
Math 5591H Some practice problems

1. If K/F is a Galois extension of degree n = mpr where p is prime and p /
∣

∣ m, prove that K/F has a
subextension L/F such that [L : F ] = m, and that all such subextensions are isomorphic.

Solution. By Galois’s theorem, subextensions L/F ofK/F of degreem correspond to subgroups of Gal(K/F )
of order n/m = pr, that is, tp Sylow p-subgroups. Hence, they exist and are all conjugate.

2. Let p be a prime integer, let F be a field with charF 6= p, let f ∈ F [x] be a separable polynomial, and
assume that the splitting field K of f has degree pr over F for some r ∈ N. Prove that f is solvable in
radicals. If F contains a root of unity of degree p, how many nested radicals and of what degrees would
suffice to express a root of f?

Solution. Gal(K/F ) is a p-group, so K/F is a p-extension, so is a tower of r cyclic extensions of degree p.
Since charF 6= p, after adjoining to F a primitive p-th root of unity ω, all these extensions are radical of
degree p. So, in addition to ω, we will need at most r nested radicals of degree p to express roots of f .

3. (a) Is it true that a normal extension of a normal extension is normal? (Prove or give a counterexample.)

Solution. Not true, Q(
√
2)/Q and Q( 4

√
2)/Q(

√
2) are normal but Q( 4

√
2)/Q isn’t.

(b) Is it true that a separable extension of a separable extension is separable?

Solution. This is true, but not that easy to prove.

4. Prove that every root of unity of degree n is expressible in radicals of degrees < n.

Solution. In characteristic zero, the Galois group of the n-th cyclotomic polynomial is abelian (isomorphic
to Z∗

n) of order ϕ(n) < n, so its roots are expressible in radicals of degrees < n. In finite characteristic p, if
p
∣

∣n, then the roots of unity of degree n are also roots of unity of degree n/p. If p /
∣

∣ n, then the polynomial
xn − 1 is separable, and its Galois group is a subgroup of Z∗

n.

5. Let K/F be a Galois extension with Gal(K/F ) = G and let α ∈ K.

(a) Prove that K = F (α) iff the elements ϕ(α), ϕ ∈ G, are all distinct.

Solution. K = F (α) iff degF α = [K : F ] iff α has [K : F ] = |G| conjugates iff ϕ(α), ϕ ∈ G, are all distinct.

(b) In general, prove that [K : F (α)] = |H| where H is the stabilizer of α in G, H = {ϕ ∈ G : ϕ(α) = α}.
Solution. An element of G fixes F (α) iff it fixes α, so the stabilizer H of α in G is just Gal(K/F (α)), so
[K : F (α)] = |H|.

6. Let K/F be a Galois extension of degree pq where p < q are primes. How many subextensions and of
what degrees can K/F have? (Consider two cases: where p divides q − 1 and where it doesn’t.)

Solution. Translating it to the language of groups, the question is: given a group G of order pq, how many
subgroups and of what indexes may G have? And the answer is: either G has one subgroup of index p and
one of index q, or, in the case q = 1mod p and G is noncommutative, it has one subgroup of index p (that
is, of order q) and q subgroups (of order p) of index q.

7. If charF 6= 0, prove that an extension K/F of degree 4 can be generated by the root of an irreducible
biquadratic x4 + ax2 + b ∈ F [x] if and only if K contains a quadratic extension of F .

Solution. If K = F (α) where α is a root of a biquadratic polynomial x4+ax2+ b, then α = ±
√

a/2±
√
D/2

where D = a2 − 4b. Were
√
D in F , then α would have degree ≤ 2 over F ; so,

√
D 6∈ F and K contains the

quadratic subextension F (
√
D)/F .

Conversely, assume that F contains a quadratic extension L of F . Then L = F (
√
c) for some c ∈ F , and

K is a quadratic extension of L, so K = L(α) where α =
√
γ for some γ ∈ F (

√
c). Let γ = a+ b

√
c, a, b ∈ F ,

then α2 = a+ b
√
c, so (α2 − a)2 = bc2, and α is a root of the biquadratic polynomial x4 − 2ax2 + a2 − bc2.

8. Let d ∈ Z \ {0, 1} be a squarefree integer and let a ∈ Q be a nonzero rational number. Prove that the

extension Q(
√

a
√
d)/Q is Galois only if d = −1.
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Solution. Let α =
√

a
√
d and K = Q(α); the minimal polynomial of α is f(x) = x4−a2d, and the conjugates

of α are ±α,±iα. Assume that K/Q is Galois, then iα ∈ K, so i ∈ K. The degree of K over Q may be 2
or 4. If [K : Q] = 2, then K = Q(

√
d), and since i ∈ K, Q(

√
d) = Q(i) = Q(

√
−1). Hence, −d = d/(−1) is

a square in Q, and since d is squarefree, −d = 1.

