
Solutions to Homework 9 Math 5591H

A1. Let L/F be an extension and let f ∈ F [x].

(a) If K is a spitting field of f over F and K ⊇ L, prove that K is a splitting field of f over L.5pt

Solution. f splits completely in K (this doesn’t depend on whether we consider f as an element pf F [x] or
L[x]). Also, K is a minimal such field containing F , so it is a minimal such field containing L.

(b) Give an example where K is a splitting field of f over L, but is not a splitting field of f over F .5pt

Solution. Q(i,
√
2) is a spltting field of x2 − 2 over Q(i) but not over Q.

A2. Let F be a field of characteristic p and let f ∈ F [x] be irreducible.

(a) Prove that f(x) = g(xp
k

) for some separable irreducible g ∈ F [x] and some integer k ≥ 0.5pt

Solution. If f is separable, we put g = f . If f is inseparable, then, as we know, f(x) = h(xp) for some
h ∈ F [x]. h is irreducible since if h is reducible, h = h1h2, then f(x)h1(x

p)h2(x
p) is reducible either. Since

deg h < deg f , by induction on deg f , h(x) = g
(

xp
l)

for some irreducible g ∈ F [x]. Then f(x) = g
(

xp
l+1)

.

(b) Prove that in its splitting field, f(x) = c(x− α1)
pk · · · (x− αd)

pk

for some distinct α1, . . . , αd.5pt

Solution. We may assume that f is monic. Let f(x) = g(xp
k

) where g is separable. Let β1, . . . , βd be

the (distinct) roots of g (in its splitting field), so that g(x) = (x − β1) · · · (x − βd) and f(x) = g(xp
k

) =

(xp
k − β1) · · · (xp

k − βd). For every i, let αi be a root of xp
k − βi; then (x− αi)

pk

= xp
k − αpk

i = xp
k − βi.

So, f(x) = (x− α1)
pk · · · (x− αd)

pk

.

13.5.5. Let p be a prime integer, let a ∈ Fp, a 6= 0, and let f = xp − x+ a ∈ Fp[x]. Prove that the splitting10pt

field K of f is obtained by adjoining a single root of f . Prove that f is separable and irreducible over Fp.

Solution. f ′ = −1, so f ′ has no roots, so f has no common roots with f ′, and so, f has no multiple roots.
Hence, f is separable.

f has no roots in Fp, since for any b ∈ Fp, b
p = b 6= b− a. Let α be a root of f (in an extension of Fp),

so that αp = α− a. Then for any b ∈ Fp we have (α+ b)p = αp + bp = α− a+ b = (α + b)− a, so α+ b is
also a root of f . (Hence, f has p distinct roots, α+ b for all b ∈ Fp, so, we see again that f is separable.) It
follows that K = Fp(α) is a splitting field of f .

Let’s now prove that f is irreducible. Since α 6∈ Fp, it has at least one conjugate, α+ b for some nonzero
b ∈ Fp. There is an isomorphism ϕ:K −→ K over Fp that maps α to α+ b. Since α and α+ b are conjugate,
the elements ϕ(α) = α+ b and ϕ(α+ b) = α+ 2b are conjugate, and so, α and α+ 2b are conjugate. Thus,
by induction, all the roots α+ kb, k = 0, 1, . . . , p− 1, of f are conjugate, so f is irreducible.

A3. (a) Let n = prm where p is prime and p /
∣

∣ m. Prove that Φn(x) = Φpm(xp
r−1

).10pt

Solution.

Φn(x) =
xn − 1

∏

d|n
d<n

Φd(x)
=

xp
rm − 1

∏

d|pr−1m Φd(x)
∏

d|m
d<m

Φdpr (x)
.

We have xp
rm − 1 = (xp

r−1

)pm − 1,
∏

d|pr−1m Φd(x) = xp
r−1m − 1 = (xp

r−1

)m − 1 =
∏

d|m Φd(x
pr−1

), and by

induction, for any d < m, Φdpr (x) = Φdp(x
pr−1

). So,

Φn(x) =
(xp

r−1

)pm − 1
∏

d|m Φd(xp
r−1)

∏

d|m
d<m

Φdp(xp
r−1)

= Φpm(xp
r−1

).

