Homework submitted three days after the deadline will have a 5 point penalty for each additional day of delay.
13.2.20. Find the minimal polynomial of $1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.

Solution. Let $\theta=\sqrt[3]{2}$, and let $K=\mathbb{Q}(\theta)$; then $\left\{1, \theta, \theta^{2}\right\}$ is a basis of K. Let $\alpha=1+\sqrt[3]{2}+\sqrt[3]{4}=1+\theta+\theta^{2}$. We have $\alpha \cdot 1=1+\theta+\theta^{2}$, $\alpha \theta=\theta+\theta^{2}+\theta^{3}=2+\theta+\theta^{2}$, and $\alpha \cdot \theta^{2}=(\alpha \theta) \theta=2 \theta+\theta^{2}+\theta^{3}=$ $2+2 \theta+\theta^{2}$. So, the matrix of multiplication by α is $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1\end{array}\right)$. The characteristic polynomial of A is $f(x)=(x-1)^{3}-6(x-1)-6=x^{3}-3 x^{2}-3 x-1$. Since α is contained in the extension $\mathbb{Q}(\theta) / \mathbb{Q}$ of degree 3 and $\alpha \notin \mathbb{Q}$, it must be that $\operatorname{deg}_{\mathbb{Q}} \alpha=3$, so f is the minimal polynomial of α.
Another solution. We find the Smith normal form of $x I-A$:

$$
\begin{aligned}
& x I-A=\left(\begin{array}{ccc}
x-1 & -2 & -2 \\
-1 & x-1 & -2 \\
-1 & -1 & x-1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 1 & -x+1 \\
x-1 & -2 & -2 \\
-1 & x-1 & -2
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 1 & -x+1 \\
0 & x-1 & x^{2}-2 x-1 \\
0 & x & -x-1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -x-1 & x^{2}-2 x-1 \\
0 & x & -x-1
\end{array}\right) \\
& \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & x^{2}-3 x-2 \\
0 & x & -x-1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & x^{2}-3 x-2 \\
0 & 0 & x^{3}-3 x^{2}-3 x-1
\end{array}\right) \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & x^{3}-3 x^{2}-3 x-1
\end{array}\right) .
\end{aligned}
$$

We see that the minimal polynomial of A, and so, of α is $x^{3}-3 x^{2}-3 x-1$ (and since A has a single invariant factor, we also see that α generates $K, K=\mathbb{Q}(\alpha))$.
13.2.22. Let K_{1} / F and K_{2} / F be finite subextensions of an extension K / F. Prove that $K_{1} \otimes_{F} K_{2}$ is a field iff $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$.
Solution. We have an F-algebras homomorphism $\varphi: K_{1} \otimes K_{2} \longrightarrow K_{1} K_{2}$ defined by $\varphi\left(\alpha_{1} \otimes \alpha_{2}\right)=\alpha_{1} \alpha_{2}$, $\alpha_{1} \in K_{1}, \alpha_{2} \in K_{2}$. Since $K_{1} K_{2}$ is generated (even spanned) by the products $\alpha_{1} \alpha_{2}$ with $\alpha_{1} \in K_{1}, \alpha_{2} \in K_{2}$, φ is surjective. We have $\operatorname{dim}_{F} K_{1} \otimes_{F} K_{2}=\operatorname{dim}_{F} K_{1} \cdot \operatorname{dim}_{F} K_{2}=\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$, so if $\operatorname{dim}_{F} K_{1} K_{2}=$ $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$ as well, φ is an isomorphism and $K_{1} \otimes_{F} K_{2}$ is a field. If $\operatorname{dim}_{F} K_{1} K_{2}<\left[K_{1}:\right.$ $F] \cdot\left[K_{2}: F\right]$, then φ has a nonzero kernel, which is then a nontrivial ideal in $\operatorname{dim}_{F} K_{1} \otimes_{F} K_{2}$, so this ring cannot be a field.

5pt
13.2.13. Suppose $F=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for all i. Prove that $\sqrt[3]{2} \notin F$.

