14.2.10. Let $f=x^{8}-3 \in \mathbb{Q}[x]$.
(a) Find the degrees and all the conjugates of $\alpha=\sqrt[8]{3} \in \mathbb{R}$ and of $\omega=e^{2 \pi i / 8}$. Determine whether the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ is normal and whether $\mathbb{Q}(\omega) / \mathbb{Q}$ is normal.
Solution. $\alpha$ is a root of $f$, and all roots of $f$ are $\alpha \omega^{k}, k=0, \ldots, 7$; since $f$ is irreducible (by Eisenstein), these are the conjugates of $\alpha$.
$\omega$ is a primitive 8 th root of unity, its conjugates are the primitive 8 th roots of unity, which are $\omega, \omega^{3}$, $\omega^{5}$, and $\omega^{7}$.

Since $E=\mathbb{Q}(\alpha)$ doesn't contain $\alpha \omega, E / \mathbb{Q}$ is not normal. Since $L=\mathbb{Q}(\omega)$ contains all conjugates of $\omega$, $L / \mathbb{Q}$ is normal (is the splitting field of the cyclotomic polynomial $\Phi_{8}$ ).
(b) Find the splitting field $K$ of $f$ and find its degree.

Solution. Since all roots of $f$ have form $\alpha \omega^{k}, k=0, \ldots, 7$, the splitting field of $f$ is $K=\mathbb{Q}(\alpha, \omega)$. Let $E=\mathbb{Q}(\alpha)$ and $L=\mathbb{Q}(\omega)$, then $K=E L$. We have $[E: \mathbb{Q}]=8$. I claim that $[K: E]=4$, so that $[K: \mathbb{Q}]=[K: E][E: \mathbb{Q}]=32$. Indeed, we have $\omega=\frac{1+i}{\sqrt{2}}$, so $L=\mathbb{Q}(\sqrt{2}, i)$. Now, $\operatorname{deg}_{E} \sqrt{2}=2$ : indeed, we know that the only quadratic subextensions of $E / \mathbb{Q}$ is $\mathbb{Q}(\sqrt{3}) / \mathbb{Q}$; Sbut snce $1, \sqrt{2}, \sqrt{3}$ are $\mathbb{Q}$-linearly independent, $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$, so $\sqrt{2} \notin E$. (Alternatively, if $\sqrt{2} \in E$, then $M=\mathbb{Q}(\sqrt{3}, \sqrt{2})$ is a subfield of $E$ of degree 4 over $\mathbb{Q}$, then $\alpha$ has degree 2 over $M$, then the only conjugate of $\alpha$ over $M$ must also be real, so, is $-\alpha$, then the minimal polynomial of $\alpha$ over $M$ is $x^{2}-\sqrt[4]{3}$, but $\sqrt[4]{3} \notin M$ since $M$ is normal and $\sqrt[4]{3}$ has conjugates not in $M$.) Also $\operatorname{deg}_{E(\sqrt{2})} i=2$ since $i$ is not real; hence, $[K: E]=4$.
(c) Find the Galois group $G=\operatorname{Gal}(K / \mathbb{Q})$.

Solution. Since $|G|=32, \omega$ can be sent by elements of $G$ to any of its conjugates $\omega^{l}, l=1,3,5,7$, and $\alpha$ can be independently sent to any of its conjugates $\alpha \omega^{k}, k=0,1, \ldots, 7$. Let $\varphi_{k, l} \in G$ be the automorphism for which $\varphi_{k, l}(\omega)=\omega^{l}$ and $\varphi_{k, l}(\alpha)=\alpha \omega^{k}$. Then the product of $\varphi_{k, l}$ and $\varphi_{n, m}$ maps $\omega$ to $\omega^{l m}$ and $\alpha$ to $\alpha \omega^{l n+k}$, so that $\varphi_{k, l} \varphi_{n, m}=\varphi_{l n+k, l m}$. (So $G \cong \mathbb{Z}_{8} \rtimes \mathbb{Z}_{8}^{*} \cong \mathbb{Z}_{8} \rtimes V_{4}$.)
Another solution. Since $|G|=32, \omega$ can be sent by elements of $G$ to any of its conjugates $\omega^{l}, l=1,3,5,7$, and $\alpha$ can be independently sent to any of its conjugates $\alpha \omega^{k}, k=0,1, \ldots, 7$. Define $\varphi, \psi_{1}, \psi_{2} \in G$ by $\varphi(\alpha)=\omega \alpha, \varphi(\omega)=\omega, \psi_{1}(\alpha)=\psi_{2}(\alpha)=\alpha, \psi_{1}(\omega)=\omega^{3}, \psi_{1}(\omega)=\omega^{5}$. Then $|\varphi|=8,\left|\psi_{1}\right|=\left|\psi_{2}\right|=2$, $\psi_{1} \psi_{2}=\psi_{2} \psi_{1}, \psi_{1} \varphi \psi_{1}(\alpha)=\alpha \omega^{3}$ and $\psi_{1} \varphi \psi_{1}(\omega)=\omega^{9}=\omega$ so $\psi_{1} \varphi \psi_{1}=\varphi^{3}$, and similarly $\psi_{2} \varphi \psi_{2}=\varphi^{5}$. Hence, $G=\left\langle\varphi, \psi_{1}, \psi_{2} \mid \varphi^{8}=\psi_{1}^{2}=\varphi_{2}^{2}=1, \psi_{1} \psi_{2}=\psi_{2} \psi_{1}, \psi_{1} \varphi \psi_{1}=\varphi^{3}, \psi_{1} \varphi \psi_{1}=\varphi^{5}\right\rangle$. (No more relations are needed since the obtained relations already define a group of order 32.)
14.2.13. Prove that if the Galois group of the splitting field of a cubic over $\mathbb{Q}$ is cyclic of order 3 then all roots of the cubic are real.
Solution. We can prove more: if $K \subset \mathbb{C}$ and $K / \mathbb{Q}$ is a Galois extension of odd degree, then $K \subseteq \mathbb{R}$. Indeed, (the restriction of) the complex conjugation $\varphi(z)=\bar{z}, z \in K$, is an automorphism of $K$ with $\varphi^{2}=1$, so $\varphi \in G=\operatorname{Gal}(K / \mathbb{Q})$ with order 1 or 2 . Since $G$ has an odd order, $\varphi$ cannot have order 2 in $G$, so $\varphi$ has order 1 in $G$, that is, acts trivially on $K$.

