Math 5591H

Solutions to Final exam

You may use any fact proven in class, in the textbook, or in homework.

1. Let θ be such that $\cos \theta=5 / 7$; prove that the angle $\theta / 5$ is not constructible with ruler and compass. (You may use the identity $\cos (5 x)=16 \cos ^{5} x-20 \cos ^{3} x+5 \cos x$.)
Solution. Let $\alpha=\cos (\theta / 5)$; then $16 \alpha^{5}-20 \alpha^{3}+5 \alpha=\cos \theta=5 / 7$, so α is a root of $f=7 \cdot 16 x^{5}-7 \cdot 20 x^{3}+$ $7 \cdot 5 x-5 . f$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein and Gauss, so α has degree 5 over \mathbb{Q}, is not an element of a 2 -extension of \mathbb{Q}, and thus is not constructible.
2. Let F be a finite field and let $f \in F[x]$ be a product of k irreducible polynomials of degrees n_{1}, \ldots, n_{k}. Find $\operatorname{Gal}(f / F)$.

Solution. For any n an extension K / F with $[K: F]=n$ is unique (up to isomorphism) and Galois with cyclic $\operatorname{Gal}(K / F)$. (It is a subgroup of the cyclic group $\operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$ where $p=\operatorname{char} F$.) Any irreducible polynomial of degree d dividing n splits in K completely, and has no roots in K if $d \nmid n$. Hence, the splitting field of f is the extension of F of the minimal degree n divisible by n_{i} for all i, that is, of $n=$ l.c.m. $\left(n_{1}, \ldots, n_{k}\right)$. Hence, $\operatorname{Gal}(K / F) \cong \mathbb{Z}_{n}, n=$ l.c.m. $\left(n_{1}, \ldots, n_{k}\right)$.
3. Let F be a field with char $F \neq 2$, let $f \in F[x]$ be a separable polynomial, let $G=\operatorname{Gal}(f / F)$. Let $\widetilde{G}=\operatorname{Gal}\left(f\left(x^{2}\right) / F\right)$; prove that there is an exact sequence $1 \longrightarrow \mathbb{Z}_{2}^{d} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$ (in other words, \widetilde{G} has a normal subgroup N isomorphic to \mathbb{Z}_{2}^{d} such that $\widetilde{G} / N \cong G$) for some $d \geq 0$.

Solution. Since char $F \neq 2, f\left(x^{2}\right)$ is also separable. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f, let $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the splitting field of f, and let E be the splitting field of $f\left(x^{2}\right)$. We have $\widetilde{G}=\operatorname{Gal}(E / F)$ and $G=\operatorname{Gal}(K / F)$; since K / F is normal, by Galois's theorem $G \cong \widetilde{G} / N$ where $N=\operatorname{Gal}(E / K)$. E / K is a composite of quadratic extensions, $E=K\left(\sqrt{\alpha_{1}}\right) \cdots K\left(\sqrt{\alpha_{n}}\right)$ with $\alpha_{i} \in K$ for all i. For any $i, K\left(\sqrt{\alpha_{i}}\right)$ has no nontrivial subextensions, so either $\left.K\left(\sqrt{\alpha_{i}}\right)\right) \subseteq \prod_{j \neq i} K\left(\sqrt{\alpha_{j}}\right)$, in which case $K\left(\sqrt{\alpha_{i}}\right)$ can be excluded from the list, or $K\left(\sqrt{\alpha_{i}}\right) \cap \prod_{j \neq i} K\left(\sqrt{\alpha_{j}}\right)=K$; hence, the composite $E=K\left(\sqrt{\alpha_{i_{1}}}\right) \cdots K\left(\sqrt{\alpha_{i_{d}}}\right)$ is direct for some i_{1}, \ldots, i_{d}, and $N=\prod_{j=1}^{d} \operatorname{Gal}\left(K\left(\sqrt{\alpha_{i_{j}}}\right) / K\right) \cong \mathbb{Z}_{2}^{d}$.
4. An irreducible quartic $f \in \mathbb{Q}[x]$ has two real and two non-real complex roots and its cubic resolvent has a single root in \mathbb{Q}. Prove that $\operatorname{Gal}(f / \mathbb{Q}) \cong D_{8}$.

Solution. By the "classification of Galois groups of irreducible quartics", $\operatorname{Gal}(f / \mathbb{Q}) \cong D_{8}$ or \mathbb{Z}_{4}. The complex conjugation transposes two non-real roots and fixes the real roots of f, so acts as a transposition on the set of roots of f. The group \mathbb{Z}_{4}, as a subgroup os S_{4}, contains no transposition, so $\operatorname{Gal}(f / \mathbb{Q}) \cong D_{8}$.
5. Let $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})} \in \mathbb{R}$ and let $K=\mathbb{Q}(\alpha)$. Take it for granted that $\alpha \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Prove that $\operatorname{deg}_{\mathbb{Q}}\left(\alpha^{2}\right)=4$ and deduce that $\sqrt{2}, \sqrt{3} \in K$.

