Math 4181H

Homework 3

Due by Tuesday, September 16

The number of elements in a (finite) set X is called the cardinality of X and is denoted by |X| or #X.

A1. Prove that for any $n, k \in \mathbb{N}$ with $k \leq n$, $\binom{n}{k}$ equals the number of k-element subsets in an n-element set: if 10pt X is a set with |X| = n, then $\binom{n}{k} = \#\{A \subseteq X : |A| = k\}$. (Hint: Use induction on n: assume that the statement is true for some n and let X be an (n+1)-element set. Pick an element x_0 of X; then k-element subsets of X are of two sorts: those that contain x_0 (how many of such are there?) and those that are subsets of $X \setminus \{x_0\}$ (how many of such are there?).)

Chapter 2, pp. 27-33:

- **3.** (e) Prove that for any $n \in \mathbb{N}$: 10pt
 - (i) $\sum_{i=0}^{n} {n \choose i} = 2^n$. (Hint: No induction is needed, you may just use the binomial formula with suitable a, b.)

 - (ii) $\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = 0$. (*Hint:* No induction is needed, you may just use the binomial formula.) (iii, iv) $\sum_{\substack{0 \le j \le n \\ j \text{ is odd}}} \binom{n}{j} = 2^{n-1}$ and $\sum_{\substack{0 \le j \le n \\ j \text{ is even}}} \binom{n}{j} = 2^{n-1}$. (*Hint:* Use (i) and (ii).)
- **A2.** Prove that for any $m \in \mathbb{N}$ and $n \in \mathbb{Z}$ there exist $k, r \in \mathbb{Z}$ with $0 \le r \le m$ such that n = km + r. (Hint: You 10ptmay start with the case $n \in \mathbb{N}$ and use (complete) induction.)
- **A3.** (b) Show (by example) that if $a, b \in \mathbb{R}$ are irrational, then a+b can be rational or irrational. Prove that 5ptif a is irrational and b is rational, then a + b is irrational.
- (c) Show (by example) that if $a, b \in \mathbb{R}$ are irrational, then ab can be rational or irrational. Prove that if a is 5ptirrational and $b \neq 0$ is rational, then ab is irrational.
- (a) If $a \in \mathbb{R}$ is irrational, prove that a^{-1} is irrational. 5pt
- (d) Prove that if a > 0 is irrational, then \sqrt{a} is irrational. Show (by example) that if $a \in \mathbb{R}$ is irrational, then 5pt a^2 can be rational or irrational.
- **14(b).** Prove that $\alpha = \sqrt{2} + \sqrt{3}$ is irrational. (*Hint:* Consider α^2 .) 5pt
- **A4.** Prove that the set of irrational numbers is dense in \mathbb{R} . (*Hint:* Consider the set $\sqrt{2} + \mathbb{Q}$.) 5pt
- **A5.** Let $A = \{a \in \mathbb{Q} \mid a^2 < 2\}$. Find sup A and inf A (and prove your statement, of course). 5pt
- **A6.** (a) For a nonempty set $A \subseteq \mathbb{R}$ and a number $c \in \mathbb{R}$ define $cA = \{ca, a \in A\}$. Prove that if c > 0, then 5pt $\sup(cA) = c \sup A$, and if c < 0, then $\sup cA = c \inf A$. (You can consider the cases where A is bounded/unbounded above separately, but you can also try to unite these two cases by using "the criterion" for sup/inf.)
- (b) Let A and B be nonempty subsets of $(0, +\infty)$ (that is, a, b > 0 for all $a \in A$ and $b \in B$). Let $AB = \{ab : a \in A \}$ 10pt $a \in A, b \in B$. Prove that $\sup(AB) = \sup A \sup B$.