14.2.10. Let $f = x^8 - 3 \in \mathbb{Q}[x]$.

^{5pt} (a) Find the degrees and all the conjugates of $\alpha = \sqrt[8]{3} \in \mathbb{R}$ and of $\omega = e^{2\pi i/8}$. Determine whether the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ is normal and whether $\mathbb{Q}(\omega)/\mathbb{Q}$ is normal.

Solution. α is a root of f, and all roots of f are $\alpha \omega^k$, $k = 0, \ldots, 7$; since f is irreducible (by Eisenstein), these are the conjugates of α .

 ω is a primitive 8th root of unity, its conjugates are the primitive 8th roots of unity, which are ω , ω^3 , ω^5 , and ω^7 .

Since $E = \mathbb{Q}(\alpha)$ doesn't contain $\alpha \omega$, E/\mathbb{Q} is not normal. Since $L = \mathbb{Q}(\omega)$ contains all conjugates of ω , L/\mathbb{Q} is normal (is the splitting field of the cyclotomic polynomial Φ_8).

10pt (b) Find the splitting field K of f and find its degree.

Solution. Since all roots of f have form $\alpha\omega^k$, $k = 0, \ldots, 7$, the splitting field of f is $K = \mathbb{Q}(\alpha, \omega)$. Let $E = \mathbb{Q}(\alpha)$ and $L = \mathbb{Q}(\omega)$, then K = EL. We have $[E : \mathbb{Q}] = 8$. I claim that [K : E] = 4, so that $[K : \mathbb{Q}] = [K : E][E : \mathbb{Q}] = 32$. Indeed, we have $\omega = \frac{1+i}{\sqrt{2}}$, so $L = \mathbb{Q}(\sqrt{2}, i)$. Now, $\deg_E \sqrt{2} = 2$: indeed, we know that the only quadratic subextensions of E/\mathbb{Q} is $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$; Sbut snce $1, \sqrt{2}, \sqrt{3}$ are \mathbb{Q} -linearly independent, $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$, so $\sqrt{2} \notin E$. (Alternatively, if $\sqrt{2} \in E$, then $M = \mathbb{Q}(\sqrt{3}, \sqrt{2})$ is a subfield of E of degree 4 over \mathbb{Q} , then α has degree 2 over M, then the only conjugate of α over M must also be real, so, is $-\alpha$, then the minimal polynomial of α over M is $x^2 - \sqrt[4]{3}$, but $\sqrt[4]{3} \notin M$ since M is normal and $\sqrt[4]{3}$ has conjugates not in M.) Also $\deg_{E(\sqrt{2})} i = 2$ since i is not real; hence, [K : E] = 4.

10pt (c) Find the Galois group $G = \text{Gal}(K/\mathbb{Q})$.

Solution. Since |G| = 32, ω can be sent by elements of G to any of its conjugates ω^l , l = 1, 3, 5, 7, and α can be independently sent to any of its conjugates $\alpha \omega^k$, $k = 0, 1, \ldots, 7$. Let $\varphi_{k,l} \in G$ be the automorphism for which $\varphi_{k,l}(\omega) = \omega^l$ and $\varphi_{k,l}(\alpha) = \alpha \omega^k$. Then the product of $\varphi_{k,l}$ and $\varphi_{n,m}$ maps ω to ω^{lm} and α to $\alpha \omega^{ln+k}$, so that $\varphi_{k,l}\varphi_{n,m} = \varphi_{ln+k,lm}$. (So $G \cong \mathbb{Z}_8 \rtimes \mathbb{Z}_8^* \cong \mathbb{Z}_8 \rtimes V_4$.)

