Math 4181H

Homework 5

Due by Tuesday, October 7

- A1. Let (x_n) be a sequence in \mathbb{R} . Prove that if (x_n) doesn't diverge to ∞ , then it has at least one limit point. (*Hint:* Use the Bolzano-Weierstrass theorem.)
 - **A2.** Let (x_n) be a sequence in \mathbb{R} .
- _{5pt} (a) Prove that $\limsup x_n = +\infty$ iff (x_n) is unbounded above.
- _{5pt} (b) Prove that $\limsup x_n = -\infty$ iff $x_n \longrightarrow -\infty$.
- A3. Let (x_n) be a sequence in \mathbb{R} ; prove that (x_n) has limit (finite or infinite) iff $\limsup x_n = \liminf x_n$, in which case $\lim x_n = \limsup x_n$.
- A4. Let (x_n) and (y_n) be two sequences in \mathbb{R} and suppose (y_n) converges. Prove that $\limsup (x_n + y_n) = \limsup x_n + \lim y_n$.
 - **A5.** Let (x_n) be a sequence in \mathbb{R} .
- (a) Prove that $\limsup \frac{x_1 + \dots + x_n}{n} \le \limsup x_n$. (Similarly, $\liminf \frac{x_1 + \dots + x_n}{n} \ge \liminf x_n$; don't prove it.) (*Hint:* You can try to use Stolz's theorem, or prove this directly.)
- (b) Prove that if $\lim x_n$ exists, then $\lim \frac{x_1 + \dots + x_n}{n}$ also exists and equals $\lim x_n$. ($\lim \frac{x_1 + \dots + x_n}{n}$ is called the Cesáro limit of (x_n) ; it may exist even if (x_n) has no conventional limit: the Cesáro limit of $(1, -1, 1, -1, \dots)$ equals 1/2.)

Chapter 5, pp. 108-112:

- 8. (a) If a finite $\lim_{x\to a} f(x)$ and a finite $\lim_{x\to a} g(x)$ do not exist, can a finite $\lim_{x\to a} (f(x)+g(x))$ exist? Can a finite $\lim_{x\to a} f(x)g(x)$ exist?
- 5pt (b) If a finite $\lim_{x\to a} f(x)$ and a finite $\lim_{x\to a} (f(x)+g(x))$ exist, must a finite $\lim_{x\to a} g(x)$ exist?
- (c) If a finite $\lim_{x\to a} f(x)$ exists and a finite $\lim_{x\to a} g(x)$ does not exist, can a finite $\lim_{x\to a} (f(x)+g(x))$ exist?
- _{5pt} (d) If finite $\lim_{x\to a} f(x)$ and finite $\lim_{x\to a} f(x)g(x)$ exist, does it follow that $\lim_{x\to a} g(x)$ exists?
- 9. Prove that $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$ (that is, one limit exists iff the other exists, and they are equal). Only consider the case of finite limits.
- _{5pt} **14(a).** Prove that if $\lim_{x\to 0} f(x)/x = l \in \mathbb{R}$ and $b \neq 0$, then $\lim_{x\to 0} f(bx)/x = bl$.
- 34. Prove that $\lim_{x\to 0^+} f(1/x) = \lim_{x\to +\infty} f(x)$ (that is, one limit exists iff the other exists, and they are equal). Only consider the case of finite limits.