the natural isomorphism (M1 ⊗M2)
∗ ∼=

M∗
1 ⊗M∗

2 ; indeed, the natural homomorphism Hom(M1, R)⊗Hom(M2, R) −→ Hom(M1⊗M2, R⊗R) is an
isomorphism.

6.6. Homomorphisms and multilinear forms as tensors

6.6.1. Let M and N be free R-modules of ranks n and m respectively, then the natural homomorphism
N ⊗M∗ −→ Hom(M,N) (see 5.5.6 above) is an isomorphism; moreover, if bases B = {u1, . . . , un} in M
and C = {v1, . . . , vm} in N are chosen and B∗ = {f1, . . . , fn} is the dual of B basis in M∗, then under
this isomorphism, for any i and j, the basis tensor vi ⊗ fj corresponds to the basis homomorphism ϕi,j and
the matrix of coordinates of a tensor ω ∈ N ⊗M∗ with respect to the basis C ⊗ B∗ is just the matrix of
the corresponding homomorphism with respect to the bases B and C. So, in this case, homomorphisms
M −→ N can interpreted as tensors from N ⊗M∗.

6.6.2. Let ϕ:M −→ N and ψ:N −→ K be homomorphisms of free modules of finite rank, considered as
tensors from N ⊗M∗ and K ⊗N∗ respectively. Then the composition ψ◦ϕ:M −→ K is the contraction of
the N∗ ⊗N -components of the tensor ψ ⊗ ϕ ∈ K ⊗N∗ ⊗N ⊗M∗ (which produces a tensor in K ⊗M∗).

6.6.3. Let M and N be free modules of finite rank, let ϕ:M −→ N be a homomorphism, and let ϕ∗:N∗ −→
M∗ be the dual homomorphism. Then, as tensors, ϕ ∈ N ⊗M∗ and ϕ∗ ∈M∗⊗N∗∗ ∼=M∗⊗N are obtained
from each other simply by transposing the factors, v ⊗ f 7→ f ⊗ v. (This explains why the matrix of ϕ∗ is
the transpose of the matrix of ϕ.)

6.6.4. Let ϕ be an endomorphism of a free module M of finite rank. As noticed in 6.5.6, the trace of the
matrix of ϕ, in any basis, is the contraction of the corresponding tensor from M ⊗M∗. (This proves the fact
that similar matrices have the same trace.) We define the trace of ϕ as the result of this contraction (that
is, as the trace of the matrix of ϕ in any basis).

6.6.5. For any modulesM1,M2, andN , bilinear mappingsM1×M2 −→ N are in a one-to-one correspondence
with homomorphismsM1⊗M2 −→ N . If all these modules are free of finite rank, then Hom

(
M1⊗M2, N

) ∼=
N ⊗M∗

1 ⊗M∗
2 . and we have an isomorphism between this module and the module BilR(M1 ×M2, N) of

bilinear mappings M1 ×M2 −→ N . (The result of the application of a tensor v ⊗ f1 ⊗ f2 ∈ N ⊗M∗
1 ⊗M∗

2

to a pair (u1, u2) ∈M1 ×M2 is the vector f1(u1)f2(u2)v ∈ N .)

6.6.6. In particular, for any modules M1 and M2. the bilinear forms on M1×M2, that is, bilinear mappings
M1 × M2 −→ R, are naturally identified with homomorphisms M1 ⊗ M2 −→ R, that is, elements of
(M1 ⊗M2)

∗. Such a form β defines a pairing of M1 and M2: for vectors u ∈ M1 and v ∈ M2 we get the
scalar β(u, v) ∈ R, homomorphisms ϕ:M1 −→ M∗

2 and ψ:M1 −→ M∗
2 by ϕ(u)(v) = ψ(v)(u) = β(u, v),

u ∈ M1, v ∈ M2. The pairing is said to be perfect if these homomorphisms are isomorphisms. Thus, a
perfect pairing of M1 and M2 identifies M1 with M∗

2 and M2 with M∗
1 .

In the case M1 and M2 are free of finite rank, the bilinear forms M1 ×M2 can be seen as tensors from
M∗

1 ⊗M∗
2 .
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6.6.7. A bilinear form on a moudle M is a bilinear mapping M ×M −→ R; in the case M is free of finite
rank, it is an elements of M∗ ⊗M∗ = (M∗)⊗2. A bilinear form β is symmetric, β(u1, u2) = β(u2, u1) for
all u1, u2 ∈ M , iff the corresponding tensor is symmetric, and is alternating , β(u1, u2) = −β(u2, u1) for all
u1, u2 ∈M , iff the corresponding tensor is alternating.

If a bilinear form on M is such that the corresponding pairing M ×M −→ R is perfect, it defines an
isomorphism M −→ M∗, that is, allows us to identify vectors (elements of M) and covectors (elements of
M∗).

6.7. The tensor algebras of free modules of finite rank

Let M be a free R-module of rank n, with a basis B = {u1, . . . , un}.
6.7.1. For any k ∈ N, the tensor power T k(M) = M⊗k is a free module of rank nk, with basis (induced by
B)
{
ui1 ⊗ · · · ⊗ uik , 1 ≤ i1, . . . , ik ≤ n

}
. The tensor algebra T (M) is therefore a free R-module (of infinite

rank).

