1. If K / F is a Galois extension of degree $n=m p^{r}$ where p is prime and $p \nmid m$, prove that K / F has a subextension L / F such that $[L: F]=m$, and that all such subextensions are isomorphic.
Solution. By Galois's theorem, subextensions L / F of K / F of degree m correspond to subgroups of $\operatorname{Gal}(K / F)$ of order $n / m=p^{r}$, that is, tp Sylow p-subgroups. Hence, they exist and are all conjugate.
2. Let p be a prime integer, let F be a field with char $F \neq p$, let $f \in F[x]$ be a separable polynomial, and assume that the splitting field K of f has degree p^{r} over F for some $r \in \mathbb{N}$. Prove that f is solvable in radicals. If F contains a root of unity of degree p, how many nested radicals and of what degrees would suffice to express a root of f ?

Solution. Gal (K / F) is a p-group, so K / F is a p-extension, so is a tower of r cyclic extensions of degree p. Since char $F \neq p$, after adjoining to F a primitive p-th root of unity ω, all these extensions are radical of degree p. So, in addition to ω, we will need at most r nested radicals of degree p to express roots of f.
3. (a) Is it true that a normal extension of a normal extension is normal? (Prove or give a counterexample.)

Solution. Not true, $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ are normal but $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ isn't.
(b) Is it true that a separable extension of a separable extension is separable?

Solution. This is true, but not that easy to prove.
4. Prove that every root of unity of degree n is expressible in radicals of degrees $<n$.

Solution. In characteristic zero, the Galois group of the n-th cyclotomic polynomial is abelian (isomorphic to \mathbb{Z}_{n}^{*}) of order $\varphi(n)<n$, so its roots are expressible in radicals of degrees $<n$. In finite characteristic p, if $p \mid n$, then the roots of unity of degree n are also roots of unity of degree n / p. If $p \nmid n$, then the polynomial $x^{n}-1$ is separable, and its Galois group is a subgroup of \mathbb{Z}_{n}^{*}.
5. Let K / F be a Galois extension with $\operatorname{Gal}(K / F)=G$ and let $\alpha \in K$.
(a) Prove that $K=F(\alpha)$ iff the elements $\varphi(\alpha), \varphi \in G$, are all distinct.

Solution. $K=F(\alpha)$ iff $\operatorname{deg}_{F} \alpha=[K: F]$ iff α has $[K: F]=|G|$ conjugates iff $\varphi(\alpha), \varphi \in G$, are all distinct.
(b) In general, prove that $[K: F(\alpha)]=|H|$ where H is the stabilizer of α in $G, H=\{\varphi \in G: \varphi(\alpha)=\alpha\}$.

Solution. An element of G fixes $F(\alpha)$ iff it fixes α, so the stabilizer H of α in G is just $\operatorname{Gal}(K / F(\alpha))$, so $[K: F(\alpha)]=|H|$.
6. Let K / F be a Galois extension of degree $p q$ where $p<q$ are primes. How many subextensions and of what degrees can K / F have? (Consider two cases: where p divides $q-1$ and where it doesn't.)
Solution. Translating it to the language of groups, the question is: given a group G of order $p q$, how many subgroups and of what indexes may G have? And the answer is: either G has one subgroup of index p and one of index q, or, in the case $q=1 \bmod p$ and G is noncommutative, it has one subgroup of index p (that is, of order q) and q subgroups (of order p) of index q.
7. If char $F \neq 0$, prove that an extension K / F of degree 4 can be generated by the root of an irreducible biquadratic $x^{4}+a x^{2}+b \in F[x]$ if and only if K contains a quadratic extension of F.
Solution. If $K=F(\alpha)$ where α is a root of a biquadratic polynomial $x^{4}+a x^{2}+b$, then $\alpha= \pm \sqrt{a / 2 \pm \sqrt{D} / 2}$ where $D=a^{2}-4 b$. Were \sqrt{D} in F, then α would have degree ≤ 2 over F; so, $\sqrt{D} \notin F$ and K contains the quadratic subextension $F(\sqrt{D}) / F$.