Solution. For each i, α_{i} is a root of a quadratic polynomial over \mathbb{Q}, so has degree either 1 or 2 over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right) .[F: \mathbb{Q}]$ is the product of these degrees, so is a power of 2 . For any $\alpha \in F, \operatorname{deg}_{\mathbb{Q}} \alpha$ divides $[F: \mathbb{Q}]$, so is also a power of 2 . Hence, F cannot contain $\sqrt[3]{2}$, which has degree 3 over \mathbb{Q}.
13.2.14. Prove that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$.

Solution. α^{2} is contained in the field $F(\alpha)$, and we have the tower of extensions $F(\alpha) / F\left(\alpha^{2}\right) / F$. If $\alpha \notin F\left(\alpha^{2}\right)$, then $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=2$, and then $[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right] \cdot\left[F\left(\alpha^{2}\right): F\right]$ is even. So, $\alpha \in F\left(\alpha^{2}\right)$.
13.2.16. Let K / F be an algebraic extension and let R be a ring with $F \subseteq R \subseteq K$. Prove that R is a field.

Solution. We only have to show that $\alpha^{-1} \in R$ for every nonzero $\alpha \in R$. Let $\alpha \in R, \alpha \neq 0$. Then α^{-1} is an element of $F(\alpha)$, and since α is algebraic over F, we have $F(\alpha)=F[\alpha] \subseteq R$.
13.2.17. Let $f \in F[x]$ be irreducible with $\operatorname{deg} f=n$, and let $g \in F[x]$. Prove that every irreducible factor of $f(g(x))$ has degree divisible by n.
Solution. Let q be an irreducible factor of $f(g(x))$ and let α be a root of q; then $\operatorname{deg} q=\operatorname{deg}_{F} \alpha$. The field $F(\alpha)$ contains the element $\beta=g(\alpha)$, so $F(\beta) \subseteq F(\alpha)$, and $\operatorname{deg}_{F} \beta=[F(\beta): F] \mid[F(\alpha): F]=\operatorname{deg}_{F} \alpha$. We have $f(\beta)=f(g(\alpha))=0$, so β is a root of f, and has degree n over F; so, $n \mid \operatorname{deg}_{F} \alpha$.
13.1.1. Show that $p=x^{3}+9 x+6$ is irreducible over \mathbb{Q}. Let θ be a root of p (in some extension of \mathbb{Q}); represent $(1+\theta)^{-1}$ in the form $a+b \theta+c \theta^{2}$ with $a, b, c \in \mathbb{Q}$.
Solution. p is irreducible by Gauss's lemma and Eisenstein's criterion. Thus, $\mathbb{Q}(\theta) \cong \mathbb{Q}[x] /(p)$ is a field, in which $\theta^{3}=-9 \theta-6$ and $\left\{1, \theta, \theta^{2}\right\}$ is a basis over \mathbb{Q}. Now if $(1+\theta)^{-1}=a+b \theta+c \theta^{2}$, then

$$
1=(1+\theta)\left(a+b \theta+c \theta^{2}\right)=a+b \theta+c \theta^{2}+a \theta+b \theta^{2}+c \theta^{3}=a-6 c+(a+b-9 c) \theta+(b+c) \theta^{2}
$$

so $b+c=0, a+b-9 c=0$, and $a-6 c=1$. From this we obtain that $c=1 / 4, b=-1 / 4, a=5 / 2$.

Another solution. Consider the action of $1+\theta$ on $\mathbb{Q}(\theta)$ by multiplication; in the basis $\left\{1, \theta, \theta^{2}\right\}$ the matrix of this action is $A=\left(\begin{array}{ccc}1 & 0 & -6 \\ 1 & 1 & -9 \\ 0 & 1 & 1\end{array}\right)$. The first column of the inverse A^{-1} of A is the vector of coordinates of $(1+\theta)^{-1} \cdot 1=(1+\theta)^{-1} ;$ it equals $\left(\begin{array}{c}5 / 2 \\ -1 / 4 \\ 1 / 4\end{array}\right)$, so $(1+\theta)^{-1}=\frac{5}{2}-\frac{1}{4} \theta+\frac{1}{4} \theta^{2}$.
13.1.3. Show that $p=x^{3}+x+1$ is irreducible over \mathbb{F}_{2}. Let θ be a root of p (in some extension of \mathbb{F}_{2}); compute the powers of θ in $\mathbb{F}_{2}(\theta)$ (in the form $a+b \theta+c \theta^{2}$).
Solution. $p \in \mathbb{F}_{2}[x]$ is irreducible since it has no roots in \mathbb{F}_{2}. (Both 0 and 1 are not roots of p.) So, $\mathbb{F}_{2}(\theta) \cong \mathbb{F}_{2}[x] /(p)$ is a field, of cardinality $2^{3}=8$, in which $\theta^{3}=\theta+1$, and $\left\{1, \theta, \theta^{2}\right\}$ is a basis over \mathbb{F}_{2}. The powers of θ in this basis are

