Solutions to Homework 8

Homework submitted three days after the deadline will have a 5 point penalty for each additional day of delay.

- 5pt **13.2.13.** Suppose $F = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for all *i*. Prove that $\sqrt[3]{2} \notin F$. Solution. For each *i*, α_i is a root of a quadratic polynomial over \mathbb{Q} , so has degree either 1 or 2 over $\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})$. $[F : \mathbb{Q}]$ is the product of these degrees, so is a power of 2. For any $\alpha \in F$, $\deg_{\mathbb{Q}} \alpha$ divides $[F : \mathbb{Q}]$, so is also a power of 2. Hence, *F* cannot contain $\sqrt[3]{2}$, which has degree 3 over \mathbb{Q} .
- 5pt **13.2.14.** Prove that if $[F(\alpha) : F]$ is odd, then $F(\alpha) = F(\alpha^2)$. Solution. α^2 is contained in the field $F(\alpha)$, and we have the tower of extensions $F(\alpha)/F(\alpha^2)/F$. If $\alpha \notin F(\alpha^2)$, then $[F(\alpha) : F(\alpha^2)] = 2$, and then $[F(\alpha) : F] = [F(\alpha) : F(\alpha^2)] \cdot [F(\alpha^2) : F]$ is even. So, $\alpha \in F(\alpha^2)$.
- 5pt **13.2.16.** Let K/F be an algebraic extension and let R be a ring with $F \subseteq R \subseteq K$. Prove that R is a field. Solution. We only have to show that $\alpha^{-1} \in R$ for every nonzero $\alpha \in R$. Let $\alpha \in R$, $\alpha \neq 0$. Then α^{-1} is an element of $F(\alpha)$, and since α is algebraic over F, we have $F(\alpha) = F[\alpha] \subseteq R$.
- 10pt **13.2.17.** Let $f \in F[x]$ be irreducible with deg f = n, and let $g \in F[x]$. Prove that every irreducible factor of f(g(x)) has degree divisible by n.

Solution. Let q be an irreducible factor of f(g(x)) and let α be a root of q; then deg $q = \deg_F \alpha$. The field $F(\alpha)$ contains the element $\beta = g(\alpha)$, so $F(\beta) \subseteq F(\alpha)$, and deg_F $\beta = [F(\beta) : F] | [F(\alpha) : F] = \deg_F \alpha$. We have $f(\beta) = f(g(\alpha)) = 0$, so β is a root of f, and has degree n over F; so, $n | \deg_F \alpha$.

10pt **13.2.20.** Find the minimal polynomial of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} .

Solution. Let $\theta = \sqrt[3]{2}$, and let $K = \mathbb{Q}(\theta)$; then $\{1, \theta, \theta^2\}$ is a basis of K. Let $\alpha = 1 + \sqrt[3]{2} + \sqrt[3]{4} = 1 + \theta + \theta^2$. We have $\alpha \cdot 1 = 1 + \theta + \theta^2$, $\alpha \theta = \theta + \theta^2 + \theta^3 = 2 + \theta + \theta^2$, and $\alpha \cdot \theta^2 = (\alpha \theta)\theta = 2\theta + \theta^2 + \theta^3 = 2 + 2\theta + \theta^2$. So, the matrix of multiplication by α is $A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. The characteristic polynomial of A is $f(x) = (x-1)^3 - 6(x-1) - 6 = x^3 - 3x^2 - 3x - 1$. Since α is contained in the extension $\mathbb{Q}(\theta)/\mathbb{Q}$ of degree 3 and $\alpha \notin \mathbb{Q}$, it must be that $\deg_{\mathbb{Q}} \alpha = 3$, so f is the minimal polynomial of α .