Conversely, assume that F contains a quadratic extension L of F. Then $L=F(\sqrt{c})$ for some $c \in F$, and K is a quadratic extension of L, so $K=L(\alpha)$ where $\alpha=\sqrt{\gamma}$ for some $\gamma \in F(\sqrt{c})$. Let $\gamma=a+b \sqrt{c}, a, b \in F$, then $\alpha^{2}=a+b \sqrt{c}$, so $\left(\alpha^{2}-a\right)^{2}=b c^{2}$, and α is a root of the biquadratic polynomial $x^{4}-2 a x^{2}+a^{2}-b c^{2}$.
8. Let $d \in \mathbb{Z} \backslash\{0,1\}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Prove that the extension $\mathbb{Q}(\sqrt{a \sqrt{d}}) / \mathbb{Q}$ is Galois only if $d=-1$.

Solution. Let $\alpha=\sqrt{a \sqrt{d}}$ and $K=\mathbb{Q}(\alpha)$; the minimal polynomial of α is $f(x)=x^{4}-a^{2} d$, and the conjugates of α are $\pm \alpha, \pm i \alpha$. Assume that K / \mathbb{Q} is Galois, then $i \alpha \in K$, so $i \in K$. The degree of K over \mathbb{Q} may be 2 or 4 . If $[K: \mathbb{Q}]=2$, then $K=\mathbb{Q}(\sqrt{d})$, and since $i \in K, \mathbb{Q}(\sqrt{d})=\mathbb{Q}(i)=\mathbb{Q}(\sqrt{-1})$. Hence, $-d=d /(-1)$ is a square in \mathbb{Q}, and since d is squarefree, $-d=1$.

If $[K: \mathbb{Q}]=4$, then the Galois group of K / \mathbb{Q} is either \mathbb{Z}_{4} of V_{4}. If it is \mathbb{Z}_{4}, then K has a single quadratic subextension, so $\mathbb{Q}(\sqrt{d})=\mathbb{Q}(i)$, and $d=-1$ as above. If the group is V_{4}, then the square root of the discriminant of f is in \mathbb{Q}. As the discriminant of f is $-4^{4}\left(a^{2} d\right)^{3}$, we again have $\sqrt{-d} \in \mathbb{Q}$, so $d=-1$.
9. Construct a polynomial over \mathbb{Q} whose Galois group is isomorphic to \mathbb{Z}_{4}.

Solution. There are many ways to do this; I'll use an irreducible biquadratic polynomial $f(x)=x^{4}+a x^{2}+b$. It has roots $\pm \alpha, \pm \beta$ with $\alpha \beta=\sqrt{b}$, and if $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$ and $\sqrt{b} \notin \mathbb{Q}$, then the Galois group G of f has order 4 and contains an element φ with $\varphi(\alpha)=\beta$ and $\varphi(\sqrt{b})=-\sqrt{b}$, so $\varphi^{2}(\alpha)=\varphi(\beta)=\varphi(\sqrt{b} / \alpha)=-\sqrt{b} / \beta=-\alpha$; thus φ has order 4 and $G=\langle\varphi\rangle$. Ok, take $\alpha=\sqrt{2+\sqrt{2}}$ and $\beta=\sqrt{2-\sqrt{2}}$, then $\alpha \beta=\sqrt{2} \in \mathbb{Q}(\alpha)$, so $\beta \in \mathbb{Q}(\alpha)$ and $\alpha \beta \notin \mathbb{Q}$. The corresponding polynomial is $x^{4}-4 x+2$.
10. For which n is the number $\sqrt[n]{3}$ constructible?