$$
1, \theta, \theta^{2}, 1+\theta, \theta+\theta^{2}, 1+\theta+\theta^{2}, 1+\theta^{2}, 1, \theta,, \ldots
$$

(Notice that this sequence runs over all nonzero elements of $\mathbb{F}_{2}(\theta)$, that is, the multiplicative group of this field is cyclic, generated by θ.)
13.4.2. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{4}+2$.

Solution. Fortunately, we have the field \mathbb{C}, which contains all roots of $f, \pm \alpha, \pm \beta$, where $\alpha=\frac{1+i}{\sqrt{2}} \sqrt[4]{2}=\frac{1+i}{\sqrt[4]{2}}$ and $\beta=\frac{1-i}{\sqrt{2}} \sqrt[4]{2}=\frac{1-i}{\sqrt[4]{2}}$. It suffices to adjoin these roots: the splitting field is $K=\mathbb{Q}(\pm \alpha, \pm \beta)=\mathbb{Q}(\alpha, \beta)$. Clearly, $K=\mathbb{Q}(\sqrt[4]{2}, i)\left(\right.$ since $\alpha, \beta \in \mathbb{Q}(\sqrt[4]{2}, i)$ and, on the other hand, $\sqrt[4]{2}=2(\alpha+\beta)^{-1} \in K$ and $\left.i=\sqrt[4]{2} \alpha-1 \in K\right)$, and has degree 8 over \mathbb{Q}.
13.4.4. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{6}-4$.

Solution. We have $x^{6}-4=\left(x^{3}-2\right)\left(x^{3}+2\right)$. The roots of $x^{3}-2$ are $\alpha, \alpha \omega$, and $\alpha \omega^{2}$ where $\alpha=\sqrt[3]{2}$ and $\omega=e^{2 \pi i / 3}$, and the splitting field of $x^{3}-2$ is $K=\mathbb{Q}(\alpha, \omega)$. But the second factor $x^{3}+2$ also splits in K : $x^{3}+2=(x+\alpha)(x+\omega \alpha)\left(x+\omega^{2} \alpha\right)$. So, K is the splitting field of $x^{6}-4$. We have $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ and $[\mathbb{Q}(\omega): \mathbb{Q}]=2$, and since 2 and 3 are coprime, it follows that $[K: \mathbb{Q}]=6$.
13.4.3. Determine the splitting field (as a subfield of \mathbb{C}) and find its degree over \mathbb{Q} of $f=x^{4}+x^{2}+1$.

Solution. The roots of f in \mathbb{C} are $\pm \alpha, \pm \beta$, where $\alpha=\sqrt{\frac{-1+\sqrt{-3}}{2}}$ and $\beta=\sqrt{\frac{-1-\sqrt{-3}}{2}}$, and so the splitting field K of f is $\mathbb{Q}(\alpha, \beta)$. (This fact however doesn't provide enough information on $[K: F]$.) We have $\alpha \beta=\sqrt{1}=1$ (or -1 , dependently on how we interprete the radicals), so $\beta \in \mathbb{Q}(\alpha)$, and the splitting field of f is $K=\mathbb{Q}(\alpha)$. f is reducible: $f=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$, so α is a root of a quadratic polynomial (actually, $\left.\alpha=\frac{1+\sqrt{-3}}{2}\right)$ so $[K: \mathbb{Q}]=2$ (and $K=\mathbb{Q}(\sqrt{-3})$.
(Alternatively, we can notice that $f(x)\left(x^{2}-1\right)=x^{6}-1$, so K is the 6 th cyclotomic field.)

