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Solutions to Homework 10 Math 5591H

14.2.10. Let f =28 — 3 € Q[z].

(a) Find the degrees and all the conjugates of o = /3 € R and of w = e2™/8  Determine whether the
extension Q(a)/Q is normal and whether Q(w)/Q is normal.

Solution. « is a root of f, and all roots of f are aw®, k = 0,...,7; since f is irreducible (by Eisenstein),
these are the conjugates of a.
w is a primitive 8th root of unity, its conjugates are the primitive 8th roots of unity, which are w, w3,
5 d 7
w®, and w’.
Since E = Q(«) doesn’t contain aw, E/Q is not normal. Since L = Q(w) contains all conjugates of w,
L/Q is normal (is the splitting field of the cyclotomic polynomial ®g).

(b) Find the splitting field K of f and find its degree.

Solution. Since all roots of f have form aw®, k = 0,...,7, the splitting field of f is K = Q(a,w). Let
E = Q(a) and L = Q(w), then K = EL. We have [E : Q] = 8. I claim that [K : E] = 4, so that

[K : Q] =[K : E|[E : Q] = 32. Indeed, we have w = %, so L = Q(v/2,i). Now, degp /2 = 2: indeed,

we know that the only quadratic subextensions of E/Q is Q(v/3)/Q; Sbut snce 1,v/2,1/3 are Q-linearly
independent, v2 ¢ Q(v/3), so v2 ¢ E. (Alternatively, if v/2 € E, then M = Q(v/3,/2) is a subfield of E
of degree 4 over Q, then « has degree 2 over M, then the only conjugate of o over M must also be real, so,
is —a, then the minimal polynomial of o over M is 22 — \‘75, but v/3 ¢ M since M is normal and /3 has
conjugates not in M.) Also degp, 3@ = 2 since i is not real; hence, [K : E] = 4.

(¢) Find the Galois group G = Gal(K/Q).

Solution. Since |G| = 32, w can be sent by elements of G to any of its conjugates w', | = 1,3,5,7, and « can
be independently sent to any of its conjugates aw®, k = 0,1,...,7. Let ¢, € G be the automorphism for
which ¢y (w) = w! and (o) = aw®. Then the product of k1 and @y, , maps w to wh™ and « to aw!™tk,
80 that @k 1Pn.m = Pintkim- (S0 G = Zs NL§=Zg x'Vy.)

Another solution. Since |G| = 32, w can be sent by elements of G to any of its conjugates w', [ = 1,3,5,7,
and a can be independently sent to any of its conjugates aw®, k = 0,1,...,7. Define p,1,12 € G by
pla) = wa, p(w) = w, Yi(a) = Pa(a) = @, Pi(w) = w’, Y1(w) = W’ Then |p| =8, [¢1] = |s| = 2,
P1he = o)1, Y11 () = aw? and Y1 (W) = w? = w s0 Y11 = 3, and similarly Paprhy = ¢°. Hence,

G = (p,h1,12 | & =9 = 03 =1, P1s = thothr, Y11 = ¢, gy = ¢°). (No more relations are
needed since the obtained relations already define a group of order 32.)

14.2.13. Prove that if the Galois group of the splitting field of a cubic over Q is cyclic of order 3 then all
roots of the cubic are real.

Solution. We can prove more: if K C C and K/Q is a Galois extension of odd degree, then K C R. Indeed,
(the restriction of) the complex conjugation ¢(z) = z, z € K, is an automorphism of K with ¢? = 1, so
v € G = Gal(K/Q) with order 1 or 2. Since G has an odd order, ¢ cannot have order 2 in G, so ¢ has order
1 in G, that is, acts trivially on K.

Another solution. Let K be the splitting field of the cubic f, the [K : F] = 3. f has no roots in Q, since
otherwise K would have degree at most 2 over Q. Let « be a real root of f. Then Q(«) is a subfield of K;
but then 1 < [Q(a) : Q] |[K : Q] =3, so [Q(a) : Q] =3, s0o K = Q(«) C R.

14.2.14. Let K = Q( 2+ \/ﬁ) ; prove that K/Q is a Galois extension and that Gal(K/Q) = Zy.

Solution. Let o = \/2 + v/2; the minimal polynomial of ais (22 —2)? —2 = % — 422 42 (which is irreducible
by Eisenstein’s criterion). Using our classification of Galois groups of irreducible biquadratic polynomials,
we check that Vb =+v2 ¢ Q, 6 = /(—4)2 —4-2 = 2/2 50 V/2/6 € Q, so Gal(f/Q) = Z4. We also see that
the degree of the splitting field of f is 4, so K = Q(«) is the splitting field of f, and so, K/Q is Galois with
Gal(K/Q) = Gal(f/Q).
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Another solution. The conjugates of a over Q are 8 = /2 — v/2, —a, and —3. We have a8 = V2 € Q(a),
so B € Q(«), and also —a, — € Q(«), so K/Q = Q(a)/Q is normal, and so, is a Galois extension of degree
4. Thus, G = Gal(K/Q) is (isomorphic to) either Z4 or Vy; we have G = Z, iff there is an element of order
41in G.

Let ¢ be an automorphism of K such that ¢(a) = f. (Such an automorphism exists, and is unique
since K is generated by a.) Then ¢(v/2) = p(a? —2) = 32 —2 = —/2. So,

p(8) = p(V2/a) = (—V2)/ = —a.

