10pt
Cf. 14.2.28. Let $f \in F[x]$ be an irreducible polynomial of degree n over a field F, let α be a root of f, and let K / F be a normal extension. Show that f splits over K into a product of irreducible polynomials of the same degree $d=[K(\alpha): K]$. (You may assume that f is separable and K / F is finite and separable.)
Solution. First, assume that f is separable. Let L be a splitting field of f over K, let E / F be the Galois closure of K / F. Let $f=f_{1} \cdots f_{m}$ be the factorization of f to irreducible components over K. Let α be a root of f_{1}, let $i \in\{2, \ldots, m\}$, and β be a root of f_{i}. Since α and β are two roots of the same irreducible polynomial f, there exists an automorphism $\varphi \in \operatorname{Gal}(E / F)$ such that $\varphi(\alpha)=\beta$; since K is normal, $\varphi(K)=K$, so φ maps f_{1} to a polynomial irreducible over K and having β as a root, that is, $\varphi\left(f_{1}\right)=f_{i}$. This implies that $\operatorname{deg} f_{i}=f_{1}$, that is, the polynomials f_{1}, \ldots, f_{m} have the same degree $d=n / m=[K(\alpha): K]$.

If f is not separable, then $f(x)=g\left(x^{p^{k}}\right)$ for some separable $g \in F[x]$ (where $p=$ Char F), g splits over K into a product of irreducible polynomials of the same degree, and so does f.
Cf. 14.6.20. Let K be the splittig field of $f(x)=\left(x^{3}-2\right)\left(x^{3}-3\right) \in \mathbb{Q}[x]$, let $G=\operatorname{Gal}(K / \mathbb{Q})$. Let $\alpha=\sqrt[3]{2}$, $\beta=\sqrt[3]{3}, \omega=e^{2 \pi i / 3}$.

10 pt
(a) Consider K as the composite $\mathbb{Q}(\alpha, \omega) \mathbb{Q}(\beta)$ and represent G as a semidirect product of S_{3} and \mathbb{Z}_{3}. (Don't specify the homomorphism that defines the semidirect product, if you don't want to.)
Solution. The splitting field K of f is $K=\mathbb{Q}(\alpha, \beta, \omega)=\mathbb{Q}(\alpha, \omega) \mathbb{Q}(\beta)$. We have the following (noncomplete!) diagrams of subfields of K and of the corresponding subgroups of G :

(The degrees of the extensions are obtained from the fact that $[\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\beta): \mathbb{Q}]=3, \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta)=\mathbb{Q}$, and ω, being non-real, has degree 2 over each of $\mathbb{Q}(\alpha), \mathbb{Q}(\beta)$, and $\mathbb{Q}(\alpha, \beta).) \mathbb{Q}(\alpha, \omega)$ is the splitting field of $x^{3}-2$, so the extension $\mathbb{Q}(\alpha, \omega) / \mathbb{Q}$ is normal, H is normal in G, and, as we know, $G / H=\operatorname{Gal}(\mathbb{Q}(\alpha, \omega) / \mathbb{Q}) \cong$ S_{3}. Since $|H|=[K: \mathbb{Q}(\alpha, \omega)]=3, H \cong \mathbb{Z}_{3}$, and by the theorem about a "free composite of two extensions one of which is normal", G is (isomorphic to) a non-direct semidirect product $\mathbb{Z}_{3} \rtimes S_{3}$. Since there is only one nontrivial automorphism, of order 2 , of \mathbb{Z}_{3}, such a semidirect product is unique: if $S_{3}=\langle\sigma, \tau| \sigma^{3}=$ $\left.\tau^{2}=1, \tau \sigma \tau=\sigma^{2}\right\rangle$ and $\mathbb{Z}_{3}=\left\langle\varphi \mid \varphi^{3}=1\right\rangle$, then it must be that $\sigma \varphi \sigma^{-1}=\varphi$ and $\tau \varphi \tau^{-1}=\varphi^{2}$, so

$$
G=\left\langle\varphi, \sigma, \tau: \varphi^{3}=\sigma^{3}=\tau^{2}=1, \tau \sigma \tau=\sigma^{2}, \tau \varphi \tau=\varphi^{2}\right\rangle
$$