Another solution. Let $K$ be the splitting field of the cubic $f$, the $[K: F]=3$. $f$ has no roots in $\mathbb{Q}$, since otherwise $K$ would have degree at most 2 over $\mathbb{Q}$. Let $\alpha$ be a real root of $f$. Then $\mathbb{Q}(\alpha)$ is a subfield of $K$; but then $1<[\mathbb{Q}(\alpha): \mathbb{Q}] \mid[K: \mathbb{Q}]=3$, so $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, so $K=\mathbb{Q}(\alpha) \subseteq \mathbb{R}$.
14.2.14. Let $K=\mathbb{Q}(\sqrt{2+\sqrt{2}})$; prove that $K / \mathbb{Q}$ is a Galois extension and that $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z}_{4}$.

Solution. Let $\alpha=\sqrt{2+\sqrt{2}}$; the minimal polynomial of $\alpha$ is $\left(x^{2}-2\right)^{2}-2=x^{4}-4 x^{2}+2$ (which is irreducible by Eisenstein's criterion). Using our classification of Galois groups of irreducible biquadratic polynomials, we check that $\sqrt{b}=\sqrt{2} \notin \mathbb{Q}, \delta=\sqrt{(-4)^{2}-4 \cdot 2}=2 \sqrt{2}$ so $\sqrt{2} / \delta \in \mathbb{Q}$, so $\operatorname{Gal}(f / \mathbb{Q}) \cong \mathbb{Z}_{4}$. We also see that the degree of the splitting field of $f$ is 4 , so $K=\mathbb{Q}(\alpha)$ is the splitting field of $f$, and so, $K / \mathbb{Q}$ is Galois with $\operatorname{Gal}(K / \mathbb{Q})=\operatorname{Gal}(f / \mathbb{Q})$.

Another solution. The conjugates of $\alpha$ over $\mathbb{Q}$ are $\beta=\sqrt{2-\sqrt{2}},-\alpha$, and $-\beta$. We have $\alpha \beta=\sqrt{2} \in \mathbb{Q}(\alpha)$, so $\beta \in \mathbb{Q}(\alpha)$, and also $-\alpha,-\beta \in \mathbb{Q}(\alpha)$, so $K / \mathbb{Q}=\mathbb{Q}(\alpha) / \mathbb{Q}$ is normal, and so, is a Galois extension of degree 4. Thus, $G=\operatorname{Gal}(K / \mathbb{Q})$ is (isomorphic to) either $\mathbb{Z}_{4}$ or $V_{4}$; we have $G \cong \mathbb{Z}_{4}$ iff there is an element of order 4 in $G$.

