1. If K / F is a Galois extension of degree $n=m p^{r}$ where p is prime and $p \nmid m$, prove that K / F has a subextension L / F such that $[L: F]=m$, and that all such subextensions are isomorphic.
2. Let p be a prime integer, let F be a field with char $F \neq p$, let $f \in F[x]$ be a separable polynomial, and assume that the splitting field K of f has degree p^{r} over F for some $r \in \mathbb{N}$. Prove that f is solvable in radicals. If F contains a root of unity of degree p, how many nested radicals and of what degrees would suffice to express a root of f ?
3. (a) Is it true that a normal extension of a normal extension is normal? (Prove or give a counterexample.)
(b) Is it true that a separable extension of a separable extension is separable?
4. Prove that every root of unity of degree n is expressible in radicals of degrees $<n$.
5. Let K / F be a Galois extension with $\operatorname{Gal}(K / F)=G$ and let $\alpha \in K$.
(a) Prove that $K=F(\alpha)$ iff the elements $\varphi(\alpha), \varphi \in G$, are all distinct.
(b) In general, prove that $[K: F(\alpha)]=|H|$ where H is the stabilizer of α in $G, H=\{\varphi \in$ $G: \varphi(\alpha)=\alpha\}$.
6. Let K / F be a Galois extension of degree $p q$ where $p<q$ are primes. How many subextensions and of what degrees can K / F have? (Consider two cases: where p divides $q-1$ and where it doesn't.)
7. If char $F \neq 0$, prove that an extension K / F of degree 4 can be generated by the root of an irreducible biquadratic $x^{4}+a x^{2}+b \in F[x]$ if and only if K contains a quadratic extension of F.
8. Let $d \in \mathbb{Z} \backslash\{0,1\}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Prove that the extension $\mathbb{Q}(\sqrt{a \sqrt{d}}) / \mathbb{Q}$ is Galois only if $d=-1$.
9. Construct a polynomial over \mathbb{Q} whose Galois group is isomorphic to \mathbb{Z}_{4}.
10. For which n is the number $\sqrt[n]{3}$ constructible?
11. Find the Galois group of $f=x^{3}-3 x+3 \in \mathbb{Q}[x]$.
12. Find the Galois group of $f=x^{4}-2 \quad$ (a) over \mathbb{Q}; \quad (b) over $\mathbb{F}_{3} ; \quad$ (c) over \mathbb{F}_{7}.
13. Find the Galois group over \mathbb{Q} of the polynomials
(a) $f=x^{5}-2$;
(b) $f=x^{9}-2$.
14. Find the Galois group of $f=x^{4}+x^{3}+x^{2}+x+1$ (a) over \mathbb{Q}; (b) over \mathbb{F}_{2}.
15. Find the Galois group and all subfields of the splitting field of $f=x^{4}+3 x^{2}+1 \in \mathbb{Q}[x]$.
16. Find the Galois group and all subfields of the splitting field of $f=x^{4}+x^{2}+1 \in \mathbb{Q}[x]$.
17. Find the Galois group of $f=x^{4}+2 x^{2}+x+3 \in \mathbb{Q}[x]$.
18. For prime p, prove that the Galois group of $f=x^{4}+p x+p \in \mathbb{Q}[x]$ is S_{4} for $p \neq 3,5$, D_{8} for $p=3$, and \mathbb{Z}_{4} for $p=5$.
19. Find the Galois group of $f=x^{5}-x-1 \in \mathbb{Q}[x]$.
