
Solutions to Homework 8 Math 5591H

Homework submitted three days after the deadline will have a 5 point penalty for each additional day of delay.

13.2.13. Suppose F = Q(α1, . . . , αn) where α2
i ∈ Q for all i. Prove that 3

√
2 6∈ F .5pt

Solution. For each i, αi is a root of a quadratic polynomial over Q, so has degree either 1 or 2 over
Q(α1, . . . , αi−1). [F : Q] is the product of these degrees, so is a power of 2. For any α ∈ F , degQ α divides

[F : Q], so is also a power of 2. Hence, F cannot contain 3
√
2, which has degree 3 over Q.

13.2.14. Prove that if [F (α) : F ] is odd, then F (α) = F (α2).5pt

Solution. α2 is contained in the field F (α), and we have the tower of extensions F (α)/F (α2)/F . If α 6∈ F (α2),
then [F (α) : F (α2)] = 2, and then [F (α) : F ] = [F (α) : F (α2)] · [F (α2) : F ] is even. So, α ∈ F (α2).

13.2.16. Let K/F be an algebraic extension and let R be a ring with F ⊆ R ⊆ K. Prove that R is a field.5pt

Solution. We only have to show that α−1 ∈ R for every nonzero α ∈ R. Let α ∈ R, α 6= 0. Then α−1 is an
element of F (α), and since α is algebraic over F , we have F (α) = F [α] ⊆ R.

13.2.17. Let f ∈ F [x] be irreducible with deg f = n, and let g ∈ F [x]. Prove that every irreducible factor of10pt

f(g(x)) has degree divisible by n.

Solution. Let q be an irreducible factor of f(g(x)) and let α be a root of q; then deg q = degF α. The field
F (α) contains the element β = g(α), so F (β) ⊆ F (α), and degF β = [F (β) : F ]

∣

∣[F (α) : F ] = degF α. We

have f(β) = f(g(α)) = 0, so β is a root of f , and has degree n over F ; so, n
∣

∣ degF α.

13.2.20. Find the minimal polynomial of 1 + 3
√
2 + 3

√
4 over Q.10pt

Solution. Let θ = 3
√
2, and let K = Q(θ); then {1, θ, θ2} is a basis of K. Let α = 1+ 3

√
2 + 3

√
4 = 1+ θ+ θ2.

We have α · 1 = 1 + θ + θ2, αθ = θ + θ2 + θ3 = 2 + θ + θ2, and α · θ2 = (αθ)θ = 2θ + θ2 + θ3 =

2 + 2θ + θ2. So, the matrix of multiplication by α is A =
(

1 2 2
1 1 2
1 1 1

)

. The characteristic polynomial of A is

f(x) = (x− 1)3 − 6(x− 1)− 6 = x3 − 3x2 − 3x− 1. Since α is contained in the extension Q(θ)/Q of degree
3 and α 6∈ Q, it must be that degQ α = 3, so f is the minimal polynomial of α.

Another solution. We find the Smith normal form of xI −A:

xI −A =

(

x−1 −2 −2

−1 x−1 −2

−1 −1 x−1

)

7→
(

1 1 −x+1

x−1 −2 −2

−1 x−1 −2

)

7→
(

1 1 −x+1

0 −x−1 x2
−2x−1

0 x −x−1

)

7→
(

1 0 0

0 −x−1 x2
−2x−1

0 x −x−1

)

7→
(

1 0 0

0 −1 x2
−3x−2

0 x −x−1

)

7→
(

1 0 0

0 −1 x2
−3x−2

0 0 x3
−3x2

−3x−1

)

7→
(

1 0 0
0 1 0

0 0 x3
−3x2

−3x−1

)

.

We see that the minimal polynomial of A, and so, of α is x3−3x2−3x−1 (and since A has a single invariant
factor, we also see that α generates K, K = Q(α)).

13.2.22. Let K1/F and K2/F be finite subextensions of an extension K/F . Prove that K1 ⊗F K2 is a field10pt

iff [K1K2 : F ] = [K1 : F ] · [K2 : F ].

Solution. We have an F -algebras homomorphism ϕ:K1 ⊗ K2 −→ K1K2 defined by ϕ(α1 ⊗ α2) = α1α2,
α1 ∈ K1, α2 ∈ K2. Since K1K2 is generated (even spanned) by the products α1α2 with α1 ∈ K1, α2 ∈ K2,
ϕ is surjective. We have dimF K1 ⊗F K2 = dimF K1 · dimF K2 = [K1 : F ] · [K2 : F ], so if dimF K1K2 =
[K1K2 : F ] = [K1 : F ] · [K2 : F ] as well, ϕ is an isomorphism and K1 ⊗F K2 is a field. If dimF K1K2 < [K1 :
F ] · [K2 : F ], then ϕ has a nonzero kernel, which is then a nontrivial ideal in dimF K1 ⊗F K2, so this ring
cannot be a field.