6.7.2. The symmetric algebra S(M) of M is also a free R-module of infinite rank; for each k ∈ N, a basis of
the symmetric k-power Sk(M) is

{
ui1 ⊗ · · · ⊗ uik , 1 ≤ i1 ≤ · · · ≤ ik ≤ n

}
; the rank of Sk is

(
k+n−1

k

)
.

6.7.3. The exterior algebra Λ(M) of M is also a free R-module, but of finite rank. For each k ∈ N, a basis
of the exterior k-power Λk(M) is

{
ui1 ∧ · · · ∧ uik , 1 ≤ i1 < · · · < ik ≤ n

}
; the rank of Λk is therefore equal

to
(
n
k

)
for k ≤ n, and is equal to 0 for k > n.

6.7.4. The senior wedge power Λn(M) of M is a free R-module of rank 1, that is, is isomorphic to R. It is
generated by the single element u1 ∧ · · · ∧ un.
6.7.5. For any modules M1, M2 and any k, a homomorphism ϕ:M1 −→ M2 induces a homomorphism
∧kϕ: ΛkM1 −→ ΛkM2 defined by ∧kϕ

(
u1 ∧ · · · ∧ uk

)
= ϕ(u1) ∧ · · · ∧ ϕ(uk). For a composition ψ◦ϕ of two

homomorphisms, ∧k(ψ◦ϕ) = ∧kψ◦ ∧k ϕ.
If ϕ is surjective, then ∧kϕ is surjective too. If ϕ is injective, ∧kϕ may not be injective; but it is if R is

an integral domain and M1, M2 are free. (This fact is easy to check for vector spaces, and then M1 and M2

can be seen as submodules of F ⊗RM1 and F ⊗RM2 respectively, where F is the field of fractions of R.)

6.8. The determinant of endomorphisms of free modules of finite rank

Let R be a commutative unital ring and let M be a free R-module of rank n, with a basis B =
{u1, . . . , un}.
6.8.1. From 6.7.5 we deduce:

Proposition. If R is an integral domain, then for any k, a set {v1, . . . , vk} is linearly independent in M
iff v1 ∧ · · · ∧ vk 6= 0.

6.8.2. Let ϕ be an endomorphism of M . Then ∧nϕ is an endomorphism of Λn(M) ∼= R, so it is defined by a
multiplication by a scalar d ∈ R: for any ω ∈ Λm(M), ∧nϕ(ω) = dω; in particular, if {u1, . . . , un} is a basis
of M , then

∧nϕ
(
u1 ∧ · · · ∧ un

)
= ϕ(u1) ∧ · · · ∧ ϕ(uk) = d(u1 ∧ · · · ∧ un).

This scalar d is called the determinant of ϕ and is denoted by detϕ.
If A = (ai,j)

n
i,j=1 is the matrix of ϕ, then detϕ =

∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n). This sum is called
the determinant of A, detA; that is, the determinant of a matrix A is the determinant of the homomorphism
defined by this matrix.

6.8.3. From the definition of det we have:

(i) detϕ only depends on ϕ, not on the basis inM . It follows that similar matrices have the same determinant.

(ii) det IdM = 1.

(iii) det(cϕ) = cn detϕ for any c ∈ R.

(iv) For any ϕ,ψ ∈ End(M), det(ϕ◦ψ) = detϕ·detψ; for two n×nmatrices A and B, det(AB) = detAdetB.

(v) If R is an integral domain, detϕ 6= 0 iff rankϕ = n; for a square matrix A, detA 6= 0 iff the columns of
A are linearly independent.

(vi) An endomorphism ϕ of a free module of finite rank is invertible iff detϕ is a unit in R; a square matrix
A is invertible iff detA is a unit in R.

(vii) detϕ∗ = detϕ; for a square matrix A, detAT = detA.
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6.8.4. Not all statements in 6.8.3 are evident. (v) follows from Proposition 6.8.1.
(vii) can be established in the following way: Let {u1, . . . , un} be a basis in a (free) module M and

{f1, . . . , fn} be the dual basis in M∗. There is a natural pairing of ΛnM and Λn(M∗), which identifies
Λn(M∗) with (Λn(M))∗ and satisfies f1∧ · · ·∧fn(u1∧ · · ·∧un) = 1. Thus for any ϕ ∈ End(M) we can write

detϕ = (f1 ∧ · · · ∧ fn)
(
∧nϕ(u1 ∧ · · · ∧ un)

)
= (u1 ∧ · · · ∧ un)

(
(∧nϕ)∗(f1 ∧ · · · ∧ fn)

)
.

It can be shown that the operation ∧n commutes with the operation of “dualization”, (∧nϕ)∗ = ∧n(ϕ∗),
thus,

(u1 ∧ · · · ∧ un)
(
(∧nϕ)∗(f1 ∧ · · · ∧ fn)

)
= (u1 ∧ · · · ∧ un)

(
(∧nϕ∗)(f1 ∧ · · · ∧ fn)

)
= detϕ∗.