Let $\varphi$ be an automorphism of $K$ such that $\varphi(\alpha)=\beta$. (Such an automorphism exists, and is unique since $K$ is generated by $\alpha$.) Then $\varphi(\sqrt{2})=\varphi\left(\alpha^{2}-2\right)=\beta^{2}-2=-\sqrt{2}$. So,

$$
\varphi(\beta)=\varphi(\sqrt{2} / \alpha)=(-\sqrt{2}) / \beta=-\alpha
$$

Hence, $\varphi^{2}(\alpha)=\varphi(\beta)=-\alpha, \varphi^{3}(\alpha)=\varphi(-\alpha)=-\beta$, and $\varphi^{4}(\alpha)=\varphi(-\beta)=\alpha$. So, $\varphi$ is an element of $G$ of order 4 , and $G=\langle\varphi\rangle \cong \mathbb{Z}_{4}$.
14.3.8. Determine the splitting field and the Galois group of the polynomial $f(x)=x^{p}-x-a \in \mathbb{F}_{p}[x]$, where $a \in \mathbb{F}_{p} \backslash\{0\}$.
Solution. (The solution partially repeats arguments of the solution to exercise 13.5.5.) No element $b$ of $\mathbb{F}_{p}$ is a root of $f$, since $b^{p}=b$. If $\alpha$ is a root of $f$, then for any $b \in \mathbb{F}_{p}$,

$$
f(\alpha+b)=(\alpha+b)^{p}-(\alpha+b)-a=\alpha^{p}-\alpha-a+b^{p}-b=0
$$

so $\alpha+b$ is also a root of $f$, and we therefore have $p=\operatorname{deg} f$ distinct roots of $f$ in $\mathbb{F}_{p}(\alpha)$. Thus, $K=\mathbb{F}_{p}(\alpha)$ is the splitting field of $f$, and is separable over $\mathbb{F}_{p}$. Since $f$ has no roots in $\mathbb{F}_{p}, K \neq \mathbb{F}_{p}$, and so, $K / \mathbb{F}_{p}$ is a nontrivial Galois extension of degree $\leq \operatorname{deg} f=p$. (If we use the result of 13.5.5 that $f$ is irreducible, we can claim that $[K: F(\alpha)]=p$; but we don't need this.)

Since $\alpha \notin \mathbb{F}_{p}$, its minimal polynomial has degree $\geq 2$; so $\alpha$ has conjugates distinct from itself, and we know that all conjugates of $\alpha$ must be of the form $\alpha+b, b \in \mathbb{F}_{p}$. Let $\alpha+b$, with $b \neq 0$, be one of them, and let $\varphi \in \operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$ be such that $\varphi(\alpha)=\alpha+b$. (Such $\varphi$ exists and is unique, since $K$ is generated by $\alpha$.) The elements $\alpha, \varphi(\alpha)=\alpha+b, \varphi^{2}(\alpha)=\alpha+2 b, \ldots$, and $\varphi^{p-1}(\alpha)=\alpha+(p-1) b$ are all distinct, so the automorphisms Id, $\varphi, \varphi^{2}, \ldots, \varphi^{p-1}$ are all distinct, so $\operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$ is cyclic, $\cong \mathbb{Z}_{p}$, generated by $\varphi$. (It now follows, by the way, that $\operatorname{deg}_{\mathbb{F}_{p}} \alpha=p$, so $f$ is irreducible, and $K=\mathbb{F}_{p^{p}}$.)

10 pt
Cf. 14.2.3. Let $f=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right) \in \mathbb{Q}[x]$; find the splitting field $K$ of $f$ and $\operatorname{Gal}(f / \mathbb{Q})=\operatorname{Gal}(K / \mathbb{Q})$. List all 16 subgroups of $G$ and for every subgroup $H \leq G$ find the subfield $\operatorname{Fix}(H)$ of $K$.
Solution. The group $G=\operatorname{Gal}(K / F)$ is isomorphic to $\mathbb{Z}_{2}^{3}$. Indeed, $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ has degree 8 over $\mathbb{Q}$, since, as it is easy to see, $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ and $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Thus, each of the 8 mappings $\sqrt{2} \mapsto \pm \sqrt{2}$, $\sqrt{3} \mapsto \pm \sqrt{3}, \sqrt{5} \mapsto \pm \sqrt{5}$, defines an automorphism of $K / \mathbb{Q}$. These mappings commute and have order 2 , thus form a group isomorphic to $\mathbb{Z}_{2}^{3}$.
$G \cong \mathbb{Z}_{2}^{3}$ is a 3-dimensional $\mathbb{Z}_{2}$ vector space; "a basis" of $G$ is formed by the automorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ defined by

$$
\begin{aligned}
\sqrt{2} & \mapsto-\sqrt{2} & \sqrt{2} & \mapsto \sqrt{2} \\
\varphi_{1}: \sqrt{3} & \mapsto \sqrt{3} & \varphi_{2}: \sqrt{3} & \mapsto-\sqrt{3} \\
\sqrt{5} & \mapsto \sqrt{5} & \sqrt{5} & \mapsto \sqrt{5}
\end{aligned} \quad \varphi_{3}: \sqrt{3} \mapsto \sqrt{3}{ }_{5} \mapsto{ }^{\mapsto} \mapsto-\sqrt{5}
$$