(which can also be seen as $\left.\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}\right)$.
Let us, however, describe the elements of G in terms of their action on α, β, ω. Since $|G|=[K: \mathbb{Q}]=18$, any choice of the conjugates of these elements defines an element of G. Put $\sigma:\left(\begin{array}{c}\alpha \mapsto \omega \alpha \\ \beta \mapsto \beta \\ \omega \mapsto \omega\end{array}\right), \tau:\left(\begin{array}{c}\alpha \mapsto \alpha \\ \beta \mapsto \beta \\ \omega \mapsto \omega^{2}\end{array}\right), \varphi:\left(\begin{array}{c}\alpha \mapsto \alpha \\ \beta \mapsto \omega \beta \\ \omega \mapsto \omega\end{array}\right)$. Then $|\sigma|=|\varphi|=3,|\tau|=2, \sigma \varphi=\varphi \sigma$. Also $\tau \sigma \tau:\left(\begin{array}{c}\alpha \mapsto \omega^{2} \\ \beta \mapsto \beta \\ \omega \mapsto \omega\end{array}\right)=\sigma^{2}$ and $\tau \varphi \tau:\left(\begin{array}{c}\alpha \mapsto \alpha \\ \beta \mapsto \omega^{2} \beta \\ \omega \mapsto \omega\end{array}\right)=\varphi^{2}$.
(b) Consider K as the composite $\mathbb{Q}(\alpha, \omega) \mathbb{Q}(\beta, \omega)$ and represent G as a "relative direct product" $S_{3} \times_{\mathbb{Z}_{2}} S_{3}$.

Solution. This time we use the following diagrams of subfields of $K /$ subgroups of G :

The extensions $\mathbb{Q}(\alpha, \omega) / \mathbb{Q}(\omega)$ and $\mathbb{Q}(\beta, \omega) / \mathbb{Q}(\omega)$ are normal with both $\operatorname{Gal}(\mathbb{Q}(\alpha, \omega) / \mathbb{Q}) \cong S_{3}$ and $\operatorname{Gal}(\mathbb{Q}(\beta, \omega) / \mathbb{Q}) \cong S_{3}$. We have the homomorphism $\eta: G \longrightarrow \operatorname{Gal}(\mathbb{Q}(\alpha, \omega) / \mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\beta, \omega) / \mathbb{Q})$ defined by
$\eta(\varphi)=\left(\left.\varphi\right|_{\mathbb{Q}(\alpha, \omega)},\left.\varphi\right|_{\mathbb{Q}(\beta, \omega)}\right)$. Since every $\varphi \in G$ is defined by its action on $\mathbb{Q}(\alpha, \omega)$ and $\mathbb{Q}(\beta, \omega), \eta$ is injective. Since $|G|=18$ and $\left|S_{3} \times S_{3}\right|=36, \eta$ cannot be surjective; and indeed, if $\left(\psi_{1}, \psi_{2}\right)=\eta(\varphi)$, then $\left.\psi_{1}\right|_{\mathbb{Q}(\omega)}=$ $\left.\varphi\right|_{\mathbb{Q}(\omega)}=\left.\psi_{2}\right|_{\mathbb{Q}(\omega)}$, so the images of ψ_{1} and of ψ_{2} in the quotient group $G / P=\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q}) \cong \mathbb{Z}_{2}$, where $P=\operatorname{Gal}(K / \mathbb{Q}(\omega))$, coincide. So, $\eta(G)$ is contained in the subgroup $G^{\prime}=\left\{\left(\psi_{1}, \psi_{2}\right): \psi_{1} \bmod P=\psi_{2} \bmod P\right\}$ of $\operatorname{Gal}(\mathbb{Q}(\alpha, \omega) / \mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\beta, \omega) / \mathbb{Q})$, and since $\left|G^{\prime}\right|=18=|G|$, we have $G=G^{\prime}$.
(c) Find all the subfields of K that contain $N=\mathbb{Q}(\omega)$.