Another solution. We find the Smith normal form of xI - A:

$$xI - A = \begin{pmatrix} x-1 & -2 & -2 \\ -1 & x-1 & -2 \\ -1 & -1 & x-1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & -x+1 \\ x-1 & -2 & -2 \\ -1 & x-1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & -x+1 \\ 0 - x - 1 & x^2 - 2x - 1 \\ 0 & x & -x-1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 - x - 1 & x^2 - 2x - 1 \\ 0 & x & -x-1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 - 1 & x^2 - 3x - 2 \\ 0 & 0 & x^3 - 3x^2 - 3x - 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & x^3 - 3x^2 - 3x - 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & x^3 - 3x^2 - 3x - 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & x^3 - 3x^2 - 3x - 1 \end{pmatrix}$$

We see that the minimal polynomial of A, and so, of α is $x^3 - 3x^2 - 3x - 1$ (and since A has a single invariant factor, we also see that α generates $K, K = \mathbb{Q}(\alpha)$).

10pt **13.2.22.** Let K_1/F and K_2/F be finite subextensions of an extension K/F. Prove that $K_1 \otimes_F K_2$ is a field iff $[K_1K_2:F] = [K_1:F] \cdot [K_2:F]$.

Solution. We have an *F*-algebras homomorphism $\varphi: K_1 \otimes K_2 \longrightarrow K_1K_2$ defined by $\varphi(\alpha_1 \otimes \alpha_2) = \alpha_1\alpha_2$, $\alpha_1 \in K_1, \alpha_2 \in K_2$. Since K_1K_2 is generated (even spanned) by the products $\alpha_1\alpha_2$ with $\alpha_1 \in K_1, \alpha_2 \in K_2$, φ is surjective. We have $\dim_F K_1 \otimes_F K_2 = \dim_F K_1 \cdot \dim_F K_2 = [K_1 : F] \cdot [K_2 : F]$, so if $\dim_F K_1K_2 = [K_1K_2 : F] = [K_1 : F] \cdot [K_2 : F]$ as well, φ is an isomorphism and $K_1 \otimes_F K_2$ is a field. If $\dim_F K_1K_2 < [K_1 : F] \cdot [K_2 : F]$, then φ has a nonzero kernel, which is then a nontrivial ideal in $\dim_F K_1 \otimes_F K_2$, so this ring cannot be a field.

5pt **13.1.1.** Show that $p = x^3 + 9x + 6$ is irreducible over \mathbb{Q} . Let θ be a root of p (in some extension of \mathbb{Q}); represent $(1+\theta)^{-1}$ in the form $a + b\theta + c\theta^2$ with $a, b, c \in \mathbb{Q}$.

Solution. p is irreducible by Gauss's lemma and Eisenstein's criterion. Thus, $\mathbb{Q}(\theta) \cong \mathbb{Q}[x]/(p)$ is a field, in which $\theta^3 = -9\theta - 6$ and $\{1, \theta, \theta^2\}$ is a basis over \mathbb{Q} . Now if $(1 + \theta)^{-1} = a + b\theta + c\theta^2$, then

$$1 = (1 + \theta)(a + b\theta + c\theta^2) = a + b\theta + c\theta^2 + a\theta + b\theta^2 + c\theta^3 = a - 6c + (a + b - 9c)\theta + (b + c)\theta^2$$

so b + c = 0, a + b - 9c = 0, and a - 6c = 1. From this we obtain that c = 1/4, b = -1/4, a = 5/2.

Another solution. Consider the action of $1 + \theta$ on $\mathbb{Q}(\theta)$ by multiplication; in the basis $\{1, \theta, \theta^2\}$ the matrix of this action is $A = \begin{pmatrix} 1 & 0 & -6 \\ 1 & 1 & -9 \\ 0 & 1 & 1 \end{pmatrix}$. The first column of the inverse A^{-1} of A is the vector of coordinates of $(1+\theta)^{-1} \cdot 1 = (1+\theta)^{-1}$; it equals $\binom{5/2}{-1/4}$, so $(1+\theta)^{-1} = \frac{5}{2} - \frac{1}{4}\theta + \frac{1}{4}\theta^2$.

13.1.3. Show that $p = x^3 + x + 1$ is irreducible over \mathbb{F}_2 . Let θ be a root of p (in some extension of \mathbb{F}_2); 5pt compute the powers of θ in $\mathbb{F}_2(\theta)$ (in the form $a + b\theta + c\theta^2$).