So, for any endomorphism ϕ of a free module of finite rank, detϕ∗ = detϕ.

6.8.5. The “if” part of 6.8.3(vi) is also not obvious. We have a natural pairing of the modules M and
Λn−1(M), – a bilinear mapping M × Λn−1(M) −→ Λn(M) ∼= R, defined by (u, ω) 7→ u ∧ ω. This pairing
defines an homomorphism M −→ Hom

(
Λn−1(M),Λn(M)

)
, by u(ω) = u ∧ ω, which is an isomorphism (the

pairing is perfect).
Let ϕ ∈ End(M), and let ψ ∈ End(M) be “the dual” of ∧n−1ϕ ∈ End(Λn−1(M)) in the above sense:

ψ(u) ∧ ω = u ∧ (∧n−1ϕ(ω)) for all u ∈ M and ω ∈ Λn−1(M). (ψ is the adjoint homomorphism of ∧n−1ϕ
with respect to the pairing above.) Then for any u ∈M and ω ∈ Λn−1(M) we have

ψ(ϕ(u)) ∧ ω = ϕ(u) ∧ (∧n−1ϕ(ω)) = ∧nϕ(u ∧ ω) = (detϕ)u ∧ ω.

Since the pairing is perfect, this implies that ψ(ϕ(u)) = (detϕ)u for all u ∈M , that is, ψ◦ϕ = detϕ · IdM .
It follows that if d = detϕ is a unit in R, then d−1ψ is the left inverse of ϕ. Hence, in the monoid

of endomorphisms of M with invertible determinant, each element has a left inverse; this implies that this
monoid is, actually, a group, and d−1ψ = ϕ−1. (We can also obtain a formula for the matrix of ϕ−1 in terms
of the matrix of ϕ.)

6.8.6. The following operations on a matrix are called elementary column operations :

(i) switching two columns;

(ii) multiplying a column by a scalar;

(iii) adding a multiple of one column to another column.
Each of these operations on a matrix A can be performed by multiplying A from the left by an invertible
matrix.

Elementary row operations are defined accordingly; they can be performed by multiplying A by a
invertible matrices from the right.

6.8.7. Let A be a square matrix over R. The column operations affect the determinant of A the following
way:

(i) If matrix A′ is obtained from A by switching two columns, then detA′ = − detA;

(ii) if matrix A′ is obtained from A by multiplying a column by a scalar c, then detA′ = c detA;

(iii) if matrix A′ is obtained from A by adding a multiple of one of its columns to another, then detA′ = detA.
Since detA = detAT , in (i)-(iii), “columns” can be replaced by “rows”.

7. The theory of finitely generated modules over PIDs and normal forms of matrices

A commutative unital ring is said to be a Principal Ideal Domain, or a PID , if R is an integral domain
such that every ideal in R is principal (generated by a single element). Every ED (an Euclidean domain) is
a PID. Examples of PIDs (and EDs) are Z and F [x] – the ring of polynomials over a field F .

7.1. Submodules of a free module of finite rank over a PID

7.1.1. The following theorem is the basic result of this section:

Theorem. Let R be a PID, let M be a free R-module of rank n, and N be a nonzero submodule of M .
Then N is also free, of rank k ≤ n. Moreover, there is a basis {u1, . . . , un} of M and scalars a1, . . . , ak ∈ R
with a1

∣∣ a2
∣∣ · · ·

∣∣ ak such that {a1u1, . . . , akuk} is a basis in N .
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We will also see below that, though the basis {u1, . . . , un} is not defined uniquely, the scalars a1, . . . , ak
are defined uniquely (up to association – multiplication by units in R, of course).

Proof. We will use the double duality isomorphism and identify M∗∗ with M .
Recall that, being a PID, R is a Noetherian ring, which implies that every family of ideals in R has a

maximal element, – an ideal not contained in any other ideal of that family.
We will use induction on n. For n = 1, we have M ∼= R, and we may assume that M = R. Then N

is an ideal in R; since R is a PID, there is an element a1 ∈ R, such that N = (a1). Thus, the basis {1} of
M = R and the scalar a1 satisfy the assertion of the theorem.

Now let n ≥ 2. For every f ∈ M∗, f(N) is an ideal of R. Since R is Noetherian, there exists a linear
form h ∈ M∗ such that the ideal h(N) is maximal in the family

{
f(N), f ∈ M∗

}
of ideals of R; let a1 be

such that (a1) = h(N). There is f such that f(N) 6= 0; so, a1 6= 0. Since a1 ∈ h(N), there exists v1 ∈ N
such that a1 = h(v1).