Solution. The subfields of K containing N correspond to the subgroups of $P=\operatorname{Gal}(K / N)$. We have $P \cong \mathbb{Z}_{3}^{2}$, this is a 2 -dimensional \mathbb{F}_{3}-vector space, and its subgroups are its subspaces. In addition to 0 (i.e.1) and itself, P has $(9-1) / 2=4$ 1-dimensional subspaces (each subspace is defined by a nonzero element of P with only two nonzero elements in each subspace), and so, 4 nontrivial subfields. These clearly are $\mathbb{Q}(\alpha, \omega), \mathbb{Q}(\beta, \omega)$, $\mathbb{Q}(\alpha \beta, \omega)$, and $\mathbb{Q}\left(\alpha^{2} \beta, \omega\right)$ (which is the same as $\left.\mathbb{Q}\left(\alpha \beta^{2}, \omega\right)\right)$.
A1. Let $\alpha=\sqrt{2}+\sqrt{3}+\sqrt{5}$.

5pt
(a) Find all the conjugates of α over $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find the minimal polynomial $m_{\alpha, L}$.

Solution. The conjugates of α over L are only $\sqrt{2}+\sqrt{3} \pm \sqrt{5}$, so

$$
\begin{array}{r}
m_{\alpha, L}=(x-(\sqrt{2}+\sqrt{3}+\sqrt{5}))(x-(\sqrt{2}+\sqrt{3}-\sqrt{5}))=(x-\sqrt{2}-\sqrt{3})^{2}-5=x^{2}+2+3-2 \sqrt{2} x-2 \sqrt{3} x+2 \sqrt{6}-5 \\
=x^{2}-2 \sqrt{2} x-2 \sqrt{3} x+2 \sqrt{6}
\end{array}
$$

(b) Find all the conjugates of α over $N=\mathbb{Q}(\sqrt{2})$ and find the minimal polynomial $m_{\alpha, N}$.

Solution. The minimal polynomial $m_{\alpha, N}$ splits over L into a product of irreducible polynomials, which are the conjugates over N of $m_{\alpha, L}$ and are obtained by applying to $m_{\alpha, L}$ the automorphisms $\sqrt{3} \mapsto \pm \sqrt{3}$; these are $x^{2}-2 \sqrt{2} x-2 \sqrt{3} x+2 \sqrt{6}$ and $x^{2}-2 \sqrt{2} x+2 \sqrt{3} x-2 \sqrt{6}$. So,

$$
\begin{aligned}
m_{\alpha, N}=\left(x^{2}-2 \sqrt{2} x-2 \sqrt{3} x\right. & +2 \sqrt{6})\left(x^{2}-2 \sqrt{2} x-2 \sqrt{3} x+2 \sqrt{6}\right)=\left(x^{2}-2 \sqrt{2} x\right)^{2}-3(2 x-2 \sqrt{2})^{2} \\
& =x^{4}-4 \sqrt{2} x^{3}+8 x^{2}-12 x^{2}-24+24 \sqrt{2} x=x^{4}-4 \sqrt{2} x^{3}-4 x^{2}+24 \sqrt{2} x-24
\end{aligned}
$$

(c) Find the minimal polynomial $m_{\alpha, \mathbb{Q}}$.

Solution. It is the product of the conjugates of $m_{\alpha, N}$:
$m_{\alpha, \mathbb{Q}}=\left(x^{4}-4 \sqrt{2} x^{3}-4 x^{2}+24 \sqrt{2} x-24\right)\left(x^{4}+4 \sqrt{2} x^{3}-4 x^{2}-24 \sqrt{2} x-24\right)=\left(x^{4}-4 x^{2}-24\right)^{2}-2\left(4 x^{3}-24 x\right)^{2}$
$=x^{8}+16 x^{4}+24^{2}-8 x^{6}-48 x^{4}+8 \cdot 24 x^{2}-32 x^{6}-2 \cdot 24^{2} x^{2}+16 \cdot 24 x^{4}=x^{8}-40 x^{6}+352 x^{4}-960 x^{2}+576$.
(d) Prove that α is a primitive element of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) / \mathbb{Q}$.

