Math 5591H

Some practice problems

1. If K/F is a Galois extension of degree $n = mp^r$ where p is prime and $p \not\mid m$, prove that K/F has a subextension L/F such that [L:F] = m, and that all such subextensions are isomorphic.

Solution. By Galois's theorem, subextensions L/F of K/F of degree *m* correspond to subgroups of Gal(K/F) of order $n/m = p^r$, that is, tp Sylow *p*-subgroups. Hence, they exist and are all conjugate.

2. Let p be a prime integer, let F be a field with char $F \neq p$, let $f \in F[x]$ be a separable polynomial, and assume that the splitting field K of f has degree p^r over F for some $r \in \mathbb{N}$. Prove that f is solvable in radicals. If F contains a root of unity of degree p, how many nested radicals and of what degrees would suffice to express a root of f?

Solution. $\operatorname{Gal}(K/F)$ is a p-group, so K/F is a p-extension, so is a tower of r cyclic extensions of degree p. Since char $F \neq p$, after adjoining to F a primitive p-th root of unity ω , all these extensions are radical of degree p. So, in addition to ω , we will need at most r nested radicals of degree p to express roots of f.

3. (a) Is it true that a normal extension of a normal extension is normal? (Prove or give a counterexample.) Solution. Not true, $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}(\sqrt{2})$ are normal but $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ isn't.

(b) Is it true that a separable extension of a separable extension is separable?

Solution. This is true, but not that easy to prove.

4. Prove that every root of unity of degree n is expressible in radicals of degrees < n.

Solution. In characteristic zero, the Galois group of the *n*-th cyclotomic polynomial is abelian (isomorphic to \mathbb{Z}_n^*) of order $\varphi(n) < n$, so its roots are expressible in radicals of degrees < n. In finite characteristic p, if $p \mid n$, then the roots of unity of degree n are also roots of unity of degree n/p. If $p \nmid n$, then the polynomial $x^n - 1$ is separable, and its Galois group is a subgroup of \mathbb{Z}_n^* .

5. Let K/F be a Galois extension with Gal(K/F) = G and let $\alpha \in K$.

(a) Prove that $K = F(\alpha)$ iff the elements $\varphi(\alpha), \varphi \in G$, are all distinct.

Solution. $K = F(\alpha)$ iff deg_F $\alpha = [K : F]$ iff α has [K : F] = |G| conjugates iff $\varphi(\alpha), \varphi \in G$, are all distinct.

(b) In general, prove that $[K: F(\alpha)] = |H|$ where H is the stabilizer of α in G, $H = \{\varphi \in G : \varphi(\alpha) = \alpha\}$.

Solution. An element of G fixes $F(\alpha)$ iff it fixes α , so the stabilizer H of α in G is just $\operatorname{Gal}(K/F(\alpha))$, so $[K:F(\alpha)] = |H|$.

6. Let K/F be a Galois extension of degree pq where p < q are primes. How many subextensions and of what degrees can K/F have? (Consider two cases: where p divides q - 1 and where it doesn't.)

Solution. Translating it to the language of groups, the question is: given a group G of order pq, how many subgroups and of what indexes may G have? And the answer is: either G has one subgroup of index p and one of index q, or, in the case $q = 1 \mod p$ and G is noncommutative, it has one subgroup of index p (that is, of order q) and q subgroups (of order p) of index q.

7. If char $F \neq 0$, prove that an extension K/F of degree 4 can be generated by the root of an irreducible biquadratic $x^4 + ax^2 + b \in F[x]$ if and only if K contains a quadratic extension of F.

Solution. If $K = F(\alpha)$ where α is a root of a biquadratic polynomial $x^4 + ax^2 + b$, then $\alpha = \pm \sqrt{a/2 \pm \sqrt{D}/2}$ where $D = a^2 - 4b$. Were \sqrt{D} in F, then α would have degree ≤ 2 over F; so, $\sqrt{D} \notin F$ and K contains the quadratic subextension $F(\sqrt{D})/F$.

Conversely, assume that F contains a quadratic extension L of F. Then $L = F(\sqrt{c})$ for some $c \in F$, and K is a quadratic extension of L, so $K = L(\alpha)$ where $\alpha = \sqrt{\gamma}$ for some $\gamma \in F(\sqrt{c})$. Let $\gamma = a + b\sqrt{c}$, $a, b \in F$, then $\alpha^2 = a + b\sqrt{c}$, so $(\alpha^2 - a)^2 = bc^2$, and α is a root of the biquadratic polynomial $x^4 - 2ax^2 + a^2 - bc^2$.