Solution. The polynomial $x^{n}-3$ is irreducible over \mathbb{Q} by Eisenstein criterion, thus $\operatorname{deg}_{\mathbb{Q}} \sqrt[n]{3}=n$. For this number to be constructible, it must be that $n=2^{k}$ for some $k \in \mathbb{N}$. And, since we can "construct" square roots, it is easy to see that this condition is also sufficient.
11. Find the Galois group of $f=x^{3}-3 x+3 \in \mathbb{Q}[x]$.

Solution. f is irreducible by Eisenstein\&Gauss. The discriminant of f is $-4 \cdot(-3)^{3}-27 \cdot 3^{2}<0$, so the Galois group is S_{3}.

Alternatively, f is irreducible and has one real and two complex roots, so the group is S_{3}.
12. Find the Galois group of $f=x^{4}-2$
(a) over \mathbb{Q};

Solution. f is irreducible. The splitting field of f is $\mathbb{Q}(\alpha, i)$ where $\alpha=\sqrt[4]{2}, \mathbb{Q}(\alpha) \cap \mathbb{Q}(i)=\mathbb{Q}, \mathbb{Q}(i) / \mathbb{Q}$ is normal, $\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q}) \cong \mathbb{Z}_{2}, \operatorname{Gal}(K / \mathbb{Q}(i)) \cong \mathbb{Z}_{4}$, so $\operatorname{Gal}(f / \mathbb{Q})$ is the nondirect $\cong \mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}$.
(b) over \mathbb{F}_{3};

Solution. f is reducible, $f=\left(x^{2}+x-1\right)\left(x^{2}-x-1\right)$, where both $x^{2}+x-1$ and $x^{2}-x-1$ are irreducible, the splitting field of f is $\mathbb{F}_{3^{2}}$, the Galois group is \mathbb{Z}_{2}.
(c) over \mathbb{F}_{7}.

Solution. f has roots ± 2 in \mathbb{F}_{7}, so $x^{4}-2=(x-2)(x+2)\left(x^{2}+4\right)$, and $x^{2}+4$ is irreducible. So, the Galois group is \mathbb{Z}_{2}.
13. Find the Galois group over \mathbb{Q} of the polynomials
(a) $f=x^{5}-2$;

Solution. $\mathbb{Z}_{5} \rtimes \mathbb{Z}_{5}^{*}$. (For any odd n and positive $a \in \mathbb{Q}$ such that $x^{n}-a$ is irreducible we have $\operatorname{Gal}\left(x^{n}-a / \mathbb{Q}\right) \cong$ $\mathbb{Z}_{n} \rtimes \mathbb{Z}_{n}^{*}=\operatorname{Hol}\left(\mathbb{Z}_{n}\right)$.)
(b) $f=x^{9}-2$.

Solution. $\mathbb{Z}_{9} \rtimes \mathbb{Z}_{9}^{*}=\operatorname{Hol}\left(\mathbb{Z}_{9}\right)$.
14. Find the Galois group of $f=x^{4}+x^{3}+x^{2}+x+1$
(a) over \mathbb{Q};

Solution. Over \mathbb{Q}, f is the cyclotomic polynomial Φ_{5}, and its Galois group is $\mathbb{Z}_{5}^{*} \cong \mathbb{Z}^{4}$.
(b) over \mathbb{F}_{2}.

Solution. f is also irreducible (it has no roots and is not equal to $\left(x^{2}+x+1\right)^{2}$), so its splitting field is $\mathbb{F}_{2^{4}}$ and the Galois group is \mathbb{Z}_{4} as well.
15. Find the Galois group and all subfields of the splitting field of $f=x^{4}+3 x^{2}+1 \in \mathbb{Q}[x]$.