I claim now that a1 divides f(v1) for all f ∈M∗. Indeed, put I = v1(M
∗) = {f(v1), f ∈M∗}. I is an

ideal in R; let I = (b). Then a1 = h(v1) ∈ I, so b
∣∣ a1. Let f ∈ M∗ be such that f(v1) = b, then f(N) ∋ b,

so f(N) ⊇ (a1); but the ideal (a1) is maximal in the family of ideals of the form f(N), so f(N) = (a1), so
a1
∣∣ b, so I = (a1).
Since a1 divides v1(f) = f(v1) for all f ∈ M∗, v1, as an element of M∗∗, is divisible by a1. But

M∗∗ =M , so v1 is divisible by a1 in M : there exists u1 ∈M such that v1 = a1u1. We then have h(u1) = 1.
LetM ′ = ker(h). Then Ru1∩M ′ = 0, and any vector u ∈M can be written as u = h(u)u1+(u−h(u)u1),

where h(u)u1 ∈ Ru1 and u− h(u)u1 ∈M ′, so M = Ru1 ⊕M ′.
Let N ′ = M ′ ∩ N . If u ∈ N , then a1

∣∣ h(u), so, in the decomposition u = h(u)u1 + (u − h(u)u1),
h(u)u1 ∈ a1Ru1 = Rv1 ⊆ N and u− h(u)u1 ∈ N ′; so, N = Rv1 ⊕N ′, and rank(N ′) = rank(N)− 1 = k− 1.
We will now use induction on k to prove that N is free: If k = 1, then rank(N ′) = 0; but since M has no
torsion, N ′ = 0, so N = Rv1 and is free. If k ≥ 2, by induction on k, N ′ is a free submodule of M , so N is
also a free submodule of M .

We have proved that every submodule of M is free. So, M ′ is free; it has rank n − 1, and N ′ is
a submodule of M ′ of rank k − 1. By induction on n, there is a basis {u2, . . . , un} in M ′ and scalars
a2, . . . , ak ∈ R such that a2

∣∣ · · ·
∣∣ an and {a2u2, . . . , akuk} is a basis in N ′. Then {u1, u2, . . . , un} is a basis

in M = Ru1 ⊕M ′, and {a1u1 = v1, a2u2, . . . , akuk} is a basis in N = Rv1 ⊕N ′.
It remains to show that a1

∣∣ a2. Define f ∈M∗ by f(x1u1 + · · ·+xnun) = x1 +x2. Then f(a1u1) = a1,
so (a1) ⊆ f(N), so (a1) = f(N). But a2 = f(a2u2) ∈ f(N), so a2 ∈ (a1).

7.1.2. If N is a submodule of a free module M of finite rank over a PID, then N may not be a direct
summand of M . It however follows from Theorem 7.1.1 that there is a submodule Ñ of M which is a direct
summand of M , contains N , and is such that Ñ/N is a torsion module. (Namely, Ñ is the submodule
generated by {u1, . . . , uk}.)

If M/N is torsion-free, then Ñ = N , N is a direct summand of M , and there is a basis {u1, . . . , un} in
M such that {u1, . . . , uk} is a basis of N .

7.1.3. Let R be a PID and let ϕ:M −→ N be a homomorphism of free R-modules M and N of ranks n
and m respectively. Let K = ker(ϕ). The module M/K is isomorphic to a submodule of N , so has no
torsion; hence, K is a direct summand in M , M = M ′ ⊕K. Let L = ϕ(M), then ϕ|M ′

is an isomorphism

between M ′ and L. Find a basis {v1, . . . , vm} in N and scalars a1, . . . , ak ∈ R with a1
∣∣ · · ·

∣∣ ak such that
{a1v1, . . . , akvk} is a basis in L. For every i, let ui = (ϕ|M ′

)−1(aivi) ∈ M ′, then {u1, . . . , uk} is a basis in

M ′. Choose a basis {uk+1, . . . , un} in K, then {u1, . . . , uk, . . . , un} is a basis in M . Then the m× n matrix
of ϕ with respect to the bases {u1, . . . , un} in M and {v1, . . . , vm} in N has form




a1 0 ... 0 0 ... 0
0 a2 ... 0 0 ... 0...

...
...

...
...

0 0 ... ak 0 ... 0
0 0 ... 0 0 ... 0...

...
...
...

...
0 0 ... 0 0 ... 0


. (7.1)

7.1.4. We obtain as a corollary that for any matrix A ∈ Matm,n(R) there exist invertible matrices Q ∈
Matm,m(R) and P ∈ Matn,n(R) such that the matrix A′ = QAP−1 has form (7.1) with a1

∣∣ . . .
∣∣ ak. This
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matrix A′ is called the Smith normal form of A. (We will see below that the Smith normal form of a matrix
is uniquely defined.)

7.1.5. In the case R is an ED (a Euclidean domain), there is an effective algorithm allowing to find the
Smith normal form of any m× n matrix A over R, which uses the division algorithm in EDs along with the
following elementary row/column operations: switching two columns, switching two rows, adding a multiple
of a column to another column, and adding a multiple of a row to another row. (Multiplying rows/columns
by units is also allowed.) Each of these operations can be performed by a multiplication of A by an invertible
n × n matrix from the right (column operations) or by an invertible m × m matrix from the left (row
operations), and corresponds to a certain elementary change of basis in Rn (column operations) or in Rm

(row operations). Thus, the algorithm allows to find the bases in Rn and Rm with respect to which the
matrix takes the form (7.1).

Let N be the Euclidean norm on R; but for convenience, let’s assume that N(0) =∞. We start with a
nonzero m×n matrix A; the entries of A and of the matrices obtained after each operations will be denoted
by ai,j .

