Cf. 14.2.28. Let $f \in F[x]$ be an irreducible polynomial of degree n over a field F, let α be a root of f, and 10pt let K/F be a normal extension. Show that f splits over K into a product of irreducible polynomials of the same degree $d = [K(\alpha) : K]$. (You may assume that f is separable and K/F is finite and separable.) Solution. First, assume that f is separable. Let L be a splitting field of f over K, let E/F be the Galois closure of K/F. Let $f = f_1 \cdots f_m$ be the factorization of f to irreducible components over K. Let α be a root of f_1 , let $i \in \{2, \ldots, m\}$, and β be a root of f_i . Since α and β are two roots of the same irreducible polynomial f, there exists an automorphism $\varphi \in \operatorname{Gal}(E/F)$ such that $\varphi(\alpha) = \beta$; since K is normal, $\varphi(K) = K$, so φ maps f_1 to a polynomial irreducible over K and having β as a root, that is, $\varphi(f_1) = f_i$. This implies that deg $f_i = f_1$, that is, the polynomials f_1, \ldots, f_m have the same degree $d = n/m = [K(\alpha) : K]$.

If f is not separable, then $f(x) = g(x^{p^k})$ for some separable $g \in F[x]$ (where p = Char F), g splits over K into a product of irreducible polynomials of the same degree, and so does f.

Cf. 14.6.20. Let K be the splitting field of $f(x) = (x^3 - 2)(x^3 - 3) \in \mathbb{Q}[x]$, let $G = \text{Gal}(K/\mathbb{Q})$. Let $\alpha = \sqrt[3]{2}$, $\beta = \sqrt[3]{3}, \, \omega = e^{2\pi i/3}.$

(a) Consider K as the composite $\mathbb{Q}(\alpha, \omega)\mathbb{Q}(\beta)$ and represent G as a semidirect product of S_3 and \mathbb{Z}_3 . (Don't 10pt specify the homomorphism that defines the semidirect product, if you don't want to.)

Solution. The splitting field K of f is $K = \mathbb{Q}(\alpha, \beta, \omega) = \mathbb{Q}(\alpha, \omega)\mathbb{Q}(\beta)$. We have the following (noncomplete!) diagrams of subfields of K and of the corresponding subgroups of G:

(The degrees of the extensions are obtained from the fact that $[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\beta):\mathbb{Q}] = 3$, $\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q}$, and ω , being non-real, has degree 2 over each of $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$, and $\mathbb{Q}(\alpha,\beta)$.) $\mathbb{Q}(\alpha,\omega)$ is the splitting field of x^3-2 , so the extension $\mathbb{Q}(\alpha,\omega)/\mathbb{Q}$ is normal, H is normal in G, and, as we know, $G/H = \operatorname{Gal}(\mathbb{Q}(\alpha,\omega)/\mathbb{Q}) \cong$ S_3 . Since $|H| = [K : \mathbb{Q}(\alpha, \omega)] = 3$, $H \cong \mathbb{Z}_3$, and by the theorem about a "free composite of two extensions" one of which is normal", G is (isomorphic to) a non-direct semidirect product $\mathbb{Z}_3 \rtimes S_3$. Since there is only one nontrivial automorphism, of order 2, of \mathbb{Z}_3 , such a semidirect product is unique: if $S_3 = \langle \sigma, \tau \mid \sigma^3 =$ $\tau^2 = 1$, $\tau \sigma \tau = \sigma^2 \rangle$ and $\mathbb{Z}_3 = \langle \varphi \mid \varphi^3 = 1 \rangle$, then it must be that $\sigma \varphi \sigma^{-1} = \varphi$ and $\tau \varphi \tau^{-1} = \varphi^2$, so

$$G = \left\langle \varphi, \sigma, \tau : \varphi^3 = \sigma^3 = \tau^2 = 1, \ \tau \sigma \tau = \sigma^2, \ \tau \varphi \tau = \varphi^2 \right\rangle$$

(which can also be seen as $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2$).

Let us, however, describe the elements of G in terms of their action on α, β, ω . Since $|G| = [K : \mathbb{Q}] = 18$, any choice of the conjugates of these elements defines an element of G. Put $\sigma: \begin{pmatrix} \alpha \mapsto \omega \alpha \\ \beta \mapsto \beta \\ \omega \mapsto \omega \end{pmatrix}, \tau: \begin{pmatrix} \alpha \mapsto \omega \alpha \\ \beta \mapsto \beta \\ \omega \mapsto \omega \end{pmatrix}, \varphi: \begin{pmatrix} \alpha \mapsto \alpha \\ \beta \mapsto \omega \\ \omega \mapsto \omega \end{pmatrix}$. Then $|\sigma| = |\varphi| = 3$, $|\tau| = 2$, $\sigma\varphi = \varphi\sigma$. Also $\tau\sigma\tau: \begin{pmatrix} \alpha \mapsto \omega^2 \alpha \\ \beta \mapsto \beta \\ \omega \mapsto \omega \end{pmatrix} = \sigma^2$ and $\tau\varphi\tau: \begin{pmatrix} \alpha \mapsto \omega \alpha \\ \beta \mapsto \alpha \\ \omega \mapsto \omega \end{pmatrix} = \varphi^2$.

