Math 4181H

Homework 10

Due by Tuesday, December 9

A1. For each of the following series determine whether it converges absolutely, converges 15pt conditionally, diverges to ∞ , or just diverges (and name the test that proves your claim):

(a) $\sum \frac{(-1)^n}{n^{1/n}}$; (b) $\sum \frac{(-1)^n n^2}{2^n}$; (c) $\sum \frac{(-1)^n}{\sqrt{n}}$; (d) $\sum \frac{\sin n}{\log n}$; (e) $\sum \sin(1/n)$.

A2. Prove that the series $\sum \frac{1}{n(\log n)(\log(\log n))^{\alpha}}$ converges for $\alpha > 1$ and diverges for $0 < \alpha \le 1$. 5pt

A3. If Λ is an uncountable set, $\Lambda \longrightarrow \mathbb{R}$, $i \mapsto a_i$, is a mapping, and $a_i > 0$ for all i, prove 10pt that $\sum a_i = \infty$. (That is, prove that for any $M \in \mathbb{R}$ there exists a finite set $F \subset \Lambda$ such that $\sum_{i \in F} a_i > M$.) (Hint: Can the sets $\Lambda_n = \{i \in \Lambda : a_i \ge 1/n\}$ be all finite?)

Chapter 23, pp. 489-498:

10. If $a_i = b_i = \frac{(-1)^i}{\sqrt{i}}$, $i \in \mathbb{N}$, prove that the series $\sum a_i$ (and $\sum b_i$) converge but their 10pt Cauchy product $\sum_{k=2}^{\infty} (\sum_{i=1}^{k-1} a_i b_{k-i})$ diverges.

A4. A function h on an interval [a,b] is said to be a step function if there is a partition 10pt $a = x_0 < x_1 < \ldots < x_n = b$ of [a, b] such that for every i, h is constant on the interval (x_{i-1},x_i) . Prove that for any closed bounded interval [a,b] the step functions are dense in C([a,b]) with respect to the uniform norm: for every continuous function f on [a,b] and any $\varepsilon > 0$ there exists a step function h on [a, b] such that $||f - h|| < \varepsilon$.

A5. Let (f_n) be a sequence of functions $A \longrightarrow \mathbb{R}$ and let $f_n \Longrightarrow f$.

(a) If all f_n are uniformly continuous on A prove that f is uniformly continuous on A. 5pt

(b) If the sequence (f_n) is "uniformly Lipschitz on A", that is, if there is C such that 5pt $|f_n(x)-f_n(y)| \leq C|x-y|$ for all $n \in \mathbb{N}$ and all $x,y \in A$, prove that f is Lipschitz on A. (Actually, pointwise convergence $f_n \longrightarrow f$ suffices for this.)

Chapter 24, pp. 517-525:

2. Find the pointwise limit of (f_n) and decide whether (f_n) converges uniformly to this limit.

(i) $f_n(x) = x^n - x^{2n}$ on [0, 1]. 5pt

(ii) $f_n(x) = \frac{nx}{1+n+x}$ on $[0, \infty)$. 5pt

(iv) $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$ on \mathbb{R} . 5pt

(a) Suppose that (f_n) is a sequence of continuous functions on [a,b] that converges 10pt uniformly on [a, b] to a function f, and let (x_n) be a sequence in [a, b] with $\lim x_n = c$. Prove that $\lim f_n(x_n) = f(c)$.

(b) Is this statement true without assuming that f_n are continuous? 5pt