Another solution. Since |G| = 32, ω can be sent by elements of G to any of its conjugates ω^l , l = 1, 3, 5, 7, and α can be independently sent to any of its conjugates $\alpha\omega^k$, $k = 0, 1, \ldots, 7$. Define $\varphi, \psi_1, \psi_2 \in G$ by $\varphi(\alpha) = \omega\alpha, \ \varphi(\omega) = \omega, \ \psi_1(\alpha) = \psi_2(\alpha) = \alpha, \ \psi_1(\omega) = \omega^3, \ \psi_1(\omega) = \omega^5$. Then $|\varphi| = 8$, $|\psi_1| = |\psi_2| = 2$, $\psi_1\psi_2 = \psi_2\psi_1, \ \psi_1\varphi\psi_1(\alpha) = \alpha\omega^3$ and $\psi_1\varphi\psi_1(\omega) = \omega^9 = \omega$ so $\psi_1\varphi\psi_1 = \varphi^3$, and similarly $\psi_2\varphi\psi_2 = \varphi^5$. Hence, $G = \langle \varphi, \psi_1, \psi_2 \mid \varphi^8 = \psi_1^2 = \varphi_2^2 = 1, \ \psi_1\psi_2 = \psi_2\psi_1, \ \psi_1\varphi\psi_1 = \varphi^3, \ \psi_1\varphi\psi_1 = \varphi^5 \rangle$. (No more relations are needed since the obtained relations already define a group of order 32.)

$_{5pt}$ **14.2.13.** Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is cyclic of order 3 then all roots of the cubic are real.

Solution. We can prove more: if $K \subset \mathbb{C}$ and K/\mathbb{Q} is a Galois extension of odd degree, then $K \subseteq \mathbb{R}$. Indeed, (the restriction of) the complex conjugation $\varphi(z) = \overline{z}, z \in K$, is an automorphism of K with $\varphi^2 = 1$, so $\varphi \in G = \operatorname{Gal}(K/\mathbb{Q})$ with order 1 or 2. Since G has an odd order, φ cannot have order 2 in G, so φ has order 1 in G, that is, acts trivially on K.

Another solution. Let K be the splitting field of the cubic f, the [K : F] = 3. f has no roots in \mathbb{Q} , since otherwise K would have degree at most 2 over \mathbb{Q} . Let α be a real root of f. Then $\mathbb{Q}(\alpha)$ is a subfield of K; but then $1 < [\mathbb{Q}(\alpha) : \mathbb{Q}] \mid [K : \mathbb{Q}] = 3$, so $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$, so $K = \mathbb{Q}(\alpha) \subseteq \mathbb{R}$.

10pt 14.2.14. Let $K = \mathbb{Q}(\sqrt{2+\sqrt{2}})$; prove that K/\mathbb{Q} is a Galois extension and that $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}_4$.

Solution. Let $\alpha = \sqrt{2 + \sqrt{2}}$; the minimal polynomial of α is $(x^2 - 2)^2 - 2 = x^4 - 4x^2 + 2$ (which is irreducible by Eisenstein's criterion). Using our classification of Galois groups of irreducible biquadratic polynomials, we check that $\sqrt{b} = \sqrt{2} \notin \mathbb{Q}$, $\delta = \sqrt{(-4)^2 - 4 \cdot 2} = 2\sqrt{2}$ so $\sqrt{2}/\delta \in \mathbb{Q}$, so $\operatorname{Gal}(f/\mathbb{Q}) \cong \mathbb{Z}_4$. We also see that the degree of the splitting field of f is 4, so $K = \mathbb{Q}(\alpha)$ is the splitting field of f, and so, K/\mathbb{Q} is Galois with $\operatorname{Gal}(K/\mathbb{Q}) = \operatorname{Gal}(f/\mathbb{Q})$.

Another solution. The conjugates of α over \mathbb{Q} are $\beta = \sqrt{2 - \sqrt{2}}$, $-\alpha$, and $-\beta$. We have $\alpha\beta = \sqrt{2} \in \mathbb{Q}(\alpha)$, so $\beta \in \mathbb{Q}(\alpha)$, and also $-\alpha, -\beta \in \mathbb{Q}(\alpha)$, so $K/\mathbb{Q} = \mathbb{Q}(\alpha)/\mathbb{Q}$ is normal, and so, is a Galois extension of degree 4. Thus, $G = \operatorname{Gal}(K/\mathbb{Q})$ is (isomorphic to) either \mathbb{Z}_4 or V_4 ; we have $G \cong \mathbb{Z}_4$ iff there is an element of order 4 in G.

