Math 5591H Some practice problems

1. If K/F is a Galois extension of degree n = mp" where p is prime and p J/m, prove that K/F has a
subextension L/F such that [L : F| =m, and that all such subextensions are isomorphic.

Solution. By Galois’s theorem, subextensions L/F of K/F of degree m correspond to subgroups of Gal(K/F)
of order n/m = p", that is, tp Sylow p-subgroups. Hence, they exist and are all conjugate.

2. Let p be a prime integer, let F be a field with char F # p, let f € Flx] be a separable polynomial, and
assume that the splitting field K of f has degree p" over F for some r € N. Prove that f is solvable in
radicals. If F contains a root of unity of degree p, how many nested radicals and of what degrees would
suffice to express a root of f?

Solution. Gal(K/F) is a p-group, so K/F is a p-extension, so is a tower of r cyclic extensions of degree p.
Since char F' # p, after adjoining to F' a primitive p-th root of unity w, all these extensions are radical of
degree p. So, in addition to w, we will need at most r nested radicals of degree p to express roots of f.

3. (a) Is it true that a normal extension of a normal extension is normal? (Prove or give a counterezample.)

Solution. Not true, Q(v/2)/Q and Q(v/2)/Q(v/2) are normal but Q(+v/2)/Q isn’t.
(b) Is it true that a separable extension of a separable extension is separable?

Solution. This is true, but not that easy to prove.

4. Prove that every root of unity of degree n is expressible in radicals of degrees < n.

Solution. In characteristic zero, the Galois group of the n-th cyclotomic polynomial is abelian (isomorphic
to Z7) of order ¢(n) < m, so its roots are expressible in radicals of degrees < n. In finite characteristic p, if
P ’ n, then the roots of unity of degree n are also roots of unity of degree n/p. If p X n, then the polynomial
x™ — 1 is separable, and its Galois group is a subgroup of Z.

5. Let K/F be a Galois extension with Gal(K/F) = G and let o € K.

(a) Prove that K = F(«) iff the elements o(a), ¢ € G, are all distinct.

Solution. K = F(a) iff degpa = [K : F] iff @ has [K : F| = |G| conjugates iff p(a), ¢ € G, are all distinct.
(b) In general, prove that [K : F(«)] = |H| where H is the stabilizer of a in G, H = {p € G : p(a) = a}.
Solution. An element of G fixes F'(«) iff it fixes «, so the stabilizer H of « in G is just Gal(K/F(«a)), so
(K : F(o)] = |H].

6. Let K/F be a Galois extension of degree pqg where p < q are primes. How many subextensions and of
what degrees can K/F have? (Consider two cases: where p divides ¢ — 1 and where it doesn’t.)

Solution. Translating it to the language of groups, the question is: given a group G of order pg, how many
subgroups and of what indexes may G have? And the answer is: either G has one subgroup of index p and
one of index ¢, or, in the case ¢ = 1mod p and G is noncommutative, it has one subgroup of index p (that
is, of order ¢) and ¢ subgroups (of order p) of index g.

7. If char F' # 0, prove that an extension K/F of degree 4 can be generated by the root of an irreducible
biquadratic * + ax® + b € F[z] if and only if K contains a quadratic extension of F.

Solution. If K = F(a) where a is a root of a biquadratic polynomial z* + az? + b, then o = £1/a/2 + v/D/2

where D = a? — 4b. Were /D in F, then a would have degree < 2 over F; so, VD & F and K contains the
quadratic subextension F(v/D)/F.

Conversely, assume that F' contains a quadratic extension L of F. Then L = F(y/c) for some ¢ € F, and
K is a quadratic extension of L, so K = L(«) where a = /7 for some v € F(\/c). Let v = a+by/c,a,be F,
then o = a + b\/c, so (a? — a)? = bc?, and « is a root of the biquadratic polynomial x* — 2az? + a? — bc?.

8. Let d € Z\ {0,1} be a squarefree integer and let a € Q be a nonzero rational number. Prove that the

extension Q(v/ av/d)/Q is Galois only if d = —1.



Solution. Let a = v/av/d and K = Q(«); the minimal polynomial of v is f(z) = #*—a?d, and the conjugates
of a are +a, +ia. Assume that K/Q is Galois, then ia € K, so i € K. The degree of K over Q may be 2
or 4. If [K : Q] = 2, then K = Q(v/d), and since i € K, Q(v/d) = Q(i) = Q(v/—1). Hence, —d = d/(—1) is

a square in Q, and since d is squarefree, —d = 1.

