
Solutions to Homework 10 Math 5591H

14.2.10. Let f = x8 − 3 ∈ Q[x].

(a) Find the degrees and all the conjugates of α = 8
√
3 ∈ R and of ω = e2πi/8. Determine whether the5pt

extension Q(α)/Q is normal and whether Q(ω)/Q is normal.

Solution. α is a root of f , and all roots of f are αωk, k = 0, . . . , 7; since f is irreducible (by Eisenstein),
these are the conjugates of α.

ω is a primitive 8th root of unity, its conjugates are the primitive 8th roots of unity, which are ω, ω3,
ω5, and ω7.

Since E = Q(α) doesn’t contain αω, E/Q is not normal. Since L = Q(ω) contains all conjugates of ω,
L/Q is normal (is the splitting field of the cyclotomic polynomial Φ8).

(b) Find the splitting field K of f and find its degree.10pt

Solution. Since all roots of f have form αωk, k = 0, . . . , 7, the splitting field of f is K = Q(α, ω). Let
E = Q(α) and L = Q(ω), then K = EL. We have [E : Q] = 8. I claim that [K : E] = 4, so that
[K : Q] = [K : E][E : Q] = 32. Indeed, we have ω = 1+i√

2
, so L = Q(

√
2, i). Now, degE

√
2 = 2: indeed,

we know that the only quadratic subextensions of E/Q is Q(
√
3)/Q; Sbut snce 1,

√
2,
√
3 are Q-linearly

independent,
√
2 6∈ Q(

√
3), so

√
2 6∈ E. (Alternatively, if

√
2 ∈ E, then M = Q(

√
3,
√
2) is a subfield of E

of degree 4 over Q, then α has degree 2 over M , then the only conjugate of α over M must also be real, so,
is −α, then the minimal polynomial of α over M is x2 − 4

√
3, but 4

√
3 6∈ M since M is normal and 4

√
3 has

conjugates not in M .) Also degE(
√
2) i = 2 since i is not real; hence, [K : E] = 4.

(c) Find the Galois group G = Gal(K/Q).10pt

Solution. Since |G| = 32, ω can be sent by elements of G to any of its conjugates ωl, l = 1, 3, 5, 7, and α can
be independently sent to any of its conjugates αωk, k = 0, 1, . . . , 7. Let ϕk,l ∈ G be the automorphism for
which ϕk,l(ω) = ωl and ϕk,l(α) = αωk. Then the product of ϕk,l and ϕn,m maps ω to ωlm and α to αωln+k,
so that ϕk,lϕn,m = ϕln+k,lm. (So G ∼= Z8 ×Z∗

8
∼= Z8 ×V4.)

Another solution. Since |G| = 32, ω can be sent by elements of G to any of its conjugates ωl, l = 1, 3, 5, 7,
and α can be independently sent to any of its conjugates αωk, k = 0, 1, . . . , 7. Define ϕ,ψ1, ψ2 ∈ G by
ϕ(α) = ωα, ϕ(ω) = ω, ψ1(α) = ψ2(α) = α, ψ1(ω) = ω3, ψ1(ω) = ω5. Then |ϕ| = 8, |ψ1| = |ψ2| = 2,
ψ1ψ2 = ψ2ψ1, ψ1ϕψ1(α) = αω3 and ψ1ϕψ1(ω) = ω9 = ω so ψ1ϕψ1 = ϕ3, and similarly ψ2ϕψ2 = ϕ5. Hence,
G =

〈

ϕ,ψ1, ψ2

∣

∣ ϕ8 = ψ2
1 = ϕ2

2 = 1, ψ1ψ2 = ψ2ψ1, ψ1ϕψ1 = ϕ3, ψ1ϕψ1 = ϕ5
〉

. (No more relations are
needed since the obtained relations already define a group of order 32.)

14.2.13. Prove that if the Galois group of the splitting field of a cubic over Q is cyclic of order 3 then all5pt

roots of the cubic are real.

Solution. We can prove more: if K ⊂ C and K/Q is a Galois extension of odd degree, then K ⊆ R. Indeed,
(the restriction of) the complex conjugation ϕ(z) = z̄, z ∈ K, is an automorphism of K with ϕ2 = 1, so
ϕ ∈ G = Gal(K/Q) with order 1 or 2. Since G has an odd order, ϕ cannot have order 2 in G, so ϕ has order
1 in G, that is, acts trivially on K.