8. Let $d \in \mathbb{Z} \setminus \{0,1\}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Prove that the extension $\mathbb{Q}(\sqrt{a\sqrt{d}})/\mathbb{Q}$ is Galois only if d = -1.

Solution. Let $\alpha = \sqrt{a\sqrt{d}}$ and $K = \mathbb{Q}(\alpha)$; the minimal polynomial of α is $f(x) = x^4 - a^2 d$, and the conjugates of α are $\pm \alpha, \pm i\alpha$. Assume that K/\mathbb{Q} is Galois, then $i\alpha \in K$, so $i \in K$. The degree of K over \mathbb{Q} may be 2 or 4. If $[K : \mathbb{Q}] = 2$, then $K = \mathbb{Q}(\sqrt{d})$, and since $i \in K$, $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(i) = \mathbb{Q}(\sqrt{-1})$. Hence, -d = d/(-1) is a square in \mathbb{Q} , and since d is squarefree, -d = 1.

If $[K : \mathbb{Q}] = 4$, then the Galois group of K/\mathbb{Q} is either \mathbb{Z}_4 of V_4 . If it is \mathbb{Z}_4 , then K has a single quadratic subextension, so $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(i)$, and d = -1 as above. If the group is V_4 , then the square root of the discriminant of f is in \mathbb{Q} . As the discriminant of f is $-4^4(a^2d)^3$, we again have $\sqrt{-d} \in \mathbb{Q}$, so d = -1.

9. Construct a polynomial over \mathbb{Q} whose Galois group is isomorphic to \mathbb{Z}_4 .

Solution. There are many ways to do this; I'll use an irreducible biquadratic polynomial $f(x) = x^4 + ax^2 + b$. It has roots $\pm \alpha$, $\pm \beta$ with $\alpha\beta = \sqrt{b}$, and if $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ and $\sqrt{b} \notin \mathbb{Q}$, then the Galois group G of f has order 4 and contains an element φ with $\varphi(\alpha) = \beta$ and $\varphi(\sqrt{b}) = -\sqrt{b}$, so $\varphi^2(\alpha) = \varphi(\beta) = \varphi(\sqrt{b}/\alpha) = -\sqrt{b}/\beta = -\alpha$; thus φ has order 4 and $G = \langle \varphi \rangle$. Ok, take $\alpha = \sqrt{2 + \sqrt{2}}$ and $\beta = \sqrt{2 - \sqrt{2}}$, then $\alpha\beta = \sqrt{2} \in \mathbb{Q}(\alpha)$, so $\beta \in \mathbb{Q}(\alpha)$ and $\alpha\beta \notin \mathbb{Q}$. The corresponding polynomial is $x^4 - 4x + 2$.

10. For which n is the number $\sqrt[n]{3}$ constructible?

Solution. The polynomial $x^n - 3$ is irreducible over \mathbb{Q} by Eisenstein criterion, thus $\deg_{\mathbb{Q}} \sqrt[n]{3} = n$. For this number to be constructible, it must be that $n = 2^k$ for some $k \in \mathbb{N}$. And, since we can "construct" square roots, it is easy to see that this condition is also sufficient.

11. Find the Galois group of $f = x^3 - 3x + 3 \in \mathbb{Q}[x]$.

Solution. f is irreducible by Eisenstein&Gauss. The discriminant of f is $-4 \cdot (-3)^3 - 27 \cdot 3^2 < 0$, so the Galois group is S_3 .

Alternatively, f is irreducible and has one real and two complex roots, so the group is S_3 .

12. Find the Galois group of $f = x^4 - 2$

(a) over \mathbb{Q} ;

Solution. f is irreducible. The splitting field of f is $\mathbb{Q}(\alpha, i)$ where $\alpha = \sqrt[4]{2}$, $\mathbb{Q}(\alpha) \cap \mathbb{Q}(i) = \mathbb{Q}$, $\mathbb{Q}(i)/\mathbb{Q}$ is normal, $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}_2$, $\operatorname{Gal}(K/\mathbb{Q}(i)) \cong \mathbb{Z}_4$, so $\operatorname{Gal}(f/\mathbb{Q})$ is the nondirect $\cong \mathbb{Z}_4 \rtimes \mathbb{Z}_2$.

(b) over \mathbb{F}_3 ;

Solution. f is reducible, $f = (x^2 + x - 1)(x^2 - x - 1)$, where both $x^2 + x - 1$ and $x^2 - x - 1$ are irreducible, the splitting field of f is \mathbb{F}_{3^2} , the Galois group is \mathbb{Z}_2 .

(c) over \mathbb{F}_7 .