If [K : Q] = 4, then the Galois group of K/Q is either Z4 of V4. If it is Z4, then K has a single
quadratic subextension, so Q(v/d) = Q(i), and d = —1 as above. If the group is Vj, then the square root of
the discriminant of f is in Q. As the discriminant of f is —4*(a?d)3, we again have v/—d € Q, so d = —1.
9. Construct a polynomial over Q whose Galois group is isomorphic to Zy.

Solution. There are many ways to do this; I'll use an irreducible biquadratic polynomial f(z) = z*+az? +b.
It has roots +a, 3 with a8 = v/b, and if Q(a) = Q(8) and v/b ¢ Q, then the Galois group G of f has order 4
and contains an element ¢ with ¢(a) = 8 and p(vb) = —v/b, so p*(a) = ¢(B) = gp(\/g/a) = —Vb/B = —a;

thus ¢ has order 4 and G = (p). Ok, take o = /242 and 8 = V2 — /2, then a8 = V2 € Q(a), so

B € Q(a) and aB € Q. The corresponding polynomial is z# — 42 + 2.

10. For which n is the number /3 constructible?

Solution. The polynomial z" — 3 is irreducible over Q by Eisenstein criterion, thus degg {/3 = n. For this
number to be constructible, it must be that n = 2¥ for some k& € N. And, since we can “construct” square
roots, it is easy to see that this condition is also sufficient.

11. Find the Galois group of f = x® — 3z + 3 € Q[z].
Solution. f is irreducible by Eisenstein&Gauss. The discriminant of f is —4 - (—3)3 —27-32 < 0, so the
Galois group is S3.
Alternatively, f is irreducible and has one real and two complex roots, so the group is S3.
12. Find the Galois group of f = x* — 2
(a) over Q;

Solution. f is irreducible. The splitting field of f is Q(c,4) where a = v/2, Q(a) N Q(i) = Q, Q(3)/Q is
normal, Gal(Q(7)/Q) = Zo, Gal(K/Q(i)) = Z4, so Gal(f/Q) is the nondirect = Zy x Zs.

(b) over F3;

Solution. f is reducible, f = (22 +z — 1)(2* — 2 — 1), where both 22 + x — 1 and 2% — z — 1 are irreducible,
the splitting field of f is F32, the Galois group is Zs.

(c) over Fr.

Solution. f has roots £2 in F7, so 2* — 2 = (x — 2)(z + 2)(z? + 4), and 22 + 4 is irreducible. So, the Galois
group is Zo.

13. Find the Galois group over Q of the polynomials

(a) f :x5 _2;

Solution. Zs X Z%. (For any odd n and positive a € Q such that 2™ —a is irreducible we have Gal(z" —a/Q) =
Zy XZF, = Hol(Z,,).)

(b) f=2a"—2.

Solution. Zg xZ§ = Hol(Zy).

14. Find the Galois group of f =a* + 23 + 22 + 2 +1

(a) over Q;

Solution. Over Q, f is the cyclotomic polynomial ®5, and its Galois group is Z = Z*.
(b) over Fy.

Solution. f is also irreducible (it has no roots and is not equal to (z2 + x + 1)?), so its splitting field is Faa
and the Galois group is Z,4 as well.



15. Find the Galois group and all subfields of the splitting field of f = x* + 322 + 1 € Q[z].

Solution. The theory of the Galois groups of quartics says that the group is Vj, but since we have to describe
the subextensions of the splitting field let’s compute G = Gal(f/Q) directly.
f has no rational roots, and (it can be checked that) is not a product of two quadratic polynomials, so

is irreducible. Let K be the splitting field of f. Let a = /—3/2 ++/5/2 and B = 1/—3/2 — v/5/2 (where
v/5 in both formulas is the same, say, > 0). Then the roots of f are +a, 43, and K = Q(a, 3). Both a and
B have degree 4 over Q, and the fields Q(a), Q(3) contain (and are quadratic extensions of) Q(v/5), thus
either [K : Q] = 8 (if Qo) # Q(B) or [K : Q] =4 (if Q(a) = Q(8)). We have a8 =1 (or —1, which depends
on the choice of signs for a and ), so 8 € Q(«), K = Q(«), and [K : Q] = 4. Hence, G is either Z4 or Vj.

