A1. Let $L / F$ be an extension and let $f \in F[x]$.

5 pt
(a) If $K$ is a spitting field of $f$ over $F$ and $K \supseteq L$, prove that $K$ is a splitting field of $f$ over $L$.

Solution. $f$ splits completely in $K$ (this doesn't depend on whether we consider $f$ as an element pf $F[x]$ or $L[x])$. Also, $K$ is a minimal such field containing $F$, so it is a minimal such field containing $L$.
(b) Give an example where $K$ is a splitting field of $f$ over $L$, but is not a splitting field of $f$ over $F$.

Solution. $\mathbb{Q}(i, \sqrt{2})$ is a spltting field of $x^{2}-2$ over $\mathbb{Q}(i)$ but not over $\mathbb{Q}$.
A2. Let $F$ be a field of characteristic $p$ and let $f \in F[x]$ be irreducible.
(a) Prove that $f(x)=g\left(x^{p^{k}}\right)$ for some separable irreducible $g \in F[x]$ and some integer $k \geq 0$.

Solution. If $f$ is separable, we put $g=f$. If $f$ is inseparable, then, as we know, $f(x)=h\left(x^{p}\right)$ for some $h \in F[x]$. $h$ is irreducible since if $h$ is reducible, $h=h_{1} h_{2}$, then $f(x) h_{1}\left(x^{p}\right) h_{2}\left(x^{p}\right)$ is reducible either. Since $\operatorname{deg} h<\operatorname{deg} f$, by induction on $\operatorname{deg} f, h(x)=g\left(x^{p^{l}}\right)$ for some irreducible $g \in F[x]$. Then $f(x)=g\left(x^{p^{l+1}}\right)$.
(b) Prove that in its splitting field, $f(x)=c\left(x-\alpha_{1}\right)^{p^{k}} \cdots\left(x-\alpha_{d}\right)^{p^{k}}$ for some distinct $\alpha_{1}, \ldots, \alpha_{d}$.

Solution. We may assume that $f$ is monic. Let $f(x)=g\left(x^{p^{k}}\right)$ where $g$ is separable. Let $\beta_{1}, \ldots, \beta_{d}$ be the (distinct) roots of $g$ (in its splitting field), so that $g(x)=\left(x-\beta_{1}\right) \cdots\left(x-\beta_{d}\right)$ and $f(x)=g\left(x^{p^{k}}\right)=$ $\left(x^{p^{k}}-\beta_{1}\right) \cdots\left(x^{p^{k}}-\beta_{d}\right)$. For every $i$, let $\alpha_{i}$ be a root of $x^{p^{k}}-\beta_{i}$; then $\left(x-\alpha_{i}\right)^{p^{k}}=x^{p^{k}}-\alpha_{i}^{p^{k}}=x^{p^{k}}-\beta_{i}$. So, $f(x)=\left(x-\alpha_{1}\right)^{p^{k}} \cdots\left(x-\alpha_{d}\right)^{p^{k}}$.

10pt
13.5.5. Let $p$ be a prime integer, let $a \in \mathbb{F}_{p}, a \neq 0$, and let $f=x^{p}-x+a \in \mathbb{F}_{p}[x]$. Prove that the splitting field $K$ of $f$ is obtained by adjoining a single root of $f$. Prove that $f$ is separable and irreducible over $\mathbb{F}_{p}$.
Solution. $f^{\prime}=-1$, so $f^{\prime}$ has no roots, so $f$ has no common roots with $f^{\prime}$, and so, $f$ has no multiple roots. Hence, $f$ is separable.
$f$ has no roots in $\mathbb{F}_{p}$, since for any $b \in \mathbb{F}_{p}, b^{p}=b \neq b-a$. Let $\alpha$ be a root of $f$ (in an extension of $\mathbb{F}_{p}$ ), so that $\alpha^{p}=\alpha-a$. Then for any $b \in \mathbb{F}_{p}$ we have $(\alpha+b)^{p}=\alpha^{p}+b^{p}=\alpha-a+b=(\alpha+b)-a$, so $\alpha+b$ is also a root of $f$. (Hence, $f$ has $p$ distinct roots, $\alpha+b$ for all $b \in \mathbb{F}_{p}$, so, we see again that $f$ is separable.) It follows that $K=\mathbb{F}_{p}(\alpha)$ is a splitting field of $f$.

Let's now prove that $f$ is irreducible. Since $\alpha \notin \mathbb{F}_{p}$, it has at least one conjugate, $\alpha+b$ for some nonzero $b \in \mathbb{F}_{p}$. There is an isomorphism $\varphi: K \longrightarrow K$ over $\mathbb{F}_{p}$ that maps $\alpha$ to $\alpha+b$. Since $\alpha$ and $\alpha+b$ are conjugate, the elements $\varphi(\alpha)=\alpha+b$ and $\varphi(\alpha+b)=\alpha+2 b$ are conjugate, and so, $\alpha$ and $\alpha+2 b$ are conjugate. Thus, by induction, all the roots $\alpha+k b, k=0,1, \ldots, p-1$, of $f$ are conjugate, so $f$ is irreducible.