13.1.1. Show that p = x3 + 9x + 6 is irreducible over Q. Let θ be a root of p (in some extension of Q);5pt

represent (1 + θ)−1 in the form a+ bθ + cθ2 with a, b, c ∈ Q.

Solution. p is irreducible by Gauss’s lemma and Eisenstein’s criterion. Thus, Q(θ) ∼= Q[x]/(p) is a field, in
which θ3 = −9θ − 6 and {1, θ, θ2} is a basis over Q. Now if (1 + θ)−1 = a+ bθ + cθ2, then

1 = (1 + θ)(a+ bθ + cθ2) = a+ bθ + cθ2 + aθ + bθ2 + cθ3 = a− 6c+ (a+ b− 9c)θ + (b+ c)θ2,

so b+ c = 0, a+ b− 9c = 0, and a− 6c = 1. From this we obtain that c = 1/4, b = −1/4, a = 5/2.

1



Another solution. Consider the action of 1 + θ on Q(θ) by multiplication; in the basis {1, θ, θ2} the matrix

of this action is A =
(

1 0 −6

1 1 −9

0 1 1

)

. The first column of the inverse A−1 of A is the vector of coordinates of

(1 + θ)−1 · 1 = (1 + θ)−1; it equals

(

5/2

−1/4

1/4

)

, so (1 + θ)−1 = 5

2
− 1

4
θ + 1

4
θ2.

13.1.3. Show that p = x3 + x + 1 is irreducible over F2. Let θ be a root of p (in some extension of F2);5pt

compute the powers of θ in F2(θ) (in the form a+ bθ + cθ2).

Solution. p ∈ F2[x] is irreducible since it has no roots in F2. (Both 0 and 1 are not roots of p.) So,
F2(θ)

∼= F2[x]/(p) is a field, of cardinality 23 = 8, in which θ3 = θ + 1, and {1, θ, θ2} is a basis over F2. The
powers of θ in this basis are

1, θ, θ2, 1 + θ, θ + θ2, 1 + θ + θ2, 1 + θ2, 1, θ, , . . .

(Notice that this sequence runs over all nonzero elements of F2(θ), that is, the multiplicative group of this
field is cyclic, generated by θ.)

13.4.2. Determine the splitting field (as a subfield of C) and find its degree over Q of f = x4 + 2.5pt

Solution. Fortunately, we have the field C, which contains all roots of f , ±α,±β, where α = 1+i
√

2

4
√
2 = 1+i

4
√

2
and

β = 1−i
√

2

4
√
2 = 1−i

4
√

2
. It suffices to adjoin these roots: the splitting field is K = Q

(

±α,±β) = Q(α, β). Clearly,

K = Q( 4
√
2, i) (since α, β ∈ Q( 4

√
2, i) and, on the other hand, 4

√
2 = 2(α+ β)−1 ∈ K and i = 4

√
2α− 1 ∈ K),

and has degree 8 over Q.

13.4.4. Determine the splitting field (as a subfield of C) and find its degree over Q of f = x6 − 4.5pt

Solution. We have x6 − 4 = (x3 − 2)(x3 + 2). The roots of x3 − 2 are α, αω, and αω2 where α = 3
√
2 and

ω = e2πi/3, and the splitting field of x3 − 2 is K = Q(α, ω). But the second factor x3 + 2 also splits in K:
x3 + 2 = (x + α)(x + ωα)(x + ω2α). So, K is the splitting field of x6 − 4. We have [Q(α) : Q] = 3 and
[Q(ω) : Q] = 2, and since 2 and 3 are coprime, it follows that [K : Q] = 6.

13.4.3. Determine the splitting field (as a subfield of C) and find its degree over Q of f = x4 + x2 + 1.5pt

Solution. The roots of f in C are ±α,±β, where α =

√

−1+
√

−3

2
and β =

√

−1−
√

−3

2
, and so the splitting

field K of f is Q(α, β). (This fact however doesn’t provide enough information on [K : F ].) We have
αβ =

√
1 = 1 (or −1, dependently on how we interprete the radicals), so β ∈ Q(α), and the splitting field

of f is K = Q(α). f is reducible: f = (x2 + x + 1)(x2 − x + 1), so α is a root of a quadratic polynomial

(actually, α = 1+
√

−3

2
) so [K : Q] = 2 (and K = Q(

√
−3).

(Alternatively, we can notice that f(x)(x2 − 1) = x6 − 1, so K is the 6th cyclotomic field.)
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