(i) If there is (i, j) with N(ai,j) < N(a1,1), find (i, j) for which N(ai,j) is minimal, and switch rows 1 and i
and columns 1 and j; else

(ii) If there is j such that a1,1 /
∣∣ a1,j , write a1,j = ca1,1 + r with N(r) < N(a1,1), subtract c·(column 1) from

column j, and switch columns 1 and j; else

(iii) If there is i such that a1,1 /
∣∣ ai,1, write ai,1 = ca1,1 + r with N(r) < N(a1,1), subtract c·(row 1) from row

i, and switch rows 1 and i; else

(iv) (We are here if all entries in column 1 and in row 1 are divisible by a1,1.) If there is (i, j) such that
a1,1 /

∣∣ ai,j , write a1,j = ba1,1 and subtract (b − 1)·(column 1) from column j, write ai,j = ca1,1 + r with
N(r) < N(a1,1), subtract c·(row 1) from row i, and switch rows 1 and i and columns 1 and j; else

(v) (We are here if all entries of the matrix are divisible by a1,1.) Subtract a multiple of column 1 from all
other columns to get all entries in the first row, except a1,1, equal to 0, and subtract a multiple of row 1
from all other rows to get all entries in the first column, except a1,1, equal to 0. (If needed, the first row can
now be multiplied by a unit, to make a1,1 “look better”.) If m or n = 1, or if the submatrix (ai,j) 2≤i≤m

2≤j≤n
is

zero, stop; otherwise pass to this submatrix.

(vi) Start over.

During this process, each step makesN(a1,1) (or the size of the matrix) smaller, so the process terminates
after finitely many steps.

7.1.6. If we want to reduce a matrix to the form (7.1) without requiring that a1
∣∣ . . .

∣∣ ak, the algorithm in
7.1.5 can be essentially shortened by removing item (iv) from it.

7.1.7. Let N be a submodule of rank k of a free module M of rank m over a PID R. Find a finite set
of generators of N and construct an epimorphism ϕ:Rn −→ N . Then the matrix of ϕ, with respect to
some bases in Rn and M , is an m × n matrix whose columns generate N . Finding bases in Rn and M in
which the matrix of ϕ has form (7.1) is equivalent to finding bases in N and M satisfying the assertion of
Theorem 7.1.1.

7.2. The fundamental theorem of finitely generated modules over PIDs; invariant factors and

elementary divisors of a module

7.2.1. Theorem I – existence. Any finitely generated module M over a PID R is a direct sum of cyclic
submodules, M ∼= Rl⊕R/(a1)⊕· · ·⊕R/(am), where l = rankM and the nonzero nonunit scalars a1, . . . , am ∈
R satisfy a1

∣∣ · · ·
∣∣ am.

We will see that the scalars a1, . . . , am are defined uniquely up to association (multiplication by units);
they are called the invariant factors of M .

Proof. Assume that M is generated by n elements, then M ∼= Rn/N for some submodule N of Rn. Using
Theorem 7.1.1, find a basis {u1, . . . , un} in Rn and (nonzero) scalars a1, . . . , ak such that a1

∣∣ · · ·
∣∣ ak and

{a1u1, . . . , akuk} is a basis in N . Then M ∼= Rn/N ∼= R/(a1)⊕ · · · ⊕ R/(ak)⊕ Rn−k. If, for some i, ai is a
unit, then R/(ai) = 0 and can be removed from this sum, and we get M ∼= R/(ai1)⊕ · · · ⊕R/(aim)⊕Rn−k
where all aij are already non-units.
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7.2.2. It follows that any finitely generated module over a PID is a direct sum of a free submodule and the
torsion submodule. It then follows that if such a module is torsion-free, then it is free.

7.2.3. Let R be a PID. Let a be a nonzero nonunit element of R, and let a = pr11 · · · prkk , be the factorization
of a where p1, . . . , pk are distinct irreducible elements of R and r1, . . . , rk ∈ N. The ideals Ii = (prii ),
i = 1, . . . , k, are comaximal in R, and (I1 · · · Ik)M = 0, so by The Chinese remainder theorem 2.7.2,
R/(a) ∼= R/(pr11 )⊕ · · · ⊕R/(prkk ).

Let now M be a finitely generated module over R. After constructing such an isomorphism for all ai
in the assertion of Theorem 7.2.1, we may write M ∼= Rl ⊕⊕m

i=1

⊕ki
j=1R/(p

ri,j
i,j ) for some (not necessarily

distinct) irreducible elements pi,j ∈ R and integers ri,j ∈ N. The scalars p
ri,j
i,j are called the elementary

divisors of M .

7.2.4. Lemma. Let R be a PID, p be a prime element of R, and M = R/(pr) for some r ∈ N. Then
psM/ps+1M ∼= R/(p) for any 0 ≤ s ≤ r − 1 and = 0 for any s ≥ r. If q is another prime element of R (so
that q and p are not associates), then qsM/qs+1M = 0 for all s.

Proof. If s ≥ r, we have psM = 0, so psM/ps+1M = 0. If s < r, we have (pr) ⊆ (ps), so psM ∼= (ps)/(pr),
and psM/ps+1M ∼= (ps)/(ps+1). The isomorphism R −→ (ps), a 7→ psa, maps (p) onto (ps+1), thus
(ps)/(ps+1) ∼= R/(p).