(b) Consider K as the composite $\mathbb{Q}(\alpha, \omega)\mathbb{Q}(\beta, \omega)$ and represent G as a "relative direct product" $S_3 \times_{\mathbb{Z}_2} S_3$. 10pt

Solution. This time we use the following diagrams of subfields of K/subgroups of G:

The extensions $\mathbb{Q}(\alpha, \omega)/\mathbb{Q}(\omega)$ and $\mathbb{Q}(\beta, \omega)/\mathbb{Q}(\omega)$ are normal with both $\operatorname{Gal}(\mathbb{Q}(\alpha, \omega)/\mathbb{Q}) \cong S_3$ and $\operatorname{Gal}(\mathbb{Q}(\beta,\omega)/\mathbb{Q}) \cong S_3$. We have the homomorphism $\eta: G \longrightarrow \operatorname{Gal}(\mathbb{Q}(\alpha,\omega)/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\beta,\omega)/\mathbb{Q})$ defined by
$$\begin{split} &\eta(\varphi) = \left(\varphi|_{\mathbb{Q}(\alpha,\omega)}, \varphi|_{\mathbb{Q}(\beta,\omega)}\right). \text{ Since every } \varphi \in G \text{ is defined by its action on } \mathbb{Q}(\alpha,\omega) \text{ and } \mathbb{Q}(\beta,\omega), \eta \text{ is injective.} \\ &\text{Since } |G| = 18 \text{ and } |S_3 \times S_3| = 36, \eta \text{ cannot be surjective; and indeed, if } (\psi_1,\psi_2) = \eta(\varphi), \text{ then } \psi_1|_{\mathbb{Q}(\omega)} = \varphi|_{\mathbb{Q}(\omega)} = \psi_2|_{\mathbb{Q}(\omega)}, \text{ so the images of } \psi_1 \text{ and of } \psi_2 \text{ in the quotient group } G/P = \text{Gal}(\mathbb{Q}(\omega)/\mathbb{Q}) \cong \mathbb{Z}_2, \text{ where } P = \text{Gal}(K/\mathbb{Q}(\omega)), \text{ coincide. So, } \eta(G) \text{ is contained in the subgroup } G' = \left\{(\psi_1,\psi_2):\psi_1 \text{ mod } P = \psi_2 \text{ mod } P\right\} \text{ of } \text{Gal}(\mathbb{Q}(\alpha,\omega)/\mathbb{Q}) \times \text{Gal}(\mathbb{Q}(\beta,\omega)/\mathbb{Q}), \text{ and since } |G'| = 18 = |G|, \text{ we have } G = G'. \end{split}$$

5pt (c) Find all the subfields of K that contain $N = \mathbb{Q}(\omega)$.

Solution. The subfields of K containing N correspond to the subgroups of P = Gal(K/N). We have $P \cong \mathbb{Z}_3^2$, this is a 2-dimensional \mathbb{F}_3 -vector space, and its subgroups are its subspaces. In addition to 0 (i.e.1) and itself, P has (9-1)/2 = 4 1-dimensional subspaces (each subspace is defined by a nonzero element of P with only two nonzero elements in each subspace), and so, 4 nontrivial subfields. These clearly are $\mathbb{Q}(\alpha, \omega)$, $\mathbb{Q}(\beta, \omega)$, $\mathbb{Q}(\alpha\beta, \omega)$, and $\mathbb{Q}(\alpha^2\beta, \omega)$ (which is the same as $\mathbb{Q}(\alpha\beta^2, \omega)$).

A1. Let
$$\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5}$$
.

⁵pt (a) Find all the conjugates of α over $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find the minimal polynomial $m_{\alpha,L}$.

Solution. The conjugates of α over L are only $\sqrt{2} + \sqrt{3} \pm \sqrt{5}$, so

$$m_{\alpha,L} = \left(x - (\sqrt{2} + \sqrt{3} + \sqrt{5})\right) \left(x - (\sqrt{2} + \sqrt{3} - \sqrt{5})\right) = (x - \sqrt{2} - \sqrt{3})^2 - 5 = x^2 + 2 + 3 - 2\sqrt{2}x - 2\sqrt{3}x + 2\sqrt{6} - 5 = x^2 - 2\sqrt{2}x -$$

5pt (b) Find all the conjugates of α over $N = \mathbb{Q}(\sqrt{2})$ and find the minimal polynomial $m_{\alpha,N}$.