If [K : Q] = 4, then the Galois group of K/Q is either Z4 of V4. If it is Z4, then K has a single
quadratic subextension, so Q(

√
d) = Q(i), and d = −1 as above. If the group is V4, then the square root of

the discriminant of f is in Q. As the discriminant of f is −44(a2d)3, we again have
√
−d ∈ Q, so d = −1.

9. Construct a polynomial over Q whose Galois group is isomorphic to Z4.

Solution. There are many ways to do this; I’ll use an irreducible biquadratic polynomial f(x) = x4+ax2+ b.
It has roots ±α, ±β with αβ =

√
b, and if Q(α) = Q(β) and

√
b 6∈ Q, then the Galois group G of f has order 4

and contains an element ϕ with ϕ(α) = β and ϕ(
√
b) = −

√
b, so ϕ2(α) = ϕ(β) = ϕ

(
√
b/α

)

= −
√
b/β = −α;

thus ϕ has order 4 and G = 〈ϕ〉. Ok, take α =
√

2 +
√
2 and β =

√

2−
√
2, then αβ =

√
2 ∈ Q(α), so

β ∈ Q(α) and αβ 6∈ Q. The corresponding polynomial is x4 − 4x+ 2.

10. For which n is the number n

√
3 constructible?

Solution. The polynomial xn − 3 is irreducible over Q by Eisenstein criterion, thus degQ
n

√
3 = n. For this

number to be constructible, it must be that n = 2k for some k ∈ N. And, since we can “construct” square
roots, it is easy to see that this condition is also sufficient.

11. Find the Galois group of f = x3 − 3x+ 3 ∈ Q[x].

Solution. f is irreducible by Eisenstein&Gauss. The discriminant of f is −4 · (−3)3 − 27 · 32 < 0, so the
Galois group is S3.

Alternatively, f is irreducible and has one real and two complex roots, so the group is S3.

12. Find the Galois group of f = x4 − 2

(a) over Q;

Solution. f is irreducible. The splitting field of f is Q(α, i) where α = 4
√
2, Q(α) ∩ Q(i) = Q, Q(i)/Q is

normal, Gal(Q(i)/Q) ∼= Z2, Gal(K/Q(i)) ∼= Z4, so Gal(f/Q) is the nondirect ∼= Z4 ×Z2.

(b) over F3;

Solution. f is reducible, f = (x2 + x− 1)(x2 − x− 1), where both x2 + x− 1 and x2 − x− 1 are irreducible,
the splitting field of f is F32 , the Galois group is Z2.

(c) over F7.

Solution. f has roots ±2 in F7, so x4 − 2 = (x− 2)(x+ 2)(x2 + 4), and x2 + 4 is irreducible. So, the Galois
group is Z2.

13. Find the Galois group over Q of the polynomials

(a) f = x5 − 2;

Solution. Z5 ×Z∗
5. (For any odd n and positive a ∈ Q such that xn−a is irreducible we have Gal(xn−a/Q) ∼=

Zn ×Z∗
n = Hol(Zn).)

(b) f = x9 − 2.

Solution. Z9 ×Z∗
9 = Hol(Z9).

14. Find the Galois group of f = x4 + x3 + x2 + x+ 1

(a) over Q;

Solution. Over Q, f is the cyclotomic polynomial Φ5, and its Galois group is Z∗
5
∼= Z4.

(b) over F2.

Solution. f is also irreducible (it has no roots and is not equal to (x2 + x+ 1)2), so its splitting field is F24

and the Galois group is Z4 as well.
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15. Find the Galois group and all subfields of the splitting field of f = x4 + 3x2 + 1 ∈ Q[x].

Solution. The theory of the Galois groups of quartics says that the group is V4, but since we have to describe
the subextensions of the splitting field let’s compute G = Gal(f/Q) directly.

f has no rational roots, and (it can be checked that) is not a product of two quadratic polynomials, so

is irreducible. Let K be the splitting field of f . Let α =
√

−3/2 +
√
5/2 and β =

√

−3/2−
√
5/2 (where√

5 in both formulas is the same, say, > 0). Then the roots of f are ±α,±β, and K = Q(α, β). Both α and
β have degree 4 over Q, and the fields Q(α), Q(β) contain (and are quadratic extensions of) Q(

√
5), thus

either [K : Q] = 8 (if Q(α) 6= Q(β) or [K : Q] = 4 (if Q(α) = Q(β)). We have αβ = 1 (or −1, which depends
on the choice of signs for α and β), so β ∈ Q(α), K = Q(α), and [K : Q] = 4. Hence, G is either Z4 or V4.