For any q coprime with p and any s, qsM ∼= ((qs) + (pr))/(pr) = R/(pr) = M , so qsM/qs+1M ∼=
M/M = 0.

7.2.5. Based on Lemma 7.2.4, we obtain the uniqueness of the decompositionM ∼=
⊕k

i=1(R/p
ri
i ) of a torsion

module M :

Theorem II – uniqueness 1. The elementary divisors of a finitely generated module over a PID are
defined uniquely (up to permutation and association).

Proof. Let M be a finitely generated module over a PID R, let M ′ = Tor(M), let M ′ ∼= R/(pr11 ) ⊕ · · · ⊕
R/(prkk ) where p1, . . . , pk are (not necessarily distinct) irreducible elements of R and r1, . . . , rk ∈ N. Then
by Lemma 7.2.4, for every irreducible p ∈ R and any s ∈ N, the number of i for which prii = ps (up to
association) is dimR/(p)(p

s−1M ′/psM ′)− dimR/(p)(p
sM ′/ps+1M ′).

7.2.6. By 7.2.3, knowing the invariant factors of a finitely generated module M over a PID, we easily find
the elementary divisors of M by decomposing the invariant factors to products of powers of irreducibles.
Conversely, having elementary divisors of M , we easily reconstruct the invariant factors of M : if we list the
elementary divisors this way:

p
r1,m
1 , . . . , p

r1,1
1 , p

r2,m
2 , . . . , p

r2,1
2 , . . . , p

rk,m

k , . . . , p
rk,1

k ,

where pi are distinct irreducibles in R, and rk,l are (possibly, zero) integers satisfying ri,m ≥ ri,m−1 ≥ · · · ≥
ri,1 ≥ 0 for every i and ri,m > 0 for all i, then we have no other choice but to put am = p

r1,m
1 · · · prk,m

k , . . .,
a1 = p

r1,1
1 · · · prk,1

k .

7.2.7. We obtain:

Theorem II – uniqueness 2. The invariant factors of a finitely generated module over a PID are defined
uniquely (up to association).

7.2.8. It follows that for a submodule N of a fintely generated free module M over a PID, the scalars
a1, . . . , ak in Theorem 7.1.1 are uniquely defined (up to association): if c1, . . . , cm are the invariant factors
of the module M/N , then (a1, . . . , ak) = (1, . . . , 1, c1, . . . , cm).

7.2.9. How to find the invariant factors of a module? Let M be a finitely generated module over a PID
R defined via generators and relations: M is defined as a set of formal R-linear combinations of elements
v1, . . . , vn satisfying a finite family of linear relations,

n∑

i=1

ai,1vi = · · · =
n∑

i=1

ai,mvi = 0.
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This is equivalent to defining M as the quotient of the free module Rn by the submodule N , generated by

the vectors

(
a1,1...
an,1

)
, . . .,

(
a1,m...
an,m

)
. The matrix A =

(
a1,1 ... a1,m...

...
an,1 ... an,m

)
is called the relations matrix of M . Now,

as described in 7.1.3, A can be reduced, by left and right multiplication by invertible matrices, to its Smith
normal form (7.1), with a1

∣∣ . . .
∣∣ ak; the nonunit scalars out of a1, . . . , ak are just the invariant factor of M .

In the case R is an ED, the reduction of A to its Smith normal form can be made using row/column
operations from 7.1.5; by tracking these operations we can find an explicit presentation of M as a direct sum
of its cyclic submodules.

7.3. The rational normal form of the matrix of a linear transformation of a finite dimensional

vector space

We will now apply the results of subsection 7.2 in linear algebra – to establish the so-called normal
forms of square matrices over a field (the forms, to which any square matrix can be reduced by a change of
basis).

Let F be a field, let V be an n-dimensional F -vector space, and let T be a linear transformation of V
(an F -module homomorphism V −→ V ).

7.3.1. The transformation T defines an F [x]-module structure on V by putting p(x)u = p(T )(u), p ∈ F [x].
The F -basis of V generates V as an F [x]-module, so V is generated by ≤ n elements.

7.3.2. A submodule of the F [x]-module V is a subspaceW of V invariant under the action of F [x], F [x]W ⊆
W ; for this, it is necessary and sufficient that T (W ) ⊆W . If a basis {u1, . . . , un} of V is such that {u1, . . . , uk}
is a basis of W , then with respect to this basis the matrix of T has form

(
A1 C
O A2

)
, where A1 is the matrix of

T |W with respect to the basis {u1, . . . , uk}.
7.3.3. If the F [x]-module V is a direct sum of two its submodules (that is, T -invariant subspaces) V =
W1 ⊕W2, and a basis {u1, . . . , un} of V is such that {u1, . . . , uk} is a basis of W1 and {uk+1, . . . , un} is a

basis ofW2, then the matrix of T with respect to this basis has form
(
A1 O
O A2

)
, where A1 is the matrix of T |W1

with respect to the basis {u1, . . . , uk} and A2 is the matrix of T |W2
with respect to the basis {uk+1, . . . , un}.