Solution. The minimal polynomial $m_{\alpha,N}$ splits over L into a product of irreducible polynomials, which are the conjugates over N of $m_{\alpha,L}$ and are obtained by applying to $m_{\alpha,L}$ the automorphisms $\sqrt{3} \mapsto \pm \sqrt{3}$; these are $x^2 - 2\sqrt{2}x - 2\sqrt{3}x + 2\sqrt{6}$ and $x^2 - 2\sqrt{2}x + 2\sqrt{3}x - 2\sqrt{6}$. So,

$$m_{\alpha,N} = (x^2 - 2\sqrt{2}x - 2\sqrt{3}x + 2\sqrt{6})(x^2 - 2\sqrt{2}x - 2\sqrt{3}x + 2\sqrt{6}) = (x^2 - 2\sqrt{2}x)^2 - 3(2x - 2\sqrt{2})^2$$
$$= x^4 - 4\sqrt{2}x^3 + 8x^2 - 12x^2 - 24 + 24\sqrt{2}x = x^4 - 4\sqrt{2}x^3 - 4x^2 + 24\sqrt{2}x - 24.$$

5pt (c) Find the minimal polynomial $m_{\alpha,\mathbb{Q}}$.

Solution. It is the product of the conjugates of $m_{\alpha,N}$:

$$m_{\alpha,\mathbb{Q}} = \left(x^4 - 4\sqrt{2}x^3 - 4x^2 + 24\sqrt{2}x - 24\right)\left(x^4 + 4\sqrt{2}x^3 - 4x^2 - 24\sqrt{2}x - 24\right) = \left(x^4 - 4x^2 - 24\right)^2 - 2\left(4x^3 - 24x\right)^2 = x^8 + 16x^4 + 24^2 - 8x^6 - 48x^4 + 8 \cdot 24x^2 - 32x^6 - 2 \cdot 24^2x^2 + 16 \cdot 24x^4 = x^8 - 40x^6 + 352x^4 - 960x^2 + 576.$$

5pt (d) Prove that α is a primitive element of $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q}$.

Solution. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. deg_{\mathbb{Q}} $\alpha = 8 = [K : \mathbb{Q}]$, so $K = \mathbb{Q}(\alpha)$.

10pt **A2.** Let K be a cubic extension $\mathbb{Q}(\sqrt[3]{D})$ of \mathbb{Q} . Obtain the formula for the norm $N_{K/\mathbb{Q}}(\alpha)$ of the element $\alpha = a + b\sqrt[3]{D} + c\sqrt[3]{D^2}$, $a, b, c \in \mathbb{Q}$, of K.

Solution. There are different ways to find the norm of α : by computing the free term of its minimal polynomial, by finding the product of all its conjugates, ... I'll use "the determinant formula": $N_{K/\mathbb{Q}}(\alpha) = \det T$, where T is the operator of multiplication by α . For $\alpha = a + b\sqrt[3]{D} + c\sqrt[3]{D^2}$ in the basis $\{1, \sqrt[3]{D}, \sqrt[3]{D^2}\}$ the matrix of T is $\begin{pmatrix} a & cD & bD \\ c & a & cD \\ c & b & a \end{pmatrix}$, and $N_{K/\mathbb{Q}}(\alpha) = \det T = a^3 + b^3D + c^3D^2 - 3abcD$.

A3. Prove the following:

- $_{5pt}$ (a) If K/F is a p-extension and L/F is a subextension of K/F, then both K/L and L/F are p-extension.
- Solution. Let K/F be a subextension of a Galois extension E/F with $[E:F] = p^n$. Then L/F is also a subextension of E/F, so is a *p*-extension. And K/L is a subextension of E/L, where E/L is also a Galois *p*-extension.
- 5pt (b) If L_1/F and L_2/F are p-subextensions of an extension K/F, then their composite L_1L_2/F is a pextension.

Solution. If L_1/F and L_2/F are towers of Galois extensions of degree p, then L_1L_2/F is also a tower of Galois extensions whose Galois groups are isomorphic to subgroups of \mathbb{Z}_p , so are either trivial or isomorphic to \mathbb{Z}_p .

- 5pt (c) If K/L and L/F are p-extensions, then K/F is also a p-extension. Solution. If K/L and L/F are towers of Galois extensions of degree p, then so is K/F.
- 5pt 14.7.12. Let K be a Galois closure of a finite extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ and let $G = \operatorname{Gal}(K/\mathbb{Q})$. For every prime p dividing |G|, prove that there exists a subfield L of K such that [K : L] = p and $K = L(\alpha)$. Solution. Let $G = \operatorname{Gal}(K/\mathbb{Q})$. By Sylow's and Galois's theorems, there exists a subfield L' of K such that [K : L'] = p. K is generated by the conjugates of α ; if L' contained all these conjugates, then we would have L' = K, so there is a conjugate α' of α such that $\alpha' \notin L'$. Since [K : L'] is prime, we have $K = L'(\alpha')$. Let $\varphi \in G$ be such that $\varphi(\alpha') = \alpha$. Put $L = \varphi(L')$. Then [K : L] = [K : L'] = p, and $L(\alpha) = \varphi(L'(\alpha')) = K$.