$G$ has the following subgroups:
the subgroup $1=\left\{\operatorname{Id}_{K}\right\}$,
seven "one-dimensional" subgroups of the form $\langle\varphi\rangle$ for $\varphi \in G \backslash\{1\}$,
seven "two dimensional" subgroups of the form $\langle\varphi, \psi\rangle$ for distinct $\varphi, \psi \in G \backslash\{1\}$,
and $G$ itself.
$\varphi_{1}$ fixes $\sqrt{3}$ and $\sqrt{5}$, so the subgroup $\left\langle\varphi_{1}\right\rangle$ fixes the subfield $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ of $K$; since the degree of this field over $\mathbb{Q}$ equals 4 equals the index of $\left\langle\varphi_{1}\right\rangle$ in $G$, we have $\operatorname{Fix}\left(\left\langle\varphi_{1}\right\rangle\right)=Q(\sqrt{3}, \sqrt{5})$. We similarly find the fixed fields of the other "one-dimensional" subgroups of $G$. For the "two-dimensional" subgroup $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$, its fixed field is the intersection $\operatorname{Fix}\left(\left\langle\varphi_{1}\right\rangle\right) \cap \operatorname{Fix}\left(\left\langle\varphi_{2}\right\rangle\right)=\mathbb{Q}(\sqrt{5})$. Similarly, we find the fixed fields of other
"two-dimensional" subgroups, and get the following correspondence table:

$$
\begin{aligned}
& 1 \longrightarrow K \\
& \left\langle\varphi_{1}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{3}, \sqrt{5}), \quad\left\langle\varphi_{2}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{5}), \quad\left\langle\varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}), \\
& \left\langle\varphi_{1} \varphi_{2}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{5}, \sqrt{6}), \quad\left\langle\varphi_{1} \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{3}, \sqrt{10}), \quad\left\langle\varphi_{2} \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{15}), \\
& \left\langle\varphi_{1} \varphi_{2} \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{6}, \sqrt{10}), \\
& \left\langle\varphi_{1}, \varphi_{2}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{5}), \quad\left\langle\varphi_{1}, \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{3}), \quad\left\langle\varphi_{2}, \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{2}), \\
& \left\langle\varphi_{1} \varphi_{2}, \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{6}), \quad\left\langle\varphi_{1} \varphi_{3}, \varphi_{2}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{10}), \quad\left\langle\varphi_{2} \varphi_{3}, \varphi_{1}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{15}), \\
& \left\langle\varphi_{1} \varphi_{2}, \varphi_{2} \varphi_{3}\right\rangle \longrightarrow \mathbb{Q}(\sqrt{30}), \\
& \text { and } G \longrightarrow \mathbb{Q}
\end{aligned}
$$

5pt
14.5.10. Prove that $\sqrt[3]{2}$ is not contained in any cyclotomic field.

Solution. Let $K / \mathbb{Q}$ be a cyclotomic extension. Then $K / \mathbb{Q}$ is $\operatorname{Galois}$ with abelian $\operatorname{Gal}(K / \mathbb{Q})$ (namely, $\mathbb{Z}_{n}^{*}$ for some $n$ ). Thus every subextension of $K / \mathbb{Q}$ is normal; but $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not normal.
Another solution. Assume that $K / \mathbb{Q}$ is a cyclotomic extension containing $\alpha=\sqrt[3]{2}$. Then $K / \mathbb{Q}$ is Galois, so $K$ contains the splitting field of the minimal polynomial $f=x^{3}-2$ of $\alpha$, so $\operatorname{Gal}(f / \mathbb{Q})$ is a quotient group of $\operatorname{Gal}(K / \mathbb{Q})$. But $\operatorname{Gal}(K / \mathbb{Q})$ is abelian, whereas $\operatorname{Gal}(f / \mathbb{Q}) \cong S_{3}$ is not, contradiction.
5 pt A1. Prove that there are no biquadratic extensions of finite fields.
Solution. Finite fields are perfect, so any algebraic extension of a finite field is separable. A (separable) biquadratic extension has Galois group isomorphic to $V_{4}$, whereas any finite extension of a finite field is cyclic (has cyclic Galois group).

5pt
A2. Let $K / F$ be a Galois extension, let $G=\operatorname{Gal}(K / F)$. For every prime $p$ and every $r \in \mathbb{N}$ such that $p^{r}| | G \mid$, prove that there is a subfield $L$ of $K$ with $[K: L]=p^{r}$.
Solution. By Sylow's theorem, if a prime $p$ and $r \in \mathbb{N}$ are such that $p^{r}| | G \mid$, then $G$ contains a subgroup $H$ with $|H|=p^{r}$. Let $L=\operatorname{Fix}(H)$; then $[K: L]=|H|=p^{r}$.

