Math 4181H

Homework 4

Due by Tuesday, September 30

A1. If (x_n) and (y_n) are two sequence in \mathbb{R} converging to the same limit a, prove that the sequence $(x_1, y_1, x_2, y_2, \ldots)$ also converges to a.

Chapter 22, pp. 460-465:

- 1. Prove that
- 10pt (iii) $\lim (\sqrt[8]{n^2 + 1} \sqrt[4]{n + 1}) = 0.$
- $_{5\mathrm{pt}}$ (iv) $\lim(n!/n^n)=0$. (Hint: Show that for all $n,\,n!/n^n\leq 1/n$.)
- _{5pt} (vii) $\lim \sqrt[n]{n^2 + n} = 1$. (*Hint:* Use the squeeze theorem.)
- (viii) For any $a, b \ge 0$, $\lim \sqrt[n]{a^n + b^n} = \max\{a, b\}$. (*Hint:* Assuming $a \ge b$, notice that $1 + b^n/a^n \le 2$ for all n.)
 - **2.** Find the following limits
- _{5pt} (ii) $\lim (n \sqrt{n+a}\sqrt{n+b})$.
- (v) $\lim \frac{a^n b^n}{a^n + b^n}$. (*Hint:* It is assumed that $a \neq -b$ here, since otherwise the denominator is equal to 0 for odd n. Consider the cases a = b, |a| > |b| and |a| < |b| separately.)
- $_{5\text{pt}}$ (vii) $\lim \frac{2^{n^2}}{n!}$.
- _{5pt} **5.** (a) If 0 < a < 2, prove that $a < \sqrt{2a} < 2$.
- (b) Prove that the sequence $x_1 = \sqrt{2}$, $x_2 = \sqrt{2\sqrt{2}}$, $x_3 = \sqrt{2\sqrt{2\sqrt{2}}}$, ..., converges. (*Hint:* Using (a), prove that (x_n) is increasing and bounded.)
- $_{5\text{pt}}$ (c) Find $\lim x_n$.
 - **6.** Let $0 < a_1 < b_1$ and define $a_{n+1} = \sqrt{a_n b_n}$ and $b_{n+1} = \frac{1}{2}(a_n + b_n)$.
- _{5pt} (a) Prove that (a_n) increases, (b_n) decreases, and both converge.
- $_{\mathrm{5pt}}$ (b) Prove that they have the same limit.
- **7(b).** Find $1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$, that is: Let $x_1 = 1$ and $x_{n+1} = 1 + \frac{1}{1 + x_n}$, $n \in \mathbb{N}$; prove that the

sequence (x_n) converges and find its limit. (*Hint:* Prove that $|x_{n+2} - x_{n+1}| \le \frac{1}{4}|x_{n+1} - x_n|$ for all n and use Cauchy's criterion.)