Since K = Q(α), elements of G are defined by their action on α. Let ϕ1, ϕ2, ϕ3 ∈ G be such that
ϕ1(α) = β, ϕ2(α) = −β, and ϕ3(α) = −α. Then ϕ1(β) = ϕ1(1/α) = 1/ϕ1(α) = 1/β = α, so ϕ2

1(α) = α and
ϕ2
1(β) = β, so ϕ2

1 = 1; ϕ2(β) = ϕ2(1/α) = 1/ϕ2(α) = −1/β = −α, so ϕ2
2(α) = ϕ2(−β) = α and ϕ2

2(β) = β,
so ϕ2

2 = 1; and α3(β) = −β, so α2
3 = 1 as well. Hence, G ∼= V4.

G has 3 nontrivial proper subgroups, thus, in addition to Q and itself, K has 3 subfields. All these
subfields have degree 2 over Q, and so, are generated by any non-rational elements thereof. The subfield
fixed by ϕ1 is Q(α+ β), the sibfield fixed by ϕ2 is Q(α− β), and the subfield fixed by ϕ3 is Q(α2) = Q(

√
5).

16. Find the Galois group and all subfields of the splitting field of f = x4 + x2 + 1 ∈ Q[x].

Solution. f is reducible, f = (x2 + x+ 1)(x2 − x+ 1). The first factor is the 3rd cyclotomic polynomial Φ3,
and the second factor is the 6th cyclotomic polynomial Φ6. So, the roots of the first factor are contained
in the field generated by the roots of the second factor, and the splitting field of f is K = Q(ω) where
ω = e2πi/6. Thus, [K : Q] = 2, Gal(K/Q) ∼= Z2, and K contains no nontrivial proper subfields.

17. Find the Galois group of f = x4 + 2x2 + x+ 3 ∈ Q[x].

Solution. First of all, f is irreducible: modulo 2 it is x4 + x + 1, which is irreducible in F2[x]. Next, the
cubic resolvent of f is R(x) = x3 − 2 · 2x2 + (22 − 4 · 3)x+12 = x3 − 4x2 − 8x+1. R has no roots (±1 don’t
fit), so, is irreducible. Hence, in accordance with our classification, the Galois group of f is either S4 or A4.
The discriminant of R (and of f) is D = (−4)2(−8)2 − 4(−8)3 − 4(−4)3 · 1− 27 · 12 +18(−4)(−8) · 1 = 3877,
which is prime and so, is not a square in Q; hence, the group is S4.

18. For prime p, prove that the Galois group of f = x4 + px + p ∈ Q[x] is S4 for p 6= 3, 5, D8 for p = 3,
and Z4 for p = 5.

Solution. First of all, f is irreducible by Eisenstein’s criterion. The cubic resolvent of f is R(x) = x3−4px+p2,
and the discriminant is D = 256p3 − 27p4. D is never a square (since if 256p− 27p2 = n2, then n = mp, so
256− 27p = m2p, so p = 2; but for p = 2, D = 16 · 101 is not a square either). For p = 2 or p ≥ 7, R has no
roots (±1,±p,±p2 don’t fit), so, is irreducible, and the Galois group is S4.

For p = 3, R(x) = (x−3)(x2+3x−3), where the second factor is irreducible by Eisenstein’s criterion; so,
the group is either D8 (if f is irreducible over Q(

√
D)) or Z4 (otherwise). We have D = 32(256 · 3− 27 · 9) =

325221, so Q(
√
D) = Q(

√
21). The ring S of integers of this field is a PID; 3 is not prime in S, it factorizes

3 = ππ where π =
√
21+3
2 and π =

√
21−3
2 . But the elements π and π are already prime (their norms

N(π), N(π) = −3 are prime) and non-associate (ππ =
√
21+3√
21−3

= (
√
21+3)2

18 6∈ R), thus f(x) = x4 + ππx+ ππ is

irreducible by Eisenstein’s criterion. Hence, the Galois group of f is D8.
For p = 5, R(x) = (x − 5)(x2 + 5x − 5), where, again, the second factor is irreducible by Eisenstein’s

criterion. Now, D = 552 · 5, so Q(
√
D) = Q(

√
5). This time f splits

f(x) =
(

x2 +
√
5x+ 5−

√
5

2

)(

x2 −
√
5x+ 5+

√
5

2

)

over Q(
√
5) (it is a separate question how to find this decomposition), so the group is Z4.

19. Find the Galois group of f = x5 − x− 1 ∈ Q[x].

Solution. Modulo 2, f splits as (x3 + x2 + 1)(x2 + x+ 1). So, the Galois group G contains a permutation σ
of the cycle type (3, 2). σ3 is a transposition, so G contains a transposition. Modulo 3, f is irreducible, so
|G| is divisible by 5, so G contains a 5-cycle. Hence, G ∼= S5.
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