7.3.4. Since F [x] is an infinite dimensional F -vector space, V contains no copy of F [x], so, is a torsion
F [x]-module. The annihilator Ann(V ) is an ideal in F [x], generated by a monic polynomial mT ∈ F [x]. mT

is called the minimal polynomial of T : we have mT (T )u = 0 for all u ∈ V , so mT (T ) = 0, and any other
polynomial p ∈ F [x] satisfying p(T ) = 0 is divisible by mT .

7.3.5. Since the ring F [x] is a PID (and even an ED), the theory of finite generated modules over PIDs
applies to V , and we get the following theorem:

Theorem. V is representable as a direct sum V = W1 ⊕ · · · ⊕ Wm of T -invariant subspaces which are
cyclic F [x]-modules: for each i, Wi

∼= R/(pi), where pi are nonconstant polynomials from F [x] satisfying
p1
∣∣ p2

∣∣ · · ·
∣∣ pm.

The polynomials p1, . . . , pm are called the invariant factors of T ; they are uniquely defined up to
multiplication by a constant, so, are uniquely defined if assumed to be monic. For each i, pi is the minimal
polynomial of T |Wi

; the senior invariant factor pm, being divisible by all other, is just the minimal polynomial
mT of T . V is a cyclic F [x]-module iff it has a single invariant factor, iff degmT = n.

7.3.6. Let W be an F [x]-submodule of V , that is, a subspace of V invariant under the action of T : T (W ) ⊆
W . W is a cyclic F [x]-module iff there is u ∈ W such that F [x]u = W ; such vector u is called a cyclic
vector of T |W . We have W ∼= F [x]/(p) for some polynomial p = xk + ak−1x

k−1 + · · · + a1x + a0 ∈ F [x],
of degree k. As an F -vector space, F [x]/(p) has dimension k and basis {1̄, x̄, . . . , x̄k−1} (where q̄ denotes
the class q + (p) of q modulo (p)). So, dimF W = k, and {u, T (u), . . . , T k−1(u)} is an F -basis of W , and
p(T )(u) = T k(u) + ak−1T

k−1(u) + · · ·+ a1T (u) + a0u = 0.

Under the action of T , we have

u 7→ T (u) 7→ T 2(u) 7→ · · · 7→ T k(u) = −a0 − a1t(u)− · · · − ak−1T
k−1(u),
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so in the basis {u, T (u), . . . , T k−1(u)}, the k × k matrix of T |W is

Cp =




0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2...
...
...
...

...
...

0 0 0 ... 0 −ak−2

0 0 0 ... 1 −ak−1


. (7.2)

Matrix Cp is called the companion matrix of the monic polynomial p = xk + ak−1x
k−1 + · · ·+ a1x+ a0. We

have detCp = ±a0, and, since p(T |W ) = 0, p(Cp) = 0.

7.3.7. In the decomposition V =W1 ⊕ · · · ⊕Wm of V into a sum of cyclic F [x]-modules, for each i, choose
a basis in Wi as described in 7.3.6, and let B be the union of these bases. Then with respect to basis B the
matrix of T has the block-diagonal form



Cp1

0 ... 0

0 Cp2
... 0

...
...

...
...

0 0 ... Cpm


, (7.3)

where for each i, Cpi is the companion matrix of the i-th invariant factor pi of T . This form of a matrix is
called the Frobenius normal form or the rational normal form; for any transformation T , the rational normal
form of its matrix is unique.

7.3.8. As a corollary, we obtain that any square matrix is similar to a unique matrix of the form (7.3) with
p1
∣∣ · · ·

∣∣ pm, and that two matrices are similar iff they have the same rational normal form.

7.3.9. The invariant factors, along with the rational normal form of a matrix are field independent: if A is
a matrix over a field F1 and F2 is a field containing F1, then the invariant factors and the rational normal
form of A over F2 are the same as over F1.

7.3.10. Instead of invariant factors of T (that is, of the F [x]-module V ) we as well can use the elementary
divisors thereof. As a result, we will also obtain a matrix of the form (7.3), but now with polynomials pi,
instead of dividing each the next, being powers of irreducible polynomials, pi = qrii . Such a form of the
matrix is also unique for T (up to permutations of blocks), but is field dependent.

7.4. The Smith normal form of x− T and the characteristic polynomial

How can the rational normal form of the matrix of a linear transformation be found? One possible
method is to utilize the theory from 7.2.9.

We preserve notation from the previous section.

7.4.1. Let A =

(
a1,1 ... a1,n...

...
an,1 ... an,n

)
be a matrix of T in an arbitrary basis B = {u1, . . . , un} of V . Then for each

i, xui = T (ui) = a1,iu1 + · · · + an,iun; these relations form the matrix

(x−a1,1 −a1,2 ... −a1,n
−a1,1 x−a2,2 ... −a2,n...

...
...