Another solution. Let K be the splitting field of the cubic f , the [K : F ] = 3. f has no roots in Q, since
otherwise K would have degree at most 2 over Q. Let α be a real root of f . Then Q(α) is a subfield of K;
but then 1 < [Q(α) : Q]

∣

∣[K : Q] = 3, so [Q(α) : Q] = 3, so K = Q(α) ⊆ R.

14.2.14. Let K = Q
(

√

2 +
√
2
)

; prove that K/Q is a Galois extension and that Gal(K/Q) ∼= Z4.10pt

Solution. Let α =
√

2 +
√
2; the minimal polynomial of α is (x2−2)2−2 = x4−4x2+2 (which is irreducible

by Eisenstein’s criterion). Using our classification of Galois groups of irreducible biquadratic polynomials,
we check that

√
b =

√
2 6∈ Q, δ =

√

(−4)2 − 4 · 2 = 2
√
2 so

√
2/δ ∈ Q, so Gal(f/Q) ∼= Z4. We also see that

the degree of the splitting field of f is 4, so K = Q(α) is the splitting field of f , and so, K/Q is Galois with
Gal(K/Q) = Gal(f/Q).
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Another solution. The conjugates of α over Q are β =
√

2−
√
2, −α, and −β. We have αβ =

√
2 ∈ Q(α),

so β ∈ Q(α), and also −α,−β ∈ Q(α), so K/Q = Q(α)/Q is normal, and so, is a Galois extension of degree
4. Thus, G = Gal(K/Q) is (isomorphic to) either Z4 or V4; we have G ∼= Z4 iff there is an element of order
4 in G.

Let ϕ be an automorphism of K such that ϕ(α) = β. (Such an automorphism exists, and is unique
since K is generated by α.) Then ϕ(

√
2) = ϕ(α2 − 2) = β2 − 2 = −

√
2. So,

ϕ(β) = ϕ(
√
2/α) = (−

√
2)/β = −α.

Hence, ϕ2(α) = ϕ(β) = −α, ϕ3(α) = ϕ(−α) = −β, and ϕ4(α) = ϕ(−β) = α. So, ϕ is an element of G of
order 4, and G = 〈ϕ〉 ∼= Z4.

14.3.8. Determine the splitting field and the Galois group of the polynomial f(x) = xp − x − a ∈ Fp[x],10pt

where a ∈ Fp \ {0}.
Solution. (The solution partially repeats arguments of the solution to exercise 13.5.5.) No element b of Fp

is a root of f , since bp = b. If α is a root of f , then for any b ∈ Fp,

f(α+ b) = (α+ b)p − (α+ b)− a = αp − α− a+ bp − b = 0,

so α+ b is also a root of f , and we therefore have p = deg f distinct roots of f in Fp(α). Thus, K = Fp(α)
is the splitting field of f , and is separable over Fp. Since f has no roots in Fp, K 6= Fp, and so, K/Fp is a
nontrivial Galois extension of degree ≤ deg f = p. (If we use the result of 13.5.5 that f is irreducible, we
can claim that [K : F (α)] = p; but we don’t need this.)

Since α 6∈ Fp, its minimal polynomial has degree ≥ 2; so α has conjugates distinct from itself, and we
know that all conjugates of α must be of the form α + b, b ∈ Fp. Let α + b, with b 6= 0, be one of them,
and let ϕ ∈ Gal(K/Fp) be such that ϕ(α) = α + b. (Such ϕ exists and is unique, since K is generated by
α.) The elements α, ϕ(α) = α + b, ϕ2(α) = α + 2b, . . ., and ϕp−1(α) = α + (p− 1)b are all distinct, so the
automorphisms Id, ϕ, ϕ2, . . . , ϕp−1 are all distinct, so Gal(K/Fp) is cyclic, ∼= Zp, generated by ϕ. (It now
follows, by the way, that deg

Fp
α = p, so f is irreducible, and K = Fpp .)

Cf. 14.2.3. Let f = (x2−2)(x2−3)(x2−5) ∈ Q[x]; find the splitting field K of f and Gal(f/Q) = Gal(K/Q).10pt

List all 16 subgroups of G and for every subgroup H ≤ G find the subfield Fix(H) of K.

