Homework 2

Due by Tuesday, September 9

A1. Let $a, b \in \mathbb{R}$, 0 < a < b; let $A = \frac{a+b}{2}$ (the airthmetic mean of a and b), $G = \sqrt{ab}$ (the geometric mean), $H = \left(\frac{a^{-1} + b^{-1}}{2}\right)^{-1}$ (the harmonic mean), and $Q = \sqrt{\frac{a^2 + b^2}{2}}$ (the quadratic mean). Prove that a < H < G < A < Q < b.

5pt **A2.** (a) Prove that for any $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$, $\left|\sum_{i=1}^n a_i\right| \leq \sum_{i=1}^n |a_i|$. (*Hint:* Use induction on n.)

(b) Prove the following version of the Cauchy-Schwarz inequality: for any $n \in \mathbb{N}$ and $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, $\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right) \geq \left(\sum_{i=1}^n a_i b_i\right)^2$, with "=" only if $a_1 = \cdots = a_n = 0$ or $b_1 = \cdots = b_n = 0$ or there is $x \in \mathbb{R}$ such that $b_1 = a_1 x, \ldots, b_n = a_n x$. (*Hint*: The same proof as we used for n = 2 works for any n.)

(c) Prove the *n*-dimensional triangle inequality: for any $n \in \mathbb{N}$ and $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, $\sqrt{\sum_{i=1}^n (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^n a_i^2} + \sqrt{\sum_{i=1}^n b_i^2}$ with "=" only if $a_1 = \cdots = a_n = 0$ or $b_1 = \cdots = b_n = 0$ or there is $x \in \mathbb{R}$ such that $b_1 = a_1 x, \ldots, b_n = a_n x$.

Chapter 2, pp. 27-33:

1(ii). Prove by induction:

10pt (i) For all n, $1^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

 $_{10\text{pt}}$ (ii) For all $n, 1^3 + \ldots + n^3 = (1 + \ldots + n)^2$.

Cf. 23. Prove (by induction) that for any $a, b \in \mathbb{R}$ and $n, m \in \mathbb{N}$

 $_{5pt}$ (i) $(a^n)^m = a^{nm}$,

 $_{5pt}$ (ii) $(ab)^n = a^n b^n$,

 $_{\rm 5pt}$ $\,$ (iii) $(a^{-1})^n=(a^n)^{-1}.$ (Hint: Here you don't need induction, just use (ii).)

 $_{\mathrm{5pt}}$ **A3.** (a) Prove that for all integer $n \geq 3, \, 2^n > 2n+1$.

_{5pt} (b) Prove that for all integer $n \ge 5$, $2^n > n^2$.