Solution. The theory of the Galois groups of quartics says that the group is V_{4}, but since we have to describe the subextensions of the splitting field let's compute $G=\operatorname{Gal}(f / \mathbb{Q})$ directly.
f has no rational roots, and (it can be checked that) is not a product of two quadratic polynomials, so is irreducible. Let K be the splitting field of f. Let $\alpha=\sqrt{-3 / 2+\sqrt{5} / 2}$ and $\beta=\sqrt{-3 / 2-\sqrt{5} / 2}$ (where $\sqrt{5}$ in both formulas is the same, say, >0). Then the roots of f are $\pm \alpha, \pm \beta$, and $K=\mathbb{Q}(\alpha, \beta)$. Both α and β have degree 4 over \mathbb{Q}, and the fields $\mathbb{Q}(\alpha), \mathbb{Q}(\beta)$ contain (and are quadratic extensions of) $\mathbb{Q}(\sqrt{5})$, thus either $[K: \mathbb{Q}]=8($ if $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$ or $[K: \mathbb{Q}]=4($ if $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta))$. We have $\alpha \beta=1$ (or -1 , which depends on the choice of signs for α and β), so $\beta \in \mathbb{Q}(\alpha), K=\mathbb{Q}(\alpha)$, and $[K: \mathbb{Q}]=4$. Hence, G is either \mathbb{Z}_{4} or V_{4}.

Since $K=\mathbb{Q}(\alpha)$, elements of G are defined by their action on α. Let $\varphi_{1}, \varphi_{2}, \varphi_{3} \in G$ be such that $\varphi_{1}(\alpha)=\beta, \varphi_{2}(\alpha)=-\beta$, and $\varphi_{3}(\alpha)=-\alpha$. Then $\varphi_{1}(\beta)=\varphi_{1}(1 / \alpha)=1 / \varphi_{1}(\alpha)=1 / \beta=\alpha$, so $\varphi_{1}^{2}(\alpha)=\alpha$ and $\varphi_{1}^{2}(\beta)=\beta$, so $\varphi_{1}^{2}=1 ; \varphi_{2}(\beta)=\varphi_{2}(1 / \alpha)=1 / \varphi_{2}(\alpha)=-1 / \beta=-\alpha$, so $\varphi_{2}^{2}(\alpha)=\varphi_{2}(-\beta)=\alpha$ and $\varphi_{2}^{2}(\beta)=\beta$, so $\varphi_{2}^{2}=1$; and $\alpha_{3}(\beta)=-\beta$, so $\alpha_{3}^{2}=1$ as well. Hence, $G \cong V_{4}$.
G has 3 nontrivial proper subgroups, thus, in addition to \mathbb{Q} and itself, K has 3 subfields. All these subfields have degree 2 over \mathbb{Q}, and so, are generated by any non-rational elements thereof. The subfield fixed by φ_{1} is $\mathbb{Q}(\alpha+\beta)$, the sibfield fixed by φ_{2} is $\mathbb{Q}(\alpha-\beta)$, and the subfield fixed by φ_{3} is $\mathbb{Q}\left(\alpha^{2}\right)=\mathbb{Q}(\sqrt{5})$.
16. Find the Galois group and all subfields of the splitting field of $f=x^{4}+x^{2}+1 \in \mathbb{Q}[x]$.

Solution. f is reducible, $f=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$. The first factor is the 3rd cyclotomic polynomial Φ_{3}, and the second factor is the 6 th cyclotomic polynomial Φ_{6}. So, the roots of the first factor are contained in the field generated by the roots of the second factor, and the splitting field of f is $K=\mathbb{Q}(\omega)$ where $\omega=e^{2 \pi i / 6}$. Thus, $[K: \mathbb{Q}]=2, \operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z}_{2}$, and K contains no nontrivial proper subfields.
17. Find the Galois group of $f=x^{4}+2 x^{2}+x+3 \in \mathbb{Q}[x]$.