Solution. The group G = Gal(K/F ) is isomorphic to Z3
2. Indeed, K = Q

(√
2,
√
3,
√
5
)

has degree 8 over Q,

since, as it is easy to see,
√
3 6∈ Q(

√
2) and

√
5 6∈ Q(

√
2,
√
3). Thus, each of the 8 mappings

√
2 7→ ±

√
2,√

3 7→ ±
√
3,

√
5 7→ ±

√
5, defines an automorphism of K/Q. These mappings commute and have order 2,

thus form a group isomorphic to Z3
2.

G ∼= Z3
2 is a 3-dimensional Z2 vector space; “a basis” of G is formed by the automorphisms ϕ1, ϕ2, ϕ3

defined by

ϕ1 :

√
2 7→ −

√
2√

3 7→
√
3√

5 7→
√
5

ϕ2 :

√
2 7→

√
2√

3 7→ −
√
3√

5 7→
√
5

ϕ3 :

√
2 7→

√
2√

3 7→
√
3√

5 7→ −
√
5

G has the following subgroups:
the subgroup 1 = {IdK},
seven “one-dimensional” subgroups of the form 〈ϕ〉 for ϕ ∈ G \ {1},
seven “two dimensional” subgroups of the form 〈ϕ,ψ〉 for distinct ϕ,ψ ∈ G \ {1},
and G itself.

ϕ1 fixes
√
3 and

√
5, so the subgroup 〈ϕ1〉 fixes the subfield Q(

√
3,
√
5) of K; since the degree of this

field over Q equals 4 equals the index of 〈ϕ1〉 in G, we have Fix(〈ϕ1〉) = Q(
√
3,
√
5). We similarly find the

fixed fields of the other “one-dimensional” subgroups of G. For the “two-dimensional” subgroup 〈ϕ1, ϕ2〉,
its fixed field is the intersection Fix(〈ϕ1〉) ∩ Fix(〈ϕ2〉) = Q(

√
5). Similarly, we find the fixed fields of other
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“two-dimensional” subgroups, and get the following correspondence table:

1 −→ K
〈ϕ1〉 −→ Q(

√
3,
√
5), 〈ϕ2〉 −→ Q(

√
2,
√
5), 〈ϕ3〉 −→ Q(

√
2,
√
3),

〈ϕ1ϕ2〉 −→ Q(
√
5,
√
6), 〈ϕ1ϕ3〉 −→ Q(

√
3,
√
10), 〈ϕ2ϕ3〉 −→ Q(

√
2,
√
15),

〈ϕ1ϕ2ϕ3〉 −→ Q(
√
6,
√
10),

〈ϕ1, ϕ2〉 −→ Q(
√
5), 〈ϕ1, ϕ3〉 −→ Q(

√
3), 〈ϕ2, ϕ3〉 −→ Q(

√
2),

〈ϕ1ϕ2, ϕ3〉 −→ Q(
√
6), 〈ϕ1ϕ3, ϕ2〉 −→ Q(

√
10), 〈ϕ2ϕ3, ϕ1〉 −→ Q(

√
15),

〈ϕ1ϕ2, ϕ2ϕ3〉 −→ Q(
√
30),

and G −→ Q

14.5.10. Prove that
3
√
2 is not contained in any cyclotomic field.5pt

Solution. Let K/Q be a cyclotomic extension. Then K/Q is Galois with abelian Gal(K/Q) (namely, Z∗
n for

some n). Thus every subextension of K/Q is normal; but Q( 3
√
2)/Q is not normal.

Another solution. Assume that K/Q is a cyclotomic extension containing α = 3
√
2. Then K/Q is Galois, so

K contains the splitting field of the minimal polynomial f = x3 − 2 of α, so Gal(f/Q) is a quotient group
of Gal(K/Q). But Gal(K/Q) is abelian, whereas Gal(f/Q) ∼= S3 is not, contradiction.

A1. Prove that there are no biquadratic extensions of finite fields.5pt

Solution. Finite fields are perfect, so any algebraic extension of a finite field is separable. A (separable)
biquadratic extension has Galois group isomorphic to V4, whereas any finite extension of a finite field is
cyclic (has cyclic Galois group).

A2. Let K/F be a Galois extension, let G = Gal(K/F ). For every prime p and every r ∈ N such that5pt

pr
∣

∣ |G|, prove that there is a subfield L of K with [K : L] = pr.

Solution. By Sylow’s theorem, if a prime p and r ∈ N are such that pr
∣

∣ |G|, then G contains a subgroup H
with |H| = pr. Let L = Fix(H); then [K : L] = |H| = pr.
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