Solution. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) . \operatorname{deg}_{\mathbb{Q}} \alpha=8=[K: \mathbb{Q}]$, so $K=\mathbb{Q}(\alpha)$.
10 pt
A2. Let K be a cubic extension $\mathbb{Q}(\sqrt[3]{D})$ of \mathbb{Q}. Obtain the formula for the norm $N_{K / \mathbb{Q}}(\alpha)$ of the element $\alpha=a+b \sqrt[3]{D}+c \sqrt[3]{D^{2}}, a, b, c \in \mathbb{Q}$, of K.
Solution. There are different ways to find the norm of α : by computing the free term of its minimal polynomial, by finding the product of all its conjugates, ... I'll use "the determinant formula": $N_{K / \mathbb{Q}}(\alpha)=$ $\operatorname{det} T$, where T is the operator of multiplication by α. For $\alpha=a+b \sqrt[3]{D}+c \sqrt[3]{D^{2}}$ in the basis $\left\{1, \sqrt[3]{D}, \sqrt[3]{D^{2}}\right\}$ the matrix of T is $\left(\begin{array}{ccc}a & c D & b D \\ b & a & c \\ c & b & a\end{array}\right)$, and $N_{K / \mathbb{Q}}(\alpha)=\operatorname{det} T=a^{3}+b^{3} D+c^{3} D^{2}-3 a b c D$.
A3. Prove the following:
5pt
(a) If K / F is a p-extension and L / F is a subextension of K / F, then both K / L and L / F are p-extension.

Solution. Let K / F be a subextension of a Galois extension E / F with $[E: F]=p^{n}$. Then L / F is also a subextension of E / F, so is a p-extension. And K / L is a subextension of E / L, where E / L is also a Galois p-extension.

5pt
(b) If L_{1} / F and L_{2} / F are p-subextensions of an extension K / F, then their composite $L_{1} L_{2} / F$ is a p- extension.

Solution. If L_{1} / F and L_{2} / F are towers of Galois extensions of degree p, then $L_{1} L_{2} / F$ is also a tower of Galois extensions whose Galois groups are isomorphic to subgroups of \mathbb{Z}_{p}, so are either trivial or isomorphic to \mathbb{Z}_{p}.
5 pt
(c) If K / L and L / F are p-extensions, then K / F is also a p-extension.

Solution. If K / L and L / F are towers of Galois extensions of degree p, then so is K / F.
5pt
14.7.12. Let K be a Galois closure of a finite extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ and let $G=\operatorname{Gal}(K / \mathbb{Q})$. For every prime p dividing $|G|$, prove that there exists a subfield L of K such that $[K: L]=p$ and $K=L(\alpha)$.
Solution. Let $G=\operatorname{Gal}(K / \mathbb{Q})$. By Sylow's and Galois's theorems, there exists a subfield L^{\prime} of K such that $\left[K: L^{\prime}\right]=p . K$ is generated by the conjugates of α; if L^{\prime} contained all these conjugates, then we would have $L^{\prime}=K$, so there is a conjugate α^{\prime} of α such that $\alpha^{\prime} \notin L^{\prime}$. Since $\left[K: L^{\prime}\right]$ is prime, we have $K=L^{\prime}\left(\alpha^{\prime}\right)$. Let $\varphi \in G$ be such that $\varphi\left(\alpha^{\prime}\right)=\alpha$. Put $L=\varphi\left(L^{\prime}\right)$. Then $[K: L]=\left[K: L^{\prime}\right]=p$, and $L(\alpha)=\varphi\left(L^{\prime}\left(\alpha^{\prime}\right)\right)=K$.