Hence, p?(a) = ¢(B) = —a, ¢*(a) = p(—a) = —fB, and ¢*(a) = p(—B) = a. So, ¢ is an element of G of
order 4, and G = (p) = Zy4.

14.3.8. Determine the splitting field and the Galois group of the polynomial f(z) = 2P — 2z — a € F,lx],
where a € F,, \ {0}.

Solution. (The solution partially repeats arguments of the solution to exercise 13.5.5.) No element b of I,
is a root of f, since b¥ = b. If o is a root of f, then for any b € I,

fla+b)=(a+b)? —(a+b)—a=a?P—a—a+b’ —b=0,

so a+ b is also a root of f, and we therefore have p = deg f distinct roots of f in Fp(«). Thus, K = F,(«)
is the splitting field of f, and is separable over F,,. Since f has no roots in F,, K # F,, and so, K/F, is a
nontrivial Galois extension of degree < deg f = p. (If we use the result of 13.5.5 that f is irreducible, we
can claim that [K : F(«)] = p; but we don’t need this.)

Since o ¢ F,, its minimal polynomial has degree > 2; so o has conjugates distinct from itself, and we
know that all conjugates of o must be of the form a + b, b € Fp,. Let o + b, with b # 0, be one of them,
and let ¢ € Gal(K/F,) be such that ¢(o) = a +b. (Such ¢ exists and is unique, since K is generated by
a.) The elements a, p(a) = a +b, p*(a) = a +2b, ..., and pP~}(a) = a + (p — 1)b are all distinct, so the
automorphisms Id, ¢, 9%, ..., ¢P~! are all distinct, so Gal(K/F,) is cyclic, = Z,, generated by ¢. (It now
follows, by the way, that deg]Fp a =p, so f is irreducible, and K =TF,».)

Cf. 14.2.3. Let f = (22—2)(22-3)(2?—5) € Q[z]; find the splitting field K of f and Gal(f/Q) = Gal(K/Q).
List all 16 subgroups of G and for every subgroup H < G find the subfield Fix(H) of K.

Solution. The group G = Gal(K/F) is isomorphic to Z3. Indeed, K = Q(\/?, V3, \/5) has degree 8 over Q,
since, as it is easy to see, V3 € Q(v/2) and V5 ¢ Q(v/2,v/3). Thus, each of the 8 mappings V2 — +v/2,
V3 = V3, V5 — £/5, defines an automorphism of K/Q. These mappings commute and have order 2,
thus form a group isomorphic to Z3.

G = Z3 is a 3-dimensional Zs vector space; “a basis” of G is formed by the automorphisms 1, @2, 3
defined by

V2 =2 V2 V2 V2 V2
01133 Y2:/3 =3  P3:/3 /3
V5 /5 V5= /5 V5= =5

G has the following subgroups:

the subgroup 1 = {Idk},

seven “one-dimensional” subgroups of the form () for ¢ € G\ {1},

seven “two dimensional” subgroups of the form (g, 1) for distinct ¢, € G\ {1},

and G itself.

1 fixes V3 and \/5, so the subgroup (1) fixes the subfield Q(\/g, \/5) of K; since the degree of this
field over Q equals 4 equals the index of (1) in G, we have Fix((¢1)) = Q(v/3,v/5). We similarly find the
fixed fields of the other “one-dimensional” subgroups of G. For the “two-dimensional” subgroup (p1, ¢2),
its fixed field is the intersection Fix((p1)) N Fix({¢2)) = Q(+/5). Similarly, we find the fixed fields of other
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“two-dimensional” subgroups, and get the following correspondence table:

1— K
(1) — Q(V3,V5), (p2) — Q(V2,v5), (p3) — Q(V2,V3),
<301902> — Q(\/gv \/é)a <<,01<,03> — Q(\/i \/ﬁ)v <302<)03> — Q(\/i’ \/ﬁ)v
(p1p2p3) — Q(V6,V10),
(p1,02) — Q(V5B), (p1,903) — Q(V3), (pa,03) — Q(V2),
(P12, 03) — Q(V6), (1603, 02) — Q(V10),  (2eps, 1) — Q(V15),

(P12, P2003) —> Q(V30),
and G — Q

14.5.10. Prove that /2 is not contained in any cyclotomic field.
Solution. Let K/Q be a cyclotomic extension. Then K/Q is Galois with abelian Gal(K/Q) (namely, Z? for
some n). Thus every subextension of K/Q is normal; but Q(3/2)/Q is not normal.

Another solution. Assume that K/Q is a cyclotomic extension containing o = /2. Then K/Q is Galois, so
K contains the splitting field of the minimal polynomial f = 2% — 2 of «, so Gal(f/Q) is a quotient group
of Gal(K/Q). But Gal(K/Q) is abelian, whereas Gal(f/Q) = S5 is not, contradiction.

A1. Prove that there are no biquadratic extensions of finite fields.

Solution. Finite fields are perfect, so any algebraic extension of a finite field is separable. A (separable)
biquadratic extension has Galois group isomorphic to V4, whereas any finite extension of a finite field is
cyclic (has cyclic Galois group).

A2. Let K/F be a Galois extension, let G = Gal(K/F). For every prime p and every r € N such that
p" | |G|, prove that there is a subfield L of K with [K : L] = p".

Solution. By Sylow’s theorem, if a prime p and r € N are such that p” | |G|, then G contains a subgroup H
with |H| =p". Let L = Fix(H); then [K : L] = |H| =p".