Let φ be an automorphism of K such that $\varphi(\alpha) = \beta$. (Such an automorphism exists, and is unique since K is generated by α .) Then $\varphi(\sqrt{2}) = \varphi(\alpha^2 - 2) = \beta^2 - 2 = -\sqrt{2}$. So,

$$\varphi(\beta) = \varphi(\sqrt{2}/\alpha) = (-\sqrt{2})/\beta = -\alpha.$$

Hence, $\varphi^2(\alpha) = \varphi(\beta) = -\alpha$, $\varphi^3(\alpha) = \varphi(-\alpha) = -\beta$, and $\varphi^4(\alpha) = \varphi(-\beta) = \alpha$. So, φ is an element of G of order 4, and $G = \langle \varphi \rangle \cong \mathbb{Z}_4$.

10pt **14.3.8.** Determine the splitting field and the Galois group of the polynomial $f(x) = x^p - x - a \in \mathbb{F}_p[x]$, where $a \in \mathbb{F}_p \setminus \{0\}$.

Solution. (The solution partially repeats arguments of the solution to exercise 13.5.5.) No element b of \mathbb{F}_p is a root of f, since $b^p = b$. If α is a root of f, then for any $b \in \mathbb{F}_p$,

$$f(\alpha + b) = (\alpha + b)^{p} - (\alpha + b) - a = \alpha^{p} - \alpha - a + b^{p} - b = 0,$$

so $\alpha + b$ is also a root of f, and we therefore have $p = \deg f$ distinct roots of f in $\mathbb{F}_p(\alpha)$. Thus, $K = \mathbb{F}_p(\alpha)$ is the splitting field of f, and is separable over \mathbb{F}_p . Since f has no roots in \mathbb{F}_p , $K \neq \mathbb{F}_p$, and so, K/\mathbb{F}_p is a nontrivial Galois extension of degree $\leq \deg f = p$. (If we use the result of 13.5.5 that f is irreducible, we can claim that $[K : F(\alpha)] = p$; but we don't need this.)

Since $\alpha \notin \mathbb{F}_p$, its minimal polynomial has degree ≥ 2 ; so α has conjugates distinct from itself, and we know that all conjugates of α must be of the form $\alpha + b$, $b \in \mathbb{F}_p$. Let $\alpha + b$, with $b \neq 0$, be one of them, and let $\varphi \in \operatorname{Gal}(K/\mathbb{F}_p)$ be such that $\varphi(\alpha) = \alpha + b$. (Such φ exists and is unique, since K is generated by α .) The elements α , $\varphi(\alpha) = \alpha + b$, $\varphi^2(\alpha) = \alpha + 2b$, ..., and $\varphi^{p-1}(\alpha) = \alpha + (p-1)b$ are all distinct, so the automorphisms $\operatorname{Id}, \varphi, \varphi^2, \ldots, \varphi^{p-1}$ are all distinct, so $\operatorname{Gal}(K/\mathbb{F}_p)$ is cyclic, $\cong \mathbb{Z}_p$, generated by φ . (It now follows, by the way, that $\deg_{\mathbb{F}_p} \alpha = p$, so f is irreducible, and $K = \mathbb{F}_{p^p}$.)

10pt Cf. 14.2.3. Let $f = (x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$; find the splitting field K of f and $\operatorname{Gal}(f/\mathbb{Q}) = \operatorname{Gal}(K/\mathbb{Q})$. List all 16 subgroups of G and for every subgroup $H \leq G$ find the subfield $\operatorname{Fix}(H)$ of K.

Solution. The group G = Gal(K/F) is isomorphic to \mathbb{Z}_2^3 . Indeed, $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ has degree 8 over \mathbb{Q} , since, as it is easy to see, $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ and $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Thus, each of the 8 mappings $\sqrt{2} \mapsto \pm \sqrt{2}$, $\sqrt{3} \mapsto \pm \sqrt{3}$, $\sqrt{5} \mapsto \pm \sqrt{5}$, defines an automorphism of K/\mathbb{Q} . These mappings commute and have order 2, thus form a group isomorphic to \mathbb{Z}_2^3 .

 $G \cong \mathbb{Z}_2^3$ is a 3-dimensional \mathbb{Z}_2 vector space; "a basis" of G is formed by the automorphisms $\varphi_1, \varphi_2, \varphi_3$ defined by

 ${\cal G}$ has the following subgroups:

the subgroup $1 = { \mathrm{Id}_K },$

seven "one-dimensional" subgroups of the form $\langle \varphi \rangle$ for $\varphi \in G \setminus \{1\}$, seven "two dimensional" subgroups of the form $\langle \varphi, \psi \rangle$ for distinct $\varphi, \psi \in G \setminus \{1\}$, and G itself.