Solution. f has roots ± 2 in \mathbb{F}_7 , so $x^4 - 2 = (x - 2)(x + 2)(x^2 + 4)$, and $x^2 + 4$ is irreducible. So, the Galois group is \mathbb{Z}_2 .

13. Find the Galois group over \mathbb{Q} of the polynomials

(a) $f = x^5 - 2;$

Solution. $\mathbb{Z}_5 \rtimes \mathbb{Z}_5^*$. (For any odd n and positive $a \in \mathbb{Q}$ such that $x^n - a$ is irreducible we have $\operatorname{Gal}(x^n - a/\mathbb{Q}) \cong \mathbb{Z}_n \rtimes \mathbb{Z}_n^* = \operatorname{Hol}(\mathbb{Z}_n)$.)

(b) $f = x^9 - 2$.

Solution. $\mathbb{Z}_9 \rtimes \mathbb{Z}_9^* = \operatorname{Hol}(\mathbb{Z}_9).$

14. Find the Galois group of $f = x^4 + x^3 + x^2 + x + 1$

(a) over \mathbb{Q} ;

Solution. Over \mathbb{Q} , f is the cyclotomic polynomial Φ_5 , and its Galois group is $\mathbb{Z}_5^* \cong \mathbb{Z}^4$.

(b) over \mathbb{F}_2 .

Solution. f is also irreducible (it has no roots and is not equal to $(x^2 + x + 1)^2$), so its splitting field is \mathbb{F}_{2^4} and the Galois group is \mathbb{Z}_4 as well.

15. Find the Galois group and all subfields of the splitting field of $f = x^4 + 3x^2 + 1 \in \mathbb{Q}[x]$.

Solution. The theory of the Galois groups of quartics says that the group is V_4 , but since we have to describe the subextensions of the splitting field let's compute $G = \operatorname{Gal}(f/\mathbb{Q})$ directly.

f has no rational roots, and (it can be checked that) is not a product of two quadratic polynomials, so is irreducible. Let K be the splitting field of f. Let $\alpha = \sqrt{-3/2 + \sqrt{5}/2}$ and $\beta = \sqrt{-3/2 - \sqrt{5}/2}$ (where $\sqrt{5}$ in both formulas is the same, say, > 0). Then the roots of f are $\pm \alpha, \pm \beta$, and $K = \mathbb{Q}(\alpha, \beta)$. Both α and β have degree 4 over \mathbb{Q} , and the fields $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ contain (and are quadratic extensions of) $\mathbb{Q}(\sqrt{5})$, thus either $[K:\mathbb{Q}] = 8$ (if $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$ or $[K:\mathbb{Q}] = 4$ (if $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$). We have $\alpha\beta = 1$ (or -1, which depends on the choice of signs for α and β), so $\beta \in \mathbb{Q}(\alpha)$, $K = \mathbb{Q}(\alpha)$, and $[K:\mathbb{Q}] = 4$. Hence, G is either \mathbb{Z}_4 or V_4 .

Since $K = \mathbb{Q}(\alpha)$, elements of G are defined by their action on α . Let $\varphi_1, \varphi_2, \varphi_3 \in G$ be such that $\varphi_1(\alpha) = \beta, \varphi_2(\alpha) = -\beta$, and $\varphi_3(\alpha) = -\alpha$. Then $\varphi_1(\beta) = \varphi_1(1/\alpha) = 1/\varphi_1(\alpha) = 1/\beta = \alpha$, so $\varphi_1^2(\alpha) = \alpha$ and $\varphi_1^2(\beta) = \beta$, so $\varphi_1^2 = 1; \varphi_2(\beta) = \varphi_2(1/\alpha) = 1/\varphi_2(\alpha) = -1/\beta = -\alpha$, so $\varphi_2^2(\alpha) = \varphi_2(-\beta) = \alpha$ and $\varphi_2^2(\beta) = \beta$, so $\varphi_2^2 = 1$; and $\alpha_3(\beta) = -\beta$, so $\alpha_3^2 = 1$ as well. Hence, $G \cong V_4$.

G has 3 nontrivial proper subgroups, thus, in addition to \mathbb{Q} and itself, *K* has 3 subfields. All these subfields have degree 2 over \mathbb{Q} , and so, are generated by any non-rational elements thereof. The subfield fixed by φ_1 is $\mathbb{Q}(\alpha + \beta)$, the sibfield fixed by φ_2 is $\mathbb{Q}(\alpha - \beta)$, and the subfield fixed by φ_3 is $\mathbb{Q}(\alpha^2) = \mathbb{Q}(\sqrt{5})$.