...
−an,1 −an,2 ... x−an,n

)
= xI − A,

where I is the unit n× n matrix.
I claim that this is the complete relations matrix of the F [x]-module V , that is, that all relations of

V follow from the relations above. Indeed, let N be the submodule of the free module F [x]n generated by

these relations, and let M = F [x]n/N . Then in M ,

(x
0...
0

)
=

(
a1,1
a2,1...
an,1

)
,

(
0
x...
0

)
=

(
a1,2
a2,2...
an,2

)
, etc. So, x (and so any

its power) in this module, in any coordinate position, can be replaced by a vector from Fn, and so M is
an F -vector space of dimension ≤ n. But since V has all the relations from N , there is an epimorphism
M −→ V ; and since dimV = n, we have that V ∼=M .

Thus, by 7.2.9, using the row/column operations from 7.1.5, we can reduce the matrix xI − A to its
Smith normal form. Since rankF [x] V = 0, the obtained matrix has no zero columns, and we will actually
get a diagonal matrix 



c1 0 ... 0 0 0 ... 0
0 c2 ... 0 0 0 ... 0...

...
...

...
...

...
...

0 0 ... cl 0 0 ... 0
0 0 ... 0 p1 0 ... 0
0 0 ... 0 0 p2 ... 0...

...
...
...

...
...

...
0 0 ... 0 0 0 ... pm




(7.4)
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where c1, . . . , cl ∈ F and p1, . . . , pm are nonzero nonconstant polynomials with p1
∣∣ · · ·

∣∣ pm; these are the
invariant factors of T . After multiplying p1, . . . , pm by suitable constants (elements of F , which are units in
F [x]), we may and will assume that they all are monic.

7.4.2. Let A be the matrix of T and let C be the Smith normal form of xI − A. Since the row/column
operations from 7.1.5 preserve, up to multiplication by an element of F (a unit of F [x]), the determinant of
the matrix (or since the matrices P and Q from 7.1.4 are invertible in Matn,n(F [x]) and so, their determinants
are elements of F ), and since the invariant factors are assumed to be monic, we have detC = det(xI − A).
The polynomial cT (x) = det(xI − A), of degree n, is called the characteristic polynomial of T (and of A);
we see that cT = detC = p1p2 · · · pm, that is, up to multiplication by an element of F , is the product of the
elementary divisors of T .

7.4.3. In particular, the minimal polynomial mT = pm of T divides its characteristic polynomial cT . Since
mT (T ) = 0, this implies

The Cayley-Hamilton theorem. If T is a linear transformation of a finite dimensional vector space and
cT is the characteristic polynomial of T , then cT (T ) = 0.

7.5. The Jordan normal form of a matrix

In the case the characteristic polynomial of T splits into a product of linear factors, T has another
standard normal form.

7.5.1. Assume that V is a cyclic F [x]-module and that the minimal polynomial of T has form cT (x) = (x−λ)n
for some λ ∈ F . Consider the transformation S = T − λI; the minimal polynomial of S is xn. (So,
Sn = 0; S is said to be nilpotent .) Since the degree of the minimal polynomial of S is n = dimV , V is
cyclic under the action of S as well; let u be a cyclic vector of V . Then S acts on u the following way:
u 7→ Su 7→ S2(u) 7→ · · · 7→ Sn−1(u) 7→ Sn(u) = 0, and {u, S(u), . . . , Sn−1(u)} is a basis of V . If we reverse

the order of elements of this basis, that is, in the basis {Sn−1(u), . . . , S(u), u}, the matrix of S is

(0 1 ... 0 0
0 0 ... 0 0...
...
...

...
...

0 0 ... 0 1
0 0 ... 0 0

)
,

the n × n matrix with 1s above the main diagonal. Accordingly, the matrix of T = S + λI in this basis is

λ 1 ... 0 0
0 λ ... 0 0...
...
...

...
...

0 0 ... λ 1
0 0 ... 0 λ


. A matrix of this form is called a Jordan cell .

7.5.2. Now assume that T is a linear transformation of a vector space V and that the characteristic poly-
nomial of T splits into a product of linear factors, cT (x) =

∏n
i=1(x − λi), λ1, . . . , λn ∈ F . Then every

elementary divisor of T has form (x − λi)ri for some i and some ri ∈ N, and so, in a suitable basis, the

matrix of T is block-diagonal

(
J1 0 ... 0
0 J2 ... 0...

...
...

...
0 0 ... Jk

)
with each Ji being a Jordan cell. This matrix is called the Jordan

normal form of the matrix of T .

7.5.3. A field F is said to be algebraically closed if every polynomial over F has a root in F ; equivalently, if
every polynomial over F splits into a product of linear factors. (The fundamental theorem of algebra says
that C, the field of complex numbers, is algebraically closed.)

In the case F is an algebraically closed field , every transformation of an F -vector space has a Jordan
normal form (and so, every square matrix over F does).

7.5.4. The roots of the characteristic polynomial of a transformation T are called eigenvalues of T . So, if T
has a Jordan normal form, the diagonal elements of its Jordan cells are the eigenvalues of T .

If λ is an eigenvalue of T , then det(λI−T ) = 0, so λI−T is not invertible, so it has a nontrivial kernel,
so there is a nonzero vector u ∈ V such that T (u) = λu. Such a vector u is called the eigenvector of T
corresponding to eigenvalue λ.

42