Solution. $p \in \mathbb{F}_2[x]$ is irreducible since it has no roots in \mathbb{F}_2 . (Both 0 and 1 are not roots of p.) So, $\mathbb{F}_2(\theta) \cong \mathbb{F}_2[x]/(p)$ is a field, of cardinality $2^3 = 8$, in which $\theta^3 = \theta + 1$, and $\{1, \theta, \theta^2\}$ is a basis over \mathbb{F}_2 . The powers of θ in this basis are

1,
$$\theta$$
, θ^2 , $1 + \theta$, $\theta + \theta^2$, $1 + \theta + \theta^2$, $1 + \theta^2$, $1, \theta$, ...

(Notice that this sequence runs over all nonzero elements of $\mathbb{F}_2(\theta)$, that is, the multiplicative group of this field is cyclic, generated by θ .)

13.4.2. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f = x^4 + 2$. 5pt

Solution. Fortunately, we have the field \mathbb{C} , which contains all roots of $f, \pm \alpha, \pm \beta$, where $\alpha = \frac{1+i}{\sqrt{2}}\sqrt[4]{2} = \frac{1+i}{\sqrt{2}}$ and $\beta = \frac{1-i}{\sqrt{2}} \sqrt[4]{2} = \frac{1-i}{\sqrt{2}}$. It suffices to adjoin these roots: the splitting field is $K = \mathbb{Q}(\pm \alpha, \pm \beta) = \mathbb{Q}(\alpha, \beta)$. Clearly, $K = \mathbb{Q}(\sqrt[4]{2}, i) \text{ (since } \alpha, \beta \in \mathbb{Q}(\sqrt[4]{2}, i) \text{ and, on the other hand, } \sqrt[4]{2} = 2(\alpha + \beta)^{-1} \in K \text{ and } i = \sqrt[4]{2}\alpha - 1 \in K),$ and has degree 8 over \mathbb{Q} .

- **13.4.4.** Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f = x^6 4$. 5pt Solution. We have $x^6 - 4 = (x^3 - 2)(x^3 + 2)$. The roots of $x^3 - 2$ are α , $\alpha\omega$, and $\alpha\omega^2$ where $\alpha = \sqrt[3]{2}$ and $\omega = e^{2\pi i/3}$, and the splitting field of $x^3 - 2$ is $K = \mathbb{Q}(\alpha, \omega)$. But the second factor $x^3 + 2$ also splits in K: $x^3 + 2 = (x + \alpha)(x + \omega \alpha)(x + \omega^2 \alpha)$. So, K is the splitting field of $x^6 - 4$. We have $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$ and $[\mathbb{Q}(\omega):\mathbb{Q}]=2$, and since 2 and 3 are coprime, it follows that $[K:\mathbb{Q}]=6$.
- **13.4.3.** Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f = x^4 + x^2 + 1$. 5pt

Solution. The roots of f in \mathbb{C} are $\pm \alpha, \pm \beta$, where $\alpha = \sqrt{\frac{-1+\sqrt{-3}}{2}}$ and $\beta = \sqrt{\frac{-1-\sqrt{-3}}{2}}$, and so the splitting field K of f is $\mathbb{Q}(\alpha,\beta)$. (This fact however doesn't provide enough information on [K:F].) We have $\alpha\beta = \sqrt{1} = 1$ (or -1, dependently on how we interpret the radicals), so $\beta \in \mathbb{Q}(\alpha)$, and the splitting field of f is $K = \mathbb{Q}(\alpha)$. f is reducible: $f = (x^2 + x + 1)(x^2 - x + 1)$, so α is a root of a quadratic polynomial (actually, $\alpha = \frac{1+\sqrt{-3}}{2}$) so $[K:\mathbb{Q}] = 2$ (and $K = \mathbb{Q}(\sqrt{-3})$. (Alternatively, we can notice that $f(x)(x^2 - 1) = x^6 - 1$, so K is the 6th cyclotomic field.)