16. Find the Galois group and all subfields of the splitting field of $f = x^4 + x^2 + 1 \in \mathbb{Q}[x]$.

Solution. f is reducible, $f = (x^2 + x + 1)(x^2 - x + 1)$. The first factor is the 3rd cyclotomic polynomial Φ_3 , and the second factor is the 6th cyclotomic polynomial Φ_6 . So, the roots of the first factor are contained in the field generated by the roots of the second factor, and the splitting field of f is $K = \mathbb{Q}(\omega)$ where $\omega = e^{2\pi i/6}$. Thus, $[K : \mathbb{Q}] = 2$, $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}_2$, and K contains no nontrivial proper subfields.

17. Find the Galois group of $f = x^4 + 2x^2 + x + 3 \in \mathbb{Q}[x]$.

Solution. First of all, f is irreducible: modulo 2 it is $x^4 + x + 1$, which is irreducible in $\mathbb{F}_2[x]$. Next, the cubic resolvent of f is $R(x) = x^3 - 2 \cdot 2x^2 + (2^2 - 4 \cdot 3)x + 1^2 = x^3 - 4x^2 - 8x + 1$. R has no roots (± 1 don't fit), so, is irreducible. Hence, in accordance with our classification, the Galois group of f is either S_4 or A_4 . The discriminant of R (and of f) is $D = (-4)^2(-8)^2 - 4(-8)^3 - 4(-4)^3 \cdot 1 - 27 \cdot 1^2 + 18(-4)(-8) \cdot 1 = 3877$, which is prime and so, is not a square in \mathbb{Q} ; hence, the group is S_4 .

18. For prime p, prove that the Galois group of $f = x^4 + px + p \in \mathbb{Q}[x]$ is S_4 for $p \neq 3$, 5, D_8 for p = 3, and \mathbb{Z}_4 for p = 5.

Solution. First of all, f is irreducible by Eisenstein's criterion. The cubic resolvent of f is $R(x) = x^3 - 4px + p^2$, and the discriminant is $D = 256p^3 - 27p^4$. D is never a square (since if $256p - 27p^2 = n^2$, then n = mp, so $256 - 27p = m^2p$, so p = 2; but for p = 2, $D = 16 \cdot 101$ is not a square either). For p = 2 or $p \ge 7$, R has no roots $(\pm 1, \pm p, \pm p^2$ don't fit), so, is irreducible, and the Galois group is S_4 .

For p = 3, $R(x) = (x-3)(x^2+3x-3)$, where the second factor is irreducible by Eisenstein's criterion; so, the group is either D_8 (if f is irreducible over $\mathbb{Q}(\sqrt{D})$) or \mathbb{Z}_4 (otherwise). We have $D = 3^2(256 \cdot 3 - 27 \cdot 9) = 3^2 5^2 21$, so $\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\sqrt{21})$. The ring S of integers of this field is a PID; 3 is not prime in S, it factorizes $3 = \pi \overline{\pi}$ where $\pi = \frac{\sqrt{21}+3}{2}$ and $\overline{\pi} = \frac{\sqrt{21}-3}{2}$. But the elements π and $\overline{\pi}$ are already prime (their norms $N(\pi), N(\overline{\pi}) = -3$ are prime) and non-associate $(\frac{\pi}{\overline{\pi}} = \frac{\sqrt{21}+3}{\sqrt{21}-3} = \frac{(\sqrt{21}+3)^2}{18} \notin R)$, thus $f(x) = x^4 + \pi \overline{\pi}x + \pi \overline{\pi}$ is irreducible by Eisenstein's criterion. Hence, the Galois group of f is D_8 .

For p = 5, $R(x) = (x - 5)(x^2 + 5x - 5)$, where, again, the second factor is irreducible by Eisenstein's criterion. Now, $D = 55^2 \cdot 5$, so $\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\sqrt{5})$. This time f splits

$$f(x) = \left(x^2 + \sqrt{5}x + \frac{5-\sqrt{5}}{2}\right) \left(x^2 - \sqrt{5}x + \frac{5+\sqrt{5}}{2}\right)$$

over $\mathbb{Q}(\sqrt{5})$ (it is a separate question how to find this decomposition), so the group is \mathbb{Z}_4 .

19. Find the Galois group of $f = x^5 - x - 1 \in \mathbb{Q}[x]$.

Solution. Modulo 2, f splits as $(x^3 + x^2 + 1)(x^2 + x + 1)$. So, the Galois group G contains a permutation σ of the cycle type (3,2). σ^3 is a transposition, so G contains a transposition. Modulo 3, f is irreducible, so |G| is divisible by 5, so G contains a 5-cycle. Hence, $G \cong S_5$.