Since K = Q(«), elements of G are defined by their action on «. Let @1, 92,03 € G be such that
p1(e) = B, p2(a) = —B, and p3(a) = —a. Then ¢1(8) = p1(1/a) = 1/p1(a) = 1/B = a, so p}(a) = o and
¢1(B) = B, 50 T = L; p2(B8) = p2(1/a) = 1/pa(a) = —1/8 = —a, s0 p3(a) = p2(—f) = a and Y3(8) = B,
so p3 = 1; and a3(B) = =8, so a3 =1 as well. Hence, G = V.

G has 3 nontrivial proper subgroups, thus, in addition to Q and itself, K has 3 subfields. All these
subfields have degree 2 over QQ, and so, are generated by any non-rational elements thereof. The subfield
fixed by ¢1 is Q(a + ), the sibfield fixed by @y is Q(ar — 8), and the subfield fixed by 3 is Q(a?) = Q(V/5).

16. Find the Galois group and all subfields of the splitting field of f = x* + 2? + 1 € Q[x].

Solution. f is reducible, f = (2? + z + 1)(2% — x 4+ 1). The first factor is the 3rd cyclotomic polynomial ®3,
and the second factor is the 6th cyclotomic polynomial ®¢. So, the roots of the first factor are contained
in the field generated by the roots of the second factor, and the splitting field of f is K = Q(w) where
w = e?™/6. Thus, [K : Q] = 2, Gal(K/Q) = Z,, and K contains no nontrivial proper subfields.

17. Find the Galois group of f = 2* + 222 + 2 + 3 € Q[z].

Solution. First of all, f is irreducible: modulo 2 it is 2* + x + 1, which is irreducible in Fa[z]. Next, the
cubic resolvent of f is R(z) = 2% —2-22% + (22 —4-3)z + 12 = 23 — 42% — 8z + 1. R has no roots (1 don’t
fit), so, is irreducible. Hence, in accordance with our classification, the Galois group of f is either Sy or Ay.
The discriminant of R (and of f) is D = (—4)?(—8)% — 4(—8)% —4(—4)3-1—27-12 +18(—4)(-8) - 1 = 3877,
which is prime and so, is not a square in @Q; hence, the group is Sy.

18. For prime p, prove that the Galois group of f = 2* +px +p € Q[x] is Sy for p # 3, 5, Dg for p =3,
and Z4 for p =1>5.
Solution. First of all, f is irreducible by Eisenstein’s criterion. The cubic resolvent of f is R(z) = 2® —4pz+p?,
and the discriminant is D = 256p® — 27p*. D is never a square (since if 256p — 27p* = n?, then n = mp, so
256 — 27p = m?p, so p = 2; but for p =2, D = 16 - 101 is not a square either). For p =2 or p > 7, R has no
roots (41, 4p, £p? don’t fit), so, is irreducible, and the Galois group is Sy.

For p = 3, R(z) = (z—3) (22 +3x—3), where the second factor is irreducible by Eisenstein’s criterion; so,
the group is either Dg (if f is irreducible over Q(v/D)) or Z4 (otherwise). We have D = 3%(256 -3 —27-9) =
325221, so Q(v/D) = Q(v/21). The ring S of integers of this field is a PID; 3 is not prime in S, it factorizes

3 = o where m = @ and T = @ But the elements 7 and 7 are already prime (their norms
N(m), N(7) = —3 are prime) and non-associate (£ = \/Efg = (@;3)2 ¢ R), thus f(z) = 2* + 77z + 77 is

irreducible by Eisenstein’s criterion. Hence, the Galois group of f is Ds.
For p = 5, R(z) = (x — 5)(2% + 52 — 5), where, again, the second factor is irreducible by Eisenstein’s
criterion. Now, D = 552 - 5, so Q(v/D) = Q(v/5). This time f splits

flx) = (x2+\/5$+¥> (362—\/5;54—54‘7\/5)

over Q(v/5) (it is a separate question how to find this decomposition), so the group is Zj.
19. Find the Galois group of f = 2% —x — 1 € Q[x].

Solution. Modulo 2, f splits as (23 + 2% + 1)(2? + = + 1). So, the Galois group G contains a permutation o
of the cycle type (3,2). o3 is a transposition, so G' contains a transposition. Modulo 3, f is irreducible, so
|G| is divisible by 5, so G contains a 5-cycle. Hence, G = Ss.