Another solution. The polynomials Φn(x) and Φpm(xp
r−1

) have the same degree, ϕ(n) = ϕ(pr)ϕ(m) =
pr−1(p − 1)ϕ(m) = pr−1ϕ(p)ϕ(m) = pr−1ϕ(pm). Also, if ω is a root of Φn, that is, a primitive root of 1

of degree n, then ωpr−1

is a primitive root of 1 of degree pm, so ω is a root of Φpm(xp
r−1

). Since Φn is

separable, this implies that Φn(x) divides Φpm(xp
r−1

), and so, these polynomials are equal.

(b) Deduce that if n = pr1
1
· · · prkk is the prime factorization of n, then Φn(x) = Φd(x

q), where d = p1 · · · pk5pt

and q = pr1−1

1
· · · prk−1

k .

1



Solution. Applying (a) k times, we get

Φn(x) = Φp
r1
1

p
r2
2

···p
rk

k

(x) = Φp1p
r2
2

···p
rk

k

(

xp
r1−1

1

)

= · · · = Φp1p2···pk

(

xp
r1−1

1
p
r2−1

2
···p

rk−1

k

)

.

13.6.10. Let φ denote the Frobenius automorphism of Fpn , φ(α) = αp. Prove that the order of φ (as an5pt

element of the group of automorphisms of Fpn) is n.

Solution. Since the multiplicative group F∗
pn of Fpn has order pn − 1, every α ∈ F∗

pn satisfies αpn−1 = 1, so

αpn

= α. This is also true for α = 0, so for every α ∈ Fpn , φn(α) = αpn

= α, and thus φn = Id.

On the other hand, for any k < n, the polynomial xp
k − x cannot have more than pk roots in Fpn , so,

not all elements α ∈ Fpn satisfy φk(α) = α, so φk 6= Id.

14.3.4. Construct the field F16 and find a generator of its multiplicative group.5pt

Solution. To construct F16 we can use any irreducible quartic polynomial over F2; take f = x4 + x + 1
and put K = F2[x]/(f). Let α be the image of x in K, then α4 = −α − 1 = α + 1. Now, F16

∼= K =
{

a+ bα+ cα2 + dα3, a, b, c, d ∈ F2

}

with α4 = 1 + α.
The multiplictive group F∗

16
is isomorphic to Z15 and has ϕ(15) = 2 · 4 = 8 generators. Let us try α: we

have 1, α, α2, α3 all distinct, then α4 = 1 + α, α5 = α + α2, . . ., – we don’t need to check the powers of α
further since we already see that |α| > 5, and hence |α| = 15.

A4. (a) Find all irreducible polynomials of degree 4 in F2[x].10pt

Solution. Let ψ(n) denote the number of irreducible polynomials of degree n in F2[x]. Then, by the general
formula, ψ(1) = 2; 1ψ(1)+2ψ(2) = 4 so ψ(2) = 1; 1ψ(1)+3ψ(1) = 8 so ψ(3) = 2; 1ψ(1)+2ψ(2)+4ψ(4) = 16,
so ψ(4) = 3.

An irreducible polynomial of degree ≥ 2 in F2[x] must not vanish at 0 and 1, so it must end with 1 and
have an odd number of monomials. Also, if all monomials of a polynomial f have even power, then f is a
square (for example, x4 + 1 = (x2 + 1)2 and x4 + x2 + 1 = (x2 + x+ 1)2). So, the irreducible polynomials of
degree 4 are x4 + x3 + 1, x4 + x+ 1, and x4 + x3 + x2 + x+ 1.

(b) Determine the number of monic irreducible polynomials of degree 4 in F3[x].5pt

Solution. Let ψ(n) denote the number of monic irreducible polynomials of degree n in F3[x]. Then ψ(1) = 3,
1ψ(1) + 2ψ(2) = 9 so ψ(2) = 3, and 1ψ(1) + 2ψ(2) + 4ψ(4) = 81, so ψ(4) = 18.
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