Solution.

$$
\Phi_{n}(x)=\frac{x^{n}-1}{\prod_{\substack{d \mid n \\ d<n}} \Phi_{d}(x)}=\frac{x^{p^{r} m}-1}{\prod_{d \mid p^{r-1} m} \Phi_{d}(x) \prod_{\substack{d \mid m \\ d<m}} \Phi_{d p^{r}}(x)}
$$

We have $x^{p^{r} m}-1=\left(x^{p^{r-1}}\right)^{p m}-1, \prod_{d \mid p^{r-1} m} \Phi_{d}(x)=x^{p^{r-1} m}-1=\left(x^{p^{r-1}}\right)^{m}-1=\prod_{d \mid m} \Phi_{d}\left(x^{p^{r-1}}\right)$, and by induction, for any $d<m, \Phi_{d p^{r}}(x)=\Phi_{d p}\left(x^{p^{r-1}}\right)$. So,

$$
\Phi_{n}(x)=\frac{\left(x^{p^{r-1}}\right)^{p m}-1}{\prod_{d \mid m} \Phi_{d}\left(x^{p^{r-1}}\right) \prod_{\substack{d \mid m \\ d<m}} \Phi_{d p}\left(x^{p^{r-1}}\right)}=\Phi_{p m}\left(x^{p^{r-1}}\right)
$$

Another solution. The polynomials $\Phi_{n}(x)$ and $\Phi_{p m}\left(x^{p^{r-1}}\right)$ have the same degree, $\varphi(n)=\varphi\left(p^{r}\right) \varphi(m)=$ $p^{r-1}(p-1) \varphi(m)=p^{r-1} \varphi(p) \varphi(m)=p^{r-1} \varphi(p m)$. Also, if $\omega$ is a root of $\Phi_{n}$, that is, a primitive root of 1 of degree $n$, then $\omega^{p^{r-1}}$ is a primitive root of 1 of degree $p m$, so $\omega$ is a root of $\Phi_{p m}\left(x^{p^{r-1}}\right)$. Since $\Phi_{n}$ is separable, this implies that $\Phi_{n}(x)$ divides $\Phi_{p m}\left(x^{p^{r-1}}\right)$, and so, these polynomials are equal.
5pt
(b) Deduce that if $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ is the prime factorization of $n$, then $\Phi_{n}(x)=\Phi_{d}\left(x^{q}\right)$, where $d=p_{1} \cdots p_{k}$ and $q=p_{1}^{r_{1}-1} \cdots p_{k}^{r_{k}-1}$.

Solution. Applying (a) $k$ times, we get

$$
\Phi_{n}(x)=\Phi_{p_{1}^{r_{1}} p_{2}^{r_{2} \cdots p_{k}^{r_{k}}}(x)=\Phi_{p_{1} p_{2}^{r_{2} \ldots p_{k}^{r_{k}}}}\left(x^{p_{1}^{r_{1}-1}}\right)=\cdots=\Phi_{p_{1} p_{2} \cdots p_{k}}\left(x^{p_{1}^{r_{1}-1} p_{2}^{r_{2}-1} \cdots p_{k}^{r_{k}-1}}\right) . . .}
$$

14.3.4. Construct the field $\mathbb{F}_{16}$ and find a generator of its multiplicative group.

Solution. To construct $\mathbb{F}_{16}$ we can use any irreducible quartic polynomial over $\mathbb{F}_{2} ;$ take $f=x^{4}+x+1$ and put $K=\mathbb{F}_{2}[x] /(f)$. Let $\alpha$ be the image of $x$ in $K$, then $\alpha^{4}=-\alpha-1=\alpha+1$. Now, $\mathbb{F}_{16} \cong K=$ $\left\{a+b \alpha+c \alpha^{2}+d \alpha^{3}, a, b, c, d \in \mathbb{F}_{2}\right\}$ with $\alpha^{4}=1+\alpha$.

The multiplictive group $\mathbb{F}_{16}^{*}$ is isomorphic to $\mathbb{Z}_{15}$ and has $\varphi(15)=2 \cdot 4=8$ generators. Let us try $\alpha$ : we have $1, \alpha, \alpha^{2}, \alpha^{3}$ all distinct, then $\alpha^{4}=1+\alpha, \alpha^{5}=\alpha+\alpha^{2}, \ldots,-$ we don't need to check the powers of $\alpha$ further since we already see that $|\alpha|>5$, and hence $|\alpha|=15$.

10pt
A4. (a) Find all irreducible polynomials of degree 4 in $\mathbb{F}_{2}[x]$.
Solution. Let $\psi(n)$ denote the number of irreducible polynomials of degree $n$ in $\mathbb{F}_{2}[x]$. Then, by the general formula, $\psi(1)=2 ; 1 \psi(1)+2 \psi(2)=4$ so $\psi(2)=1 ; 1 \psi(1)+3 \psi(1)=8$ so $\psi(3)=2 ; 1 \psi(1)+2 \psi(2)+4 \psi(4)=16$, so $\psi(4)=3$.

An irreducible polynomial of degree $\geq 2$ in $\mathbb{F}_{2}[x]$ must not vanish at 0 and 1 , so it must end with 1 and have an odd number of monomials. Also, if all monomials of a polynomial $f$ have even power, then $f$ is a square (for example, $x^{4}+1=\left(x^{2}+1\right)^{2}$ and $\left.x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2}\right)$. So, the irreducible polynomials of degree 4 are $x^{4}+x^{3}+1, x^{4}+x+1$, and $x^{4}+x^{3}+x^{2}+x+1$.
$5 \mathrm{pt} \quad(\mathrm{b})$ Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_{3}[x]$.
Solution. Let $\psi(n)$ denote the number of monic irreducible polynomials of degree $n$ in $\mathbb{F}_{3}[x]$. Then $\psi(1)=3$, $1 \psi(1)+2 \psi(2)=9$ so $\psi(2)=3$, and $1 \psi(1)+2 \psi(2)+4 \psi(4)=81$, so $\psi(4)=18$.