 φ_1 fixes $\sqrt{3}$ and $\sqrt{5}$, so the subgroup $\langle \varphi_1 \rangle$ fixes the subfield $\mathbb{Q}(\sqrt{3},\sqrt{5})$ of K; since the degree of this field over \mathbb{Q} equals 4 equals the index of $\langle \varphi_1 \rangle$ in G, we have $\operatorname{Fix}(\langle \varphi_1 \rangle) = Q(\sqrt{3},\sqrt{5})$. We similarly find the fixed fields of the other "one-dimensional" subgroups of G. For the "two-dimensional" subgroup $\langle \varphi_1, \varphi_2 \rangle$, its fixed field is the intersection $\operatorname{Fix}(\langle \varphi_1 \rangle) \cap \operatorname{Fix}(\langle \varphi_2 \rangle) = \mathbb{Q}(\sqrt{5})$. Similarly, we find the fixed fields of other

"two-dimensional" subgroups, and get the following correspondence table:

$$\begin{array}{c} 1 \longrightarrow K \\ \langle \varphi_1 \rangle \longrightarrow \mathbb{Q}(\sqrt{3}, \sqrt{5}), \quad \langle \varphi_2 \rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{5}), \quad \langle \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}), \\ \langle \varphi_1 \varphi_2 \rangle \longrightarrow \mathbb{Q}(\sqrt{5}, \sqrt{6}), \quad \langle \varphi_1 \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{3}, \sqrt{10}), \quad \langle \varphi_2 \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{15}), \\ \langle \varphi_1 \varphi_2 \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{6}, \sqrt{10}), \\ \langle \varphi_1, \varphi_2 \rangle \longrightarrow \mathbb{Q}(\sqrt{5}), \quad \langle \varphi_1, \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{3}), \quad \langle \varphi_2, \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{2}), \\ \langle \varphi_1 \varphi_2, \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{6}), \quad \langle \varphi_1 \varphi_3, \varphi_2 \rangle \longrightarrow \mathbb{Q}(\sqrt{10}), \quad \langle \varphi_2 \varphi_3, \varphi_1 \rangle \longrightarrow \mathbb{Q}(\sqrt{15}), \\ \langle \varphi_1 \varphi_2, \varphi_2 \varphi_3 \rangle \longrightarrow \mathbb{Q}(\sqrt{30}), \\ \text{and } G \longrightarrow \mathbb{Q} \end{array}$$

5pt 14.5.10. Prove that $\sqrt[3]{2}$ is not contained in any cyclotomic field.

Solution. Let K/\mathbb{Q} be a cyclotomic extension. Then K/\mathbb{Q} is Galois with abelian $\operatorname{Gal}(K/\mathbb{Q})$ (namely, \mathbb{Z}_n^* for some n). Thus every subextension of K/\mathbb{Q} is normal; but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal.

Another solution. Assume that K/\mathbb{Q} is a cyclotomic extension containing $\alpha = \sqrt[3]{2}$. Then K/\mathbb{Q} is Galois, so K contains the splitting field of the minimal polynomial $f = x^3 - 2$ of α , so $\operatorname{Gal}(f/\mathbb{Q})$ is a quotient group of $\operatorname{Gal}(K/\mathbb{Q})$. But $\operatorname{Gal}(K/\mathbb{Q})$ is abelian, whereas $\operatorname{Gal}(f/\mathbb{Q}) \cong S_3$ is not, contradiction.

^{5pt} A1. Prove that there are no biquadratic extensions of finite fields.

Solution. Finite fields are perfect, so any algebraic extension of a finite field is separable. A (separable) biquadratic extension has Galois group isomorphic to V_4 , whereas any finite extension of a finite field is cyclic (has cyclic Galois group).

5pt A2. Let K/F be a Galois extension, let G = Gal(K/F). For every prime p and every $r \in \mathbb{N}$ such that $p^r \mid |G|$, prove that there is a subfield L of K with $[K:L] = p^r$.

Solution. By Sylow's theorem, if a prime p and $r \in \mathbb{N}$ are such that $p^r | |G|$, then G contains a subgroup H with $|H| = p^r$. Let L = Fix(H); then $[K : L] = |H| = p^r$.