Solution. First of all, f is irreducible: modulo 2 it is $x^{4}+x+1$, which is irreducible in $\mathbb{F}_{2}[x]$. Next, the cubic resolvent of f is $R(x)=x^{3}-2 \cdot 2 x^{2}+\left(2^{2}-4 \cdot 3\right) x+1^{2}=x^{3}-4 x^{2}-8 x+1 . R$ has no roots (± 1 don't fit), so, is irreducible. Hence, in accordance with our classification, the Galois group of f is either S_{4} or A_{4}. The discriminant of R (and of f) is $D=(-4)^{2}(-8)^{2}-4(-8)^{3}-4(-4)^{3} \cdot 1-27 \cdot 1^{2}+18(-4)(-8) \cdot 1=3877$, which is prime and so, is not a square in \mathbb{Q}; hence, the group is S_{4}.
18. For prime p, prove that the Galois group of $f=x^{4}+p x+p \in \mathbb{Q}[x]$ is S_{4} for $p \neq 3,5, D_{8}$ for $p=3$, and \mathbb{Z}_{4} for $p=5$.
Solution. First of all, f is irreducible by Eisenstein's criterion. The cubic resolvent of f is $R(x)=x^{3}-4 p x+p^{2}$, and the discriminant is $D=256 p^{3}-27 p^{4}$. D is never a square (since if $256 p-27 p^{2}=n^{2}$, then $n=m p$, so $256-27 p=m^{2} p$, so $p=2$; but for $p=2, D=16 \cdot 101$ is not a square either). For $p=2$ or $p \geq 7, R$ has no roots $\left(\pm 1, \pm p, \pm p^{2}\right.$ don't fit), so, is irreducible, and the Galois group is S_{4}.

For $p=3, R(x)=(x-3)\left(x^{2}+3 x-3\right)$, where the second factor is irreducible by Eisenstein's criterion; so, the group is either D_{8} (if f is irreducible over $\mathbb{Q}(\sqrt{D})$) or \mathbb{Z}_{4} (otherwise). We have $D=3^{2}(256 \cdot 3-27 \cdot 9)=$ $3^{2} 5^{2} 21$, so $\mathbb{Q}(\sqrt{D})=\mathbb{Q}(\sqrt{21})$. The ring S of integers of this field is a PID; 3 is not prime in S, it factorizes $3=\pi \bar{\pi}$ where $\pi=\frac{\sqrt{21}+3}{2}$ and $\bar{\pi}=\frac{\sqrt{21}-3}{2}$. But the elements π and $\bar{\pi}$ are already prime (their norms $N(\pi), N(\bar{\pi})=-3$ are prime) and non-associate $\left(\frac{\pi}{\bar{\pi}}=\frac{\sqrt{21}+3}{\sqrt{21}-3}=\frac{(\sqrt{21}+3)^{2}}{18} \notin R\right)$, thus $f(x)=x^{4}+\pi \bar{\pi} x+\pi \bar{\pi}$ is irreducible by Eisenstein's criterion. Hence, the Galois group of f is D_{8}.

For $p=5, R(x)=(x-5)\left(x^{2}+5 x-5\right)$, where, again, the second factor is irreducible by Eisenstein's criterion. Now, $D=55^{2} \cdot 5$, so $\mathbb{Q}(\sqrt{D})=\mathbb{Q}(\sqrt{5})$. This time f splits

$$
f(x)=\left(x^{2}+\sqrt{5} x+\frac{5-\sqrt{5}}{2}\right)\left(x^{2}-\sqrt{5} x+\frac{5+\sqrt{5}}{2}\right)
$$

over $\mathbb{Q}(\sqrt{5})$ (it is a separate question how to find this decomposition), so the group is \mathbb{Z}_{4}.
19. Find the Galois group of $f=x^{5}-x-1 \in \mathbb{Q}[x]$.

Solution. Modulo $2, f$ splits as $\left(x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right)$. So, the Galois group G contains a permutation σ of the cycle type $(3,2) . \sigma^{3}$ is a transposition, so G contains a transposition. Modulo $3, f$ is irreducible, so $|G|$ is divisible by 5 , so G contains a 5 -cycle. Hence, $G \cong S_{5}$.