Solution. $\alpha^{2}=(2+\sqrt{2})(3+\sqrt{3})=6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}) . \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a biquadratic extension of \mathbb{Q}, its only nontrivial subextensions are $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{6})$, and α^{2} is not contained in any of them, so $\mathbb{Q}\left(\alpha^{2}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\operatorname{deg}_{\mathbb{Q}} \alpha=4$.
(Alternatively, α^{2} has 4 conjugates, $\left.(2 \pm \sqrt{2})(3 \pm \sqrt{3}).\right)$
(b) Find the degree and all the conjugates of α over \mathbb{Q}.

Solution. Since $\alpha \notin \mathbb{Q}\left(\alpha^{2}\right), \mathbb{Q}(\alpha) / \mathbb{Q}\left(\alpha^{2}\right)$ is a quadratic extension, so $[\mathbb{Q}(\alpha): \mathbb{Q}]=\left[\mathbb{Q}(\alpha): \mathbb{Q}\left(\alpha^{2}\right)\right]\left[\mathbb{Q}\left(\alpha^{2}\right)\right.$: $\mathbb{Q}]=2 \cdot 4=8$, so $\operatorname{deg}_{\mathbb{Q}} \alpha=8$. The conjugates of α are $\pm \sqrt{\rho}$ where ρ runs over the set of conjugates of α^{2}, that is, these are $\pm \sqrt{(2 \pm \sqrt{2})(3 \pm \sqrt{3})}$.
(c) Show that the extension K / \mathbb{Q} is normal.

Solution. Since $K=\mathbb{Q}(\alpha) \supseteq \mathbb{Q}\left(\alpha^{2}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, we have $\sqrt{2}, \sqrt{3} \in K$. For $\beta=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}$ we have $\alpha \beta=\sqrt{2}(3+\sqrt{3}) \in K$, so $\beta \in K$. For the other conjugates $\gamma=\sqrt{(2+\sqrt{2})(3-\sqrt{3})}$ and $\delta=$ $\sqrt{(2-\sqrt{2})(3-\sqrt{3})}$ of α we also have $\alpha \gamma=(2+\sqrt{2}) \sqrt{6} \in K$ and $\alpha \delta=\sqrt{2} \sqrt{6} \in K$, so $\pm \alpha, \pm \beta, \pm \gamma, \pm \delta \in K$. Hence, K / \mathbb{Q} is normal.
(d) Let $G=\operatorname{Gal}(K / \mathbb{Q})$. Prove that there exists $\varphi \in G$ such that $\varphi(\sqrt{2})=-\sqrt{2}$ and $\varphi(\sqrt{3})=\sqrt{3}$. Prove that $|\varphi|=4$.
Solution. The automorphism $\sqrt{2} \mapsto-\sqrt{2}, \sqrt{3} \mapsto \sqrt{3}$ of $\mathbb{Q}\left(\alpha^{2}\right)$ extends to $\varphi \in \operatorname{Gal}(K / \mathbb{Q})$. For this φ we have $\varphi\left(\alpha^{2}\right)=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}=\beta^{2}$, so $\varphi(\alpha)= \pm \beta$. W.l.o.g. assume that $\varphi(\alpha)=\beta$, then since $\varphi(\alpha \beta)=\varphi(\sqrt{2}(3+\sqrt{3}))=-\sqrt{2}(3+\sqrt{3})=-\alpha \beta$, we obtain that $\varphi^{2}(\alpha)=\varphi(\beta)=-\alpha \beta / \varphi(\alpha)=-\alpha$, $\varphi^{3}(\alpha)=-\beta$, and $\varphi^{4}(\alpha)=\alpha$, so $|\varphi|=4$.
(e) Find two more automorphisms of K of order 4 and deduce that $G \cong Q_{8}$ (the quaternion group $Q_{8}=$ $\{ \pm 1, \pm i, \pm j, \pm k\})$.
Solution. These are $\psi(\alpha)=\gamma$ and $\eta(\alpha)=\delta$. Hence, G has (at least) 3 cyclic subgroups of order 4: $\langle\varphi\rangle,\langle\psi\rangle$, and $\langle\eta\rangle$.

The only groups of order 8 are (up to isomorphism) $Q_{8}, D_{8}, \mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{2}^{3}. The groups D_{8} and \mathbb{Z}_{8} have only one cyclic subgroup of order $4, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ has two such subgroups, and \mathbb{Z}_{2}^{3} has no such subgroups. Hence, $G \cong Q_{8}$.
(f) Draw the lattice (the diagram) of all the subfields of K.

Solution. The lattice of subgroups of Q_{8} and the corresponding lattice of subextensions of K / \mathbb{Q} are

where $-1=\varphi^{2}=\psi^{2}=\eta^{2}, i=\psi, j=\varphi$, and $k=\eta:-1(\alpha)=-\alpha, i(\alpha)=\gamma=\sqrt{(2+\sqrt{2})(3-\sqrt{3})}$, $j(\alpha)=\beta=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}, k(\alpha)=\delta=\sqrt{(2-\sqrt{2})(3-\